Articles | Volume 22, issue 22
https://doi.org/10.5194/acp-22-14693-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-14693-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Contrasting elevation-dependent light absorption by black and brown carbon: lessons from in situ measurements from the highly polluted Sichuan Basin to the pristine Tibetan Plateau
Suping Zhao
CORRESPONDING AUTHOR
Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
Pingliang Land Surface Process & Severe Weather Research Station, Pingliang, 744015, China
Gansu Land Surface Process & Severe Weather Observation and
Research Station, Pingliang, 744015, China
State Key Laboratory of Cryospheric Science, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000,
China
Shaofeng Qi
Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
Ye Yu
Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
Pingliang Land Surface Process & Severe Weather Research Station, Pingliang, 744015, China
Gansu Land Surface Process & Severe Weather Observation and
Research Station, Pingliang, 744015, China
Shichang Kang
State Key Laboratory of Cryospheric Science, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000,
China
Longxiang Dong
Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
Pingliang Land Surface Process & Severe Weather Research Station, Pingliang, 744015, China
Gansu Land Surface Process & Severe Weather Observation and
Research Station, Pingliang, 744015, China
Jinbei Chen
Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
Pingliang Land Surface Process & Severe Weather Research Station, Pingliang, 744015, China
Gansu Land Surface Process & Severe Weather Observation and
Research Station, Pingliang, 744015, China
Daiying Yin
CORRESPONDING AUTHOR
Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
Related authors
Shaofeng Qi, Suping Zhao, Ye Yu, Longxiang Dong, Tong Zhang, Guo Zhao, Jianglin Li, Xiang Zhang, and Yiting Lv
EGUsphere, https://doi.org/10.5194/egusphere-2025-3254, https://doi.org/10.5194/egusphere-2025-3254, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study provides the first field evidence of the impact of downward transport of residual layer pollutants on boundary layer pollution, which holds significant implications for pollution control in complex terrain regions.
Suping Zhao, Shaofeng Qi, Jianjun He, Ye Yu, Longxiang Dong, Tong Zhang, Guo Zhao, and Yiting Lv
EGUsphere, https://doi.org/10.5194/egusphere-2025-3130, https://doi.org/10.5194/egusphere-2025-3130, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Upper-air secondary pollutants can downward invade to PBL by strong turbulence at the sloped terrain. The results are helpful for understanding formation mechanism of heavy air pollution at the complex terrain, and then taking the targeted countermeasures.
Haixia Zhu, Lufei Zhen, Suping Zhao, and Xiying Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1561, https://doi.org/10.5194/egusphere-2025-1561, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study collected dust samples from six sites in the Qaidam Basin, over three years to investigate the impact of domestic heating on atmospheric dust in hyper-arid region. Our results indicate that rural dust is significantly influenced by heating, particularly from coal and biomass burning which accounts for over 70 % of total sources. The unique energy structure here has resulted in distinct environmental effects from the emitted carbonaceous aerosols and useful for similar dry areas.
Suping Zhao, Ye Yu, Jianglin Li, Daiying Yin, Shaofeng Qi, and Dahe Qin
Atmos. Chem. Phys., 21, 14959–14981, https://doi.org/10.5194/acp-21-14959-2021, https://doi.org/10.5194/acp-21-14959-2021, 2021
Short summary
Short summary
We found a large PM2.5 reduction in response to Clean Air Action (CAA), but impacts of CAA on particle number concentrations (PNCs) may be different from PM2.5 mass due to newly formed particle impacts. The k-means clustering technique and Theil–Sen regression were used to analyze PNCs variations and to quantify their trends. Increased daytime solar radiation, higher temperature and lower RH at noon induced by reduced PM2.5 mass promoted formation of new particles and increased particle numbers.
Shaofeng Qi, Suping Zhao, Ye Yu, Longxiang Dong, Tong Zhang, Guo Zhao, Jianglin Li, Xiang Zhang, and Yiting Lv
EGUsphere, https://doi.org/10.5194/egusphere-2025-3254, https://doi.org/10.5194/egusphere-2025-3254, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study provides the first field evidence of the impact of downward transport of residual layer pollutants on boundary layer pollution, which holds significant implications for pollution control in complex terrain regions.
Suping Zhao, Shaofeng Qi, Jianjun He, Ye Yu, Longxiang Dong, Tong Zhang, Guo Zhao, and Yiting Lv
EGUsphere, https://doi.org/10.5194/egusphere-2025-3130, https://doi.org/10.5194/egusphere-2025-3130, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Upper-air secondary pollutants can downward invade to PBL by strong turbulence at the sloped terrain. The results are helpful for understanding formation mechanism of heavy air pollution at the complex terrain, and then taking the targeted countermeasures.
Haixia Zhu, Lufei Zhen, Suping Zhao, and Xiying Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1561, https://doi.org/10.5194/egusphere-2025-1561, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study collected dust samples from six sites in the Qaidam Basin, over three years to investigate the impact of domestic heating on atmospheric dust in hyper-arid region. Our results indicate that rural dust is significantly influenced by heating, particularly from coal and biomass burning which accounts for over 70 % of total sources. The unique energy structure here has resulted in distinct environmental effects from the emitted carbonaceous aerosols and useful for similar dry areas.
Suping Zhao, Ye Yu, Jianglin Li, Daiying Yin, Shaofeng Qi, and Dahe Qin
Atmos. Chem. Phys., 21, 14959–14981, https://doi.org/10.5194/acp-21-14959-2021, https://doi.org/10.5194/acp-21-14959-2021, 2021
Short summary
Short summary
We found a large PM2.5 reduction in response to Clean Air Action (CAA), but impacts of CAA on particle number concentrations (PNCs) may be different from PM2.5 mass due to newly formed particle impacts. The k-means clustering technique and Theil–Sen regression were used to analyze PNCs variations and to quantify their trends. Increased daytime solar radiation, higher temperature and lower RH at noon induced by reduced PM2.5 mass promoted formation of new particles and increased particle numbers.
Cited articles
Bond, T. C.: Spectral dependence of visible light absorption by carbonaceous
particles emitted from coal combustion, Geophys. Res. Lett.,
28, 4075–4078, 2001.
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., and
Klimont, Z.: A technology-based global inventory of black and organic carbon
emissions from combustion, J. Geophys. Res.-Atmos.,
109, D14203, https://doi.org/10.1029/2003J, 2004.
Chen, L.-W. A., Chow, J. C., Wang, X. L., Robles, J. A., Sumlin, B. J., Lowenthal, D. H., Zimmermann, R., and Watson, J. G.: Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol, Atmos. Meas. Tech., 8, 451–461, https://doi.org/10.5194/amt-8-451-2015, 2015.
Choudhary, V., Rajput, P., Singh, D. K., Singh, A. K., and Gupta, T.: Light
absorption characteristics of brown carbon during foggy and non-foggy
episodes over the Indo-Gangetic Plain, Atmos. Pollut.
Res., 9, 494–501, 2018.
Chow, J. C., Watson, J. G., Chen, L.-W. A., Chang, M. C. O., Robinson, N.
F., Trimble, D., and Kohl, S.: The IMPROVE A Temperature
Protocol for Thermal/Optical Carbon Analysis: Maintaining Consistency with a
Long-Term Database, J. Air Waste Manage. Assoc.,
57, 1014–1023, 2007.
Chung, C. E., Ramanathan, V., and Decremer, D.: Observationally constrained
estimates of carbonaceous aerosol radiative forcing, P.
Natl. Acad. Sci. USA, 109,
11624–11629, 2012.
Cong, Z. Y. , Kang, S. C., Smirnov, A., and Holben, B.: Aerosol optical
properties at Nam Co, a remote site in central Tibetan Plateau, Atmos.
Res., 92, 42–48, 2009.
Cong, Z., Kang, S., Kawamura, K., Liu, B., Wan, X., Wang, Z., Gao, S., and Fu, P.: Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources, Atmos. Chem. Phys., 15, 1573–1584, https://doi.org/10.5194/acp-15-1573-2015, 2015.
Cui, X. Q., Ren, J. W., Wang, Z. B., Yu, G. M., and Yue, G. Y.: Soluble ions
in atmospheric PM2.5 over glacier terminus determined by ion
chromatography and source analysis, J. Glaciol. Geocryol.,
41, 574–578, 2019 (in Chinese).
Duan, A. M. and Wu, G. X.: Change of cloud amount and the climate warming
on the Tibetan Plateau, Geophys. Res. Lett., 33, L22704, https://doi.org/10.1029/2006GL027946, 2006.
Feng, X. Y., Wei, S. M., and Wang, S. G.: Temperature inversions in the
atmospheric boundary layer and lower troposphere over the Sichuan Basin,
China: Climatology and impacts on air pollution, Sci. Total
Environ., 726, 138579, https://doi.org/10.1016/j.scitotenv.2020.138579, 2020.
Gao, Y. H., Chen, F., Lettenmaier, D. P., Xu, J. W., Xiao, L. H., and Li,
X.: Does elevation-dependent warming hold true above 5000 m elevation?
Lessons from the Tibetan Plateau, Clim. Atmos. Sci., 1,
19, https://doi.org/10.1038/s41612-018-0030-z, 2018.
Garrett, T. J. and Zhao, C. F.: Increased Arctic cloud longwave emissivity
associated with pollution from mid-latitudes, Nature, 440, 787–789, 2006.
Guo, D. L., Sun, J. Q., Yang, K., Pepin, N., and Xu, Y. M.: Revisiting
recent elevation-dependent warming on the Tibetan Plateau using
satellite-based data sets, J. Geophys. Res.-Atmos.,
124, 8511–8521, 2019.
Guo, D. L., Pepin, N., Yang, K., Sun, J. Q., and Li, D.: Local changes in
snow depth dominate the evolving pattern of elevation-dependent warming on
the Tibetan Plateau, Sci. Bull., 66, 1146–1150, 2021.
Han, T. T., Liu, X. G., Zhang, Y. H., Gu, J. W., Tian, H. Z., Zeng, L. M.,
Chang, S.-Y., Cheng, Y. F., Lu, K. D., and Hu, M.: Chemical characteristics
of PM10 during the summer in the mega-city Guangzhou, China,
Atmos. Res., 137, 25–34, 2014.
Huang, J. P., Minnis, P., Yi, Y. H., Tang, Q., Wang, X., Hu, Y. X., Liu, Z.
Y., Ayers, K., Trepte, C., and Winker, D.: Summer dust aerosols detected
from CALIPSO over the Tibetan Plateau, Geophys. Res. Lett., 34,
L18805, https://doi.org/10.1029/2007GL029938, 2007.
Huang, R. J., Yang, L., Cao, J. J., Chen, Y., Chen, Q., Li, Y. J., Duan, J.,
Zhu, C. S., Dai, W. T., Wang, K., Lin, C. S., Ni, H. Y., Corbin, J. C., Wu,
Y. F., Zhang, R. J., Tie, X. X., Hoffmann, T., O'Dowd, C., and Dusek, U.:
Brown carbon aerosol in urban Xi'an, Northwest China: the composition and
light absorption properties, Environ. Sci. Technol., 52,
6825–6833, 2018.
Jiang, Y. S., Gao, Y. H., He, C. L., Liu, B. L., Pan, Y. J., and Li, X.:
Spatiotemporal distribution and variation of wind erosion over the Tibetan
Plateau based on a coupled land-surface wind-erosion model, Aeolian
Res., 50, 100699, https://doi.org/10.1016/j.aeolia.2021.100699, 2021.
Kang, S. C., Zhang, Q. G., Qian, Y., Ji, Z. M., Li, C. L., Cong, Z. Y.,
Zhang, Y. L., Guo, J. M., Du, W. T., Huang, J., You, Q. L., Panday, A. K.,
Rupakheti, M., Chen, D. L., Gustafsson, O., Thiemens, M. H., and Qin, D. H.:
Linking atmospheric pollution to cryospheric change in the Third Pole
region: current progress and future prospects, National Sci. Rev.,
6, 796–809, 2019.
Kang, S. C., Zhang, Y. L., Qian, Y., and Wang, H. L.: A review of black
carbon in snow and ice and its impact on the cryosphere, Earth-Sci.
Rev., 210, 103346, https://doi.org/10.1016/j.earscirev.2020.103346, 2020.
Kawamura, K., Kasukabe, H., and Barrie, L. A.: Secondary formation of
water-soluble organic acids and alpha-dicarbonyls and their contributions to
total carbon and water-soluble organic carbon: Photochemical aging of
organic aerosols in the Arctic spring, J. Geophys. Res.-Atmos., 115, D21306, https://doi.org/10.1029/2010JD014299, 2010.
Lau, W. K. M., Kim, M. K., Kim, K. M., and Lee, W. S.: Enhanced surface
warming and accelerated snow melt in the Himalayas and Tibetan Plateau
induced by absorbing aerosols, Environ. Res. Lett., 5, 025204, https://doi.org/10.1088/1748-9326/5/2/025204,
2010.
Levinson, R., Akbari, H., and Berdahl, P.: Measuring solar re?ectance – part
I: defining a metric that accurately predicts solar heat gain, Solar Ener.,
84, 1717–1744, 2010.
Li, C. L., Chen, P. F., Kang, S C., Yan, F. P., Hu, Z., Qu, B., and
Sillanpää, M.: Concentrations and light absorption characteristics
of carbonaceous aerosol in PM2.5 and PM10 of Lhasa city, the
Tibetan Plateau, Atmos. Environ., 127, 340–346, 2016.
Liu, X. D. and Chen, B. D.: Climatic warming in the Tibetan Plateau during
recent decades, Int. J. Climatol., 20, 1729–1742,
2000.
Liu, H., Pan, X., Liu, D., Liu, X., Chen, X., Tian, Y., Sun, Y., Fu, P., and Wang, Z.: Mixing characteristics of refractory black carbon aerosols at an urban site in Beijing, Atmos. Chem. Phys., 20, 5771–5785, https://doi.org/10.5194/acp-20-5771-2020, 2020.
Liu, J., Scheuer, E., Dibb, J., Diskin, G. S., Ziemba, L. D., Thornhill, K. L., Anderson, B. E., Wisthaler, A., Mikoviny, T., Devi, J. J., Bergin, M., Perring, A. E., Markovic, M. Z., Schwarz, J. P., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., and Weber, R. J.: Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing, Atmos. Chem. Phys., 15, 7841–7858, https://doi.org/10.5194/acp-15-7841-2015, 2015.
Liu, J. M., Scheuer, E., Dibb, J., Ziemba, L. D., Thornhill, K. L.,
Anderson, B. E., Wisthaler, A., Mikoviny, T., Devi, J. J., Bergin, M., and
Weber, R. J.: Brown carbon in the continental troposphere, Geophys.
Res. Lett., 41, 2191–2195, 2014.
Lu, A. G., Kang, S. C., Li, Z. X., and Theakstone, W. H.: Altitude effects
of climatic variation on Tibetan Plateau and its vicinities, J.
Earth Sci., 21, 189–198, 2010.
Mountain Research Initiative EDW Working Group.: Elevation-dependent warming
in mountain regions of the world, Nat. Clim. Change, 5, 424–430,
2015.
Olson, M. R., Garcia, M. V., Robinson, M. A., Rooy, P. V., Dietenberger, M.
A., Bergin, M., and Schauer, J. J.: Investigation of black and brown carbon
multiple-wavelength dependent light absorption from biomass and fossil fuel
combustion source emissions, J. Geophys. Res.-Atmos.,
120, 6682–6697, 2015.
Palazzi, E., Filippi, L., and von Hardenberg, J.: Insights into
elevation-dependent warming in the Tibetan Plateau-Himalayas from CMIP5
model simulations, Clim. Dynam., 48, 3991–4008, 2017.
Peng, C., Yang, F. M., Tian, M., Shi, G. M., Li, L., Huang, R. J., Yao, X.
J., Luo, B., Zhai, C. Z., and Chen, Y.: Brown carbon aerosol in two
megacities in the Sichuan Basin of southwestern China: Light absorption
properties and implications, Sci. Total Environ., 719, 137483, https://doi.org/10.1016/j.scitotenv.2020.137483,
2020.
Pepin, N., Deng, H. J., Zhang, H. B., Zhang, F., Kang, S. C., and Yao, T.
D.: An examination of temperature trends at high elevations across the
Tibetan Plateau: The use of MODIS LST to understand patterns of
elevation-dependent warming, J. Geophys. Res.-Atmos.,
124, 5738–5756, 2019.
Quick, D. J. and Chadwick, O. A.: Accumulation of salt-rich dust from Owens
Lake playa in nearby alluvial soils, Aeolian Res., 3, 23–29, 2011.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due
to black carbon, Nat. Geosc., 1, 221–227, 2008.
Rangwala, I. and Miller, J. R.: Climate change in mountains: a review of
elevation-dependent warming and its possible causes, Clim. Change,
114, 527–547, 2012.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System, Bull. Amer. Meteor. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Tao, J., Zhang, L. M., Zhang, R. J., Wu, Y. F., Zhang, Z. S., Zhang, X. L.,
Tang, Y. X., Cao, J. J., and Zhang, Y. H.: Uncertainty assessment of source
attribution of PM2.5 and its water-soluble organic carbon content using
different biomass burning tracers in positive matrix factorization
analysis-a case study in Beijing, China, Sci. Total Environ.,
543, 326–335, 2016.
Tian, P., Zhang, L., Ma, J., Tang, K., Xu, L., Wang, Y., Cao, X., Liang, J., Ji, Y., Jiang, J. H., Yung, Y. L., and Zhang, R.: Radiative absorption enhancement of dust mixed with anthropogenic pollution over East Asia, Atmos. Chem. Phys., 18, 7815–7825, https://doi.org/10.5194/acp-18-7815-2018, 2018.
Turpin, B. J. and Lim, H. J.: Species contributions to PM2.5 mass
concentrations: revisiting common assumptions for estimating organic mass,
Aerosol Sci. Technol., 35, 602–610, 2001.
Viidanoja, J., Sillanpaa, M., Laakia, J., Kerminen, V. M., Hillamo, R.,
Aarnio, P., and Koskentalo, T.: Organic and black carbon in PM2.5 and
PM10: 1 year of data from an urban site in Helsinki, Finland,
Atmos. Environ., 36, 3183–3193, 2002.
Wang, H., Tian, M., Chen, Y., Shi, G., Liu, Y., Yang, F., Zhang, L., Deng, L., Yu, J., Peng, C., and Cao, X.: Seasonal characteristics, formation mechanisms and source origins of PM2.5 in two megacities in Sichuan Basin, China, Atmos. Chem. Phys., 18, 865–881, https://doi.org/10.5194/acp-18-865-2018, 2018.
Wang, Y. J., Hu, M., Hu, W., Zheng, J., Niu, H. Y., Fang, X., Xu, N., Wu, Z.
J., Guo, S., Wu, Y. S., Chen, W. T., Lu, S. H., Shao, M., Xie, S. D., Luo,
B., and Zhang, Y. H.: Secondary formation of aerosols under typical
high-humidity conditions in wintertime Sichuan Basin, China: A contrast to
the North China Plain, J. Geophys. Res.-Atmos.,
126, e2021JD034560, https://doi.org/10.1029/2021JD034560, 2021.
Wilson, J. G., Kingham, S., Pearce, J., and Sturman, A. P.: A review of
intraurban variations in particulate air pollution: implications for
epidemiological research, Atmos. Environ., 39, 6444–6462,
2005.
Wu, G. M., Wan, X., Gao, S. P., Fu, P. Q., Yin, Y. G., Li, G., Zhang, G. S.,
Kang, S. C., Ram, K., and Cong, Z. Y.: Humic-like substances (HULIS) in
aerosols of central Tibetan Plateau (Nam Co, 4730 m asl): abundance, light
absorption properties, and sources, Environ. Sci. Technol.,
52, 7203–7211, 2018.
Xu, B. Q., Cao, J. J., Hansen, J., Yao, T. D., Joswia, D. R., Wang, N. L.,
Wu, G. J., Wang, M., Zhao, H. B., Yang, W., Liu, X. Q., and He, J. Q.: Black
soot and the survival of Tibetan glaciers, P. Natl.
Acad. Sci. USA, 106,
22114–22118, 2009.
Yin, D. Y., Zhao, S. P., Qu, J. J., Yu, Y., Kang, S. C., Ren, X. L., Zhang,
J., Zou, Y., Dong, L. X., Li, J. L., He, J. J., Li, P., and Qin, D. H.: The
vertical profiles of carbonaceous aerosols and key influencing factors
during wintertime over western Sichuan Basin, China, Atmos.
Environ., 223, 117269, https://doi.org/10.1016/j.atmosenv.2020.117269, 2020.
You, Q. L., Chen, D. L., Wu, F. Y., Pepin, N., Cai, Z. Y., Ahrens, B.,
Jiang, Z. H., Wu, Z. W., Kang, S. C., and AghaKouchak A.: Elevation
dependent warming over the Tibetan Plateau: Patterns, mechanisms and
perspectives, Earth-Sci. Rev. 210, 103349, https://doi.org/10.1016/j.earscirev.2020.103349, 2020.
Zeng, L. H., Zhang, A. X., Wang, Y. H., Wagner, N. L., Katich, J. M.,
Schwarz, J. P., Schill, G. P., Brock, C., Froyd, K. D., Murphy, D. M.,
Williamson, C. J., Kupc, A., Scheuer, E., Dibb, J., and Weber, R. J.: Global
measurements of brown carbon and estimated direct radiative effects,
Geophys. Res. Lett., 47, e2020GL088747, https://doi.org/10.1029/2020GL088747, 2020.
Zhang, L., Tang, C. G., Huang, J. P., Du, T., Guan, X., Tian, P. F., Shi, J.
S., Cao, X. J., Huang, Z. W., Guo, Q., Zhang, H. T., Wang, M., Zeng, H. Y.,
Wang, F. Y., and Dolkar, P.: Unexpected high absorption of atmospheric
aerosols over a western Tibetan Plateau site in summer, J.
Geophys. Res.-Atmos., 126, e2020JD033286, https://doi.org/10.1029/2020JD033286, 2021.
Zhang, J., Wang, Y. Y., Teng, X. M., Liu, L., Xu, Y. S., Ren, L. H., Shi, Z.
B., Zhang, Y., Jiang, J. K., Liu, D. T., Hu, M., Shao, L. Y., Chen, J. M.,
Martin, S. T., Zhang, X. Y., and Li, W. J.: Liquid-liquid phase separation
reduces radiative absorption by aged black carbon aerosols, Commun.
Earth Environ., 3, 128, https://doi.org/10.1038/s43247-022-00462-1, 2022.
Zhang, X. Y., Zhuang, G. S., Yuan, H., Rahn, K. A., Wang, Z. F., and An, Z.
S.: Aerosol particles from dried salt-lakes and saline soils carried on dust
storms over Beijing, Terrest. Atmos. Ocean. Sci., 20,
619–628, 2009.
Zhang, Y. Z., Forrister, H., Liu, J. M., Dibb, J., Anderson, B., Schwarz, J.
P., Perring, A. E., Jimenez, J. L., Campuzano-Jost, P., Wang, Y. H., Nenes,
A., and Weber, R. J.: Top-of-atmosphere radiative forcing affected by brown
carbon in the upper troposphere, Nat. Geosci., 10, 486–489, 2017.
Zhao, C. F., Yang, Y. K., Fan, H., Huang, J. P., Fu, Y. F., Zhang, X. Y.,
Kang, S. C., Cong, Z. Y., Letu, H., and Menenti, M.: Aerosol characteristics
and impacts on weather and climate over the Tibetan Plateau, Nat.
Sci. Rev., 7, 492–495, 2020.
Zhao, S., Feng, T., Tie, X., and Wang, Z.: The warming Tibetan Plateau improves winter air quality in the Sichuan Basin, China, Atmos. Chem. Phys., 20, 14873–14887, https://doi.org/10.5194/acp-20-14873-2020, 2020.
Zhao, S. P., Yu, Y., Yin, D. Y., Qin, D. H., He, J. J., and Dong, L. X.:
Spatial patterns and temporal variations of six criteria air pollutants
during 2015 to 2017 in the city clusters of Sichuan Basin, China, Sci. Total Environ., 624, 540–557, 2018.
Zhao, S. P., Yin, D. Y., Yu, Y., Kang, S. C., Ren, X. L., Zhang, J., Zou,
Y., and Qin, D. H.: PM1 chemical composition and light absorption
properties in urban and rural areas within Sichuan Basin, southwest China,
Environ. Pollut., 280, 116970, https://doi.org/10.1016/j.envpol.2021.116970, 2021.
Zhao, S. P., Qi, S. F., Yu, Y., Kang, S. C., Dong, L. X., Chen, J. B., and
Yin, D. Y.: Measurement report: The first in-situ PM1 chemical measurements at the
steep slope from highly polluted Sichuan Basin to pristine Tibetan Plateau:
light absorption of carbonaceous aerosols, and source and origin impacts, Zenodo
[data set], https://doi.org/10.5281/zenodo.6474199, 2022.
Zhao, Z. Z., Cao, J. J., Chow, J. C., Watson, J. G., Chen, A. L.-W., Wang, X.
L., Wang, Q. Y., Tian, J., Shen, Z. X., Zhu, C. S., Liu, S. X., Tao,
J., Ye, Z. L., Zhang, T., Zhou, J. M., and Tian, R. X.: Multi-wavelength
light absorption of black and brown carbon at a high-altitude site on the
Southeastern margin of the Tibetan Plateau, China, Atmos. Environ.,
212, 54–64, 2019.
Zhu, C. S., Cao, J. J., Huang, R. J., Shen, Z. X., Wang, Q. Y., and Zhang,
N. N.: Light absorption properties of brown carbon over the southeastern
Tibetan Plateau, Sci. Total Environ., 625, 246–251, 2018.
Short summary
Light absorption by aerosols is poorly understood at the eastern slope of the Tibetan Plateau (TP). We conducted the first in situ PM1 chemical measurements from the polluted Sichuan Basin to the eastern TP. A contrasting changes in mass absorption efficiency of black and brown carbon with altitude is found due to source differences. This study contributes to the understanding of the difference in light absorption by carbon with altitude, from the polluted basins to the pristine TP.
Light absorption by aerosols is poorly understood at the eastern slope of the Tibetan Plateau...
Altmetrics
Final-revised paper
Preprint