Articles | Volume 22, issue 20
https://doi.org/10.5194/acp-22-13897-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-13897-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Organic enrichment in droplet residual particles relative to out of cloud over the northwestern Atlantic: analysis of airborne ACTIVATE data
Hossein Dadashazar
CORRESPONDING AUTHOR
Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
Andrea F. Corral
Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
Ewan Crosbie
NASA Langley Research Center, Hampton, VA, USA
Science Systems and Applications, Inc., Hampton, VA, USA
Sanja Dmitrovic
James C. Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, USA
Simon Kirschler
Institute for Atmospheric Physics, DLR, German Aerospace Center, Oberpfaffenhofen, Germany
Institute of Atmospheric Physics, University Mainz, Mainz, Germany
Kayla McCauley
Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
Richard Moore
NASA Langley Research Center, Hampton, VA, USA
Claire Robinson
NASA Langley Research Center, Hampton, VA, USA
Science Systems and Applications, Inc., Hampton, VA, USA
Joseph S. Schlosser
Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
Michael Shook
NASA Langley Research Center, Hampton, VA, USA
K. Lee Thornhill
NASA Langley Research Center, Hampton, VA, USA
Christiane Voigt
Institute for Atmospheric Physics, DLR, German Aerospace Center, Oberpfaffenhofen, Germany
Institute of Atmospheric Physics, University Mainz, Mainz, Germany
Edward Winstead
NASA Langley Research Center, Hampton, VA, USA
Science Systems and Applications, Inc., Hampton, VA, USA
Luke Ziemba
NASA Langley Research Center, Hampton, VA, USA
Armin Sorooshian
Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
James C. Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, USA
Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
Viewed
Total article views: 1,744 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 11 Jul 2022)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,247 | 451 | 46 | 1,744 | 178 | 58 | 51 |
- HTML: 1,247
- PDF: 451
- XML: 46
- Total: 1,744
- Supplement: 178
- BibTeX: 58
- EndNote: 51
Total article views: 1,187 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 28 Oct 2022)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
872 | 283 | 32 | 1,187 | 100 | 55 | 46 |
- HTML: 872
- PDF: 283
- XML: 32
- Total: 1,187
- Supplement: 100
- BibTeX: 55
- EndNote: 46
Total article views: 557 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 11 Jul 2022)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
375 | 168 | 14 | 557 | 78 | 3 | 5 |
- HTML: 375
- PDF: 168
- XML: 14
- Total: 557
- Supplement: 78
- BibTeX: 3
- EndNote: 5
Viewed (geographical distribution)
Total article views: 1,744 (including HTML, PDF, and XML)
Thereof 1,847 with geography defined
and -103 with unknown origin.
Total article views: 1,187 (including HTML, PDF, and XML)
Thereof 1,281 with geography defined
and -94 with unknown origin.
Total article views: 557 (including HTML, PDF, and XML)
Thereof 566 with geography defined
and -9 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
6 citations as recorded by crossref.
- Spatially coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: the NASA ACTIVATE dataset A. Sorooshian et al. 10.5194/essd-15-3419-2023
- Dropsonde observations during the Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment H. Vömel et al. 10.1038/s41597-023-02647-5
- Establishment of an analytical model for remote sensing of typical stratocumulus cloud profiles under various precipitation and entrainment conditions H. Shang et al. 10.5194/acp-23-2729-2023
- Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights C. Soloff et al. 10.5194/acp-24-10385-2024
- Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign S. Tang et al. 10.5194/acp-24-10073-2024
- Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda T. Ajayi et al. 10.5194/acp-24-9197-2024
6 citations as recorded by crossref.
- Spatially coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: the NASA ACTIVATE dataset A. Sorooshian et al. 10.5194/essd-15-3419-2023
- Dropsonde observations during the Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment H. Vömel et al. 10.1038/s41597-023-02647-5
- Establishment of an analytical model for remote sensing of typical stratocumulus cloud profiles under various precipitation and entrainment conditions H. Shang et al. 10.5194/acp-23-2729-2023
- Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights C. Soloff et al. 10.5194/acp-24-10385-2024
- Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign S. Tang et al. 10.5194/acp-24-10073-2024
- Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda T. Ajayi et al. 10.5194/acp-24-9197-2024
Latest update: 20 Nov 2024
Short summary
Multi-season airborne data over the northwestern Atlantic show that organic mass fraction and the relative amount of oxygenated organics within that fraction are enhanced in droplet residual particles as compared to particles below and above cloud. In-cloud aqueous processing is shown to be a potential driver of this compositional shift in cloud. This implies that aerosol–cloud interactions in the region reduce aerosol hygroscopicity due to the jump in the organic : sulfate ratio in cloud.
Multi-season airborne data over the northwestern Atlantic show that organic mass fraction and...
Altmetrics
Final-revised paper
Preprint