Air Quality Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
Air Quality Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
Zhuanshi He
Air Quality Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
Hazel Cathcart
Air Quality Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
Daniel Houle
Aquatic Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Montréal, Quebec H2Y 2E7, Canada
Air Quality Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
Jian Feng
Air Quality Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
Jason O'Brien
Air Quality Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
Anne Marie Macdonald
Air Quality Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
Julian Aherne
School of Environment, Trent University, Peterborough, Ontario K9L 0G2, Canada
Jeffrey Brook
Dalla Lana School of Public Health and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5T 3M7, Canada
Viewed
Total article views: 3,712 (including HTML, PDF, and XML)
HTML
PDF
XML
Total
Supplement
BibTeX
EndNote
2,646
995
71
3,712
281
85
110
HTML: 2,646
PDF: 995
XML: 71
Total: 3,712
Supplement: 281
BibTeX: 85
EndNote: 110
Views and downloads (calculated since 28 Jun 2022)
Cumulative views and downloads
(calculated since 28 Jun 2022)
Total article views: 2,712 (including HTML, PDF, and XML)
HTML
PDF
XML
Total
Supplement
BibTeX
EndNote
2,032
628
52
2,712
149
78
104
HTML: 2,032
PDF: 628
XML: 52
Total: 2,712
Supplement: 149
BibTeX: 78
EndNote: 104
Views and downloads (calculated since 18 Nov 2022)
Cumulative views and downloads
(calculated since 18 Nov 2022)
Total article views: 1,000 (including HTML, PDF, and XML)
HTML
PDF
XML
Total
Supplement
BibTeX
EndNote
614
367
19
1,000
132
7
6
HTML: 614
PDF: 367
XML: 19
Total: 1,000
Supplement: 132
BibTeX: 7
EndNote: 6
Views and downloads (calculated since 28 Jun 2022)
Cumulative views and downloads
(calculated since 28 Jun 2022)
Viewed (geographical distribution)
Total article views: 3,712 (including HTML, PDF, and XML)
Thereof 3,712 with geography defined
and 0 with unknown origin.
Total article views: 2,712 (including HTML, PDF, and XML)
Thereof 2,712 with geography defined
and 0 with unknown origin.
Total article views: 1,000 (including HTML, PDF, and XML)
Thereof 1,000 with geography defined
and 0 with unknown origin.
Nitrogen (N) and sulfur (S) deposition decreased significantly at 14 Canadian sites during 2000–2018. The greatest decline was observed in southeastern Canada owing to regional SO2 and NOx reductions. Wet deposition was more important than dry deposition, comprising 71–95 % of total N and 45–89 % of total S deposition. While critical loads (CLs) were exceeded at a few sites in the early 2000s, acidic deposition declined below CLs after 2012, which signifies recovery from legacy acidification.
Nitrogen (N) and sulfur (S) deposition decreased significantly at 14 Canadian sites during...