Articles | Volume 22, issue 20
https://doi.org/10.5194/acp-22-13631-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-13631-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contributions of primary sources to submicron organic aerosols in Delhi, India
Sahil Bhandari
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
Zainab Arub
Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India
Gazala Habib
Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India
Joshua S. Apte
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, UC Berkeley, Berkeley, California, USA
School of Public Health, UC Berkeley, Berkeley, California, USA
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
Related authors
Sahil Bhandari, Zainab Arub, Gazala Habib, Joshua S. Apte, and Lea Hildebrandt Ruiz
Atmos. Meas. Tech., 15, 6051–6074, https://doi.org/10.5194/amt-15-6051-2022, https://doi.org/10.5194/amt-15-6051-2022, 2022
Short summary
Short summary
We present a new method to conduct source apportionment resolved by time of day using the underlying approach of positive matrix factorization. We report results for four example time periods in two seasons (winter and monsoon 2017) in Delhi, India. Compared to the traditional approach, we extract a larger number of factors that represent the expected sources of primary organic aerosol. This method can capture diurnal time series patterns of sources at low computational cost.
Shahzad Gani, Sahil Bhandari, Kanan Patel, Sarah Seraj, Prashant Soni, Zainab Arub, Gazala Habib, Lea Hildebrandt Ruiz, and Joshua S. Apte
Atmos. Chem. Phys., 20, 8533–8549, https://doi.org/10.5194/acp-20-8533-2020, https://doi.org/10.5194/acp-20-8533-2020, 2020
Short summary
Short summary
Delhi, India, has had the highest fine particle mass (PM2.5; diameter < 2.5 µm) concentrations of any megacity on the planet in recent years. Here, we undertook a year of detailed measurements of particle size distributions. We observed that the number count of ultrafine particles (diameter < 100 nm) – unlike PM2.5 – is not dramatically elevated in Delhi. Using observations and a simple model, we illustrate how the high amount of PM2.5 in Delhi may suppress ultrafine particle concentrations.
Zainab Arub, Sahil Bhandari, Shahzad Gani, Joshua S. Apte, Lea Hildebrandt Ruiz, and Gazala Habib
Atmos. Chem. Phys., 20, 6953–6971, https://doi.org/10.5194/acp-20-6953-2020, https://doi.org/10.5194/acp-20-6953-2020, 2020
Short summary
Short summary
Aerosol physiochemical properties were characterized for three prominent air masses over New Delhi, a highly polluted megacity. The chemical composition and size distribution data were used to deduce the hygroscopicity parameter and cloud condensation nuclei (CCN) number concentration. The activated fraction was the highest in the world for any continental site. The aerosol physiochemical properties and their diurnal patterns were interlinked and impacted aerosol hygroscopicity and CCN activity.
Sahil Bhandari, Shahzad Gani, Kanan Patel, Dongyu S. Wang, Prashant Soni, Zainab Arub, Gazala Habib, Joshua S. Apte, and Lea Hildebrandt Ruiz
Atmos. Chem. Phys., 20, 735–752, https://doi.org/10.5194/acp-20-735-2020, https://doi.org/10.5194/acp-20-735-2020, 2020
Short summary
Short summary
Delhi, India, is the most polluted megacity on the planet, posing acute challenges to public health. We report on source apportionment conducted on 15 months of highly time-resolved mass spectrometer data. We find that severe air pollution episodes are dominated by primary organic aerosol, while secondary organic aerosol dominates the fractional contributions year-round, suggesting the importance of sources as well as their atmospheric processing on pollution levels in Delhi.
Shahzad Gani, Sahil Bhandari, Sarah Seraj, Dongyu S. Wang, Kanan Patel, Prashant Soni, Zainab Arub, Gazala Habib, Lea Hildebrandt Ruiz, and Joshua S. Apte
Atmos. Chem. Phys., 19, 6843–6859, https://doi.org/10.5194/acp-19-6843-2019, https://doi.org/10.5194/acp-19-6843-2019, 2019
Short summary
Short summary
Delhi experiences particulate matter concentrations that are among the highest in the world. We conducted a long-term campaign to make highly time-resolved measurements of submicron particle (PM1) chemical composition in Delhi. Our dataset illuminates key sources and atmospheric processes that impact Delhi's PM1 concentrations, with sharp differences among seasons and between day and night. In addition to local sources, Delhi's PM1 levels are amplified by regional pollution and meteorology.
Anil Kumar Mandariya, Ajit Ahlawat, Mohammed Haneef, Nisar Ali Baig, Kanan Patel, Joshua Apte, Lea Hildebrandt Ruiz, Alfred Wiedensohler, and Gazala Habib
Atmos. Chem. Phys., 24, 3627–3647, https://doi.org/10.5194/acp-24-3627-2024, https://doi.org/10.5194/acp-24-3627-2024, 2024
Short summary
Short summary
The current study explores the temporal variation of size-selected particle hygroscopicity in Delhi for the first time. Here, we report that the high volume fraction contribution of ammonium chloride to aerosol governs the high aerosol hygroscopicity and associated liquid water content based on the experimental data. The episodically high ammonium chloride present in Delhi's atmosphere could lead to haze and fog formation under high relative humidity in the region.
Mark Joseph Campmier, Jonathan Gingrich, Saumya Singh, Nisar Baig, Shahzad Gani, Adithi Upadhya, Pratyush Agrawal, Meenakshi Kushwaha, Harsh Raj Mishra, Ajay Pillarisetti, Sreekanth Vakacherla, Ravi Kant Pathak, and Joshua S. Apte
Atmos. Meas. Tech., 16, 4357–4374, https://doi.org/10.5194/amt-16-4357-2023, https://doi.org/10.5194/amt-16-4357-2023, 2023
Short summary
Short summary
We studied a low-cost air pollution sensor called PurpleAir PA-II in three different locations in India (Delhi, Hamirpur, and Bangalore) to characterize its performance. We compared its signal to more expensive reference sensors and found that the PurpleAir sensor was precise but inaccurate without calibration. We created a custom calibration equation for each location, which improved the accuracy of the PurpleAir sensor, and found that calibrations should be adjusted for different seasons.
Sahil Bhandari, Zainab Arub, Gazala Habib, Joshua S. Apte, and Lea Hildebrandt Ruiz
Atmos. Meas. Tech., 15, 6051–6074, https://doi.org/10.5194/amt-15-6051-2022, https://doi.org/10.5194/amt-15-6051-2022, 2022
Short summary
Short summary
We present a new method to conduct source apportionment resolved by time of day using the underlying approach of positive matrix factorization. We report results for four example time periods in two seasons (winter and monsoon 2017) in Delhi, India. Compared to the traditional approach, we extract a larger number of factors that represent the expected sources of primary organic aerosol. This method can capture diurnal time series patterns of sources at low computational cost.
Shahzad Gani, Sahil Bhandari, Kanan Patel, Sarah Seraj, Prashant Soni, Zainab Arub, Gazala Habib, Lea Hildebrandt Ruiz, and Joshua S. Apte
Atmos. Chem. Phys., 20, 8533–8549, https://doi.org/10.5194/acp-20-8533-2020, https://doi.org/10.5194/acp-20-8533-2020, 2020
Short summary
Short summary
Delhi, India, has had the highest fine particle mass (PM2.5; diameter < 2.5 µm) concentrations of any megacity on the planet in recent years. Here, we undertook a year of detailed measurements of particle size distributions. We observed that the number count of ultrafine particles (diameter < 100 nm) – unlike PM2.5 – is not dramatically elevated in Delhi. Using observations and a simple model, we illustrate how the high amount of PM2.5 in Delhi may suppress ultrafine particle concentrations.
Zainab Arub, Sahil Bhandari, Shahzad Gani, Joshua S. Apte, Lea Hildebrandt Ruiz, and Gazala Habib
Atmos. Chem. Phys., 20, 6953–6971, https://doi.org/10.5194/acp-20-6953-2020, https://doi.org/10.5194/acp-20-6953-2020, 2020
Short summary
Short summary
Aerosol physiochemical properties were characterized for three prominent air masses over New Delhi, a highly polluted megacity. The chemical composition and size distribution data were used to deduce the hygroscopicity parameter and cloud condensation nuclei (CCN) number concentration. The activated fraction was the highest in the world for any continental site. The aerosol physiochemical properties and their diurnal patterns were interlinked and impacted aerosol hygroscopicity and CCN activity.
Leigh R. Crilley, Ajit Singh, Louisa J. Kramer, Marvin D. Shaw, Mohammed S. Alam, Joshua S. Apte, William J. Bloss, Lea Hildebrandt Ruiz, Pingqing Fu, Weiqi Fu, Shahzad Gani, Michael Gatari, Evgenia Ilyinskaya, Alastair C. Lewis, David Ng'ang'a, Yele Sun, Rachel C. W. Whitty, Siyao Yue, Stuart Young, and Francis D. Pope
Atmos. Meas. Tech., 13, 1181–1193, https://doi.org/10.5194/amt-13-1181-2020, https://doi.org/10.5194/amt-13-1181-2020, 2020
Short summary
Short summary
There is considerable interest in using low-cost optical particle counters (OPCs) for particle mass measurements; however, there is no agreed upon method with respect to calibration. Here we exploit a number of datasets globally to demonstrate that particle composition and relative humidity are the key factors affecting measured concentrations from a low-cost OPC, and we present a simple correction methodology that corrects for this influence.
Sahil Bhandari, Shahzad Gani, Kanan Patel, Dongyu S. Wang, Prashant Soni, Zainab Arub, Gazala Habib, Joshua S. Apte, and Lea Hildebrandt Ruiz
Atmos. Chem. Phys., 20, 735–752, https://doi.org/10.5194/acp-20-735-2020, https://doi.org/10.5194/acp-20-735-2020, 2020
Short summary
Short summary
Delhi, India, is the most polluted megacity on the planet, posing acute challenges to public health. We report on source apportionment conducted on 15 months of highly time-resolved mass spectrometer data. We find that severe air pollution episodes are dominated by primary organic aerosol, while secondary organic aerosol dominates the fractional contributions year-round, suggesting the importance of sources as well as their atmospheric processing on pollution levels in Delhi.
Shahzad Gani, Sahil Bhandari, Sarah Seraj, Dongyu S. Wang, Kanan Patel, Prashant Soni, Zainab Arub, Gazala Habib, Lea Hildebrandt Ruiz, and Joshua S. Apte
Atmos. Chem. Phys., 19, 6843–6859, https://doi.org/10.5194/acp-19-6843-2019, https://doi.org/10.5194/acp-19-6843-2019, 2019
Short summary
Short summary
Delhi experiences particulate matter concentrations that are among the highest in the world. We conducted a long-term campaign to make highly time-resolved measurements of submicron particle (PM1) chemical composition in Delhi. Our dataset illuminates key sources and atmospheric processes that impact Delhi's PM1 concentrations, with sharp differences among seasons and between day and night. In addition to local sources, Delhi's PM1 levels are amplified by regional pollution and meteorology.
Dongyu S. Wang and Lea Hildebrandt Ruiz
Atmos. Chem. Phys., 18, 15535–15553, https://doi.org/10.5194/acp-18-15535-2018, https://doi.org/10.5194/acp-18-15535-2018, 2018
Short summary
Short summary
We investigated the formation of atmospheric pollutants from chlorine-initiated oxidation of alkanes, which may occur in polluted environments. We report for the first the formation of alkane-derived chlorinated organics. We also propose a new approach to representing the chemical composition, volatility, and thermal desorption behavior of organic aerosols. Overall, our study suggests that the oxidation of alkanes can be an important source of organic aerosols in polluted environments.
Dongyu S. Wang and Lea Hildebrandt Ruiz
Atmos. Chem. Phys., 17, 13491–13508, https://doi.org/10.5194/acp-17-13491-2017, https://doi.org/10.5194/acp-17-13491-2017, 2017
Short summary
Short summary
We investigated the formation of atmospheric pollutants from chlorine-initiated oxidation of isoprene. Our study is the first to report formation of airborne particles from these reactions. We analyzed the chemical composition of both gas- and particle-phase products and propose methods to better detect particle-phase pollutants. Overall, our study demonstrates that reactions between isoprene and chlorine can have important implications for atmospheric composition and therefore human health.
Jeffrey K. Bean and Lea Hildebrandt Ruiz
Atmos. Chem. Phys., 16, 2175–2184, https://doi.org/10.5194/acp-16-2175-2016, https://doi.org/10.5194/acp-16-2175-2016, 2016
Short summary
Short summary
The fate of organic nitrates influences their role as sinks and sources of NOx and their effects on the formation of tropospheric ozone and organic aerosol. Organic nitrates were formed from the photo-oxidation of α-pinene in environmental chamber experiments. Results on partitioning and hydrolysis of organic nitrates from this work could be implemented in chemical transport models to more accurately represent the fate of NOx and the formation of ozone and particulate matter.
Andrea Paciga, Eleni Karnezi, Evangelia Kostenidou, Lea Hildebrandt, Magda Psichoudaki, Gabriella J. Engelhart, Byong-Hyoek Lee, Monica Crippa, André S. H. Prévôt, Urs Baltensperger, and Spyros N. Pandis
Atmos. Chem. Phys., 16, 2013–2023, https://doi.org/10.5194/acp-16-2013-2016, https://doi.org/10.5194/acp-16-2013-2016, 2016
Short summary
Short summary
We estimate the volatility distribution for the organic aerosol (OA) components during summer and winter field campaigns in Paris, France as part of the collaborative project MEGAPOLI. The OA factors (hydrocarbon like OA, cooking OA, marine OA, oxygenated OA) had a broad spectrum of volatilities with no direct link between the average volatility and average oxygen to carbon of the OA components.
M. Pikridas, J. Sciare, F. Freutel, S. Crumeyrolle, S.-L. von der Weiden-Reinmüller, A. Borbon, A. Schwarzenboeck, M. Merkel, M. Crippa, E. Kostenidou, M. Psichoudaki, L. Hildebrandt, G. J. Engelhart, T. Petäjä, A. S. H. Prévôt, F. Drewnick, U. Baltensperger, A. Wiedensohler, M. Kulmala, M. Beekmann, and S. N. Pandis
Atmos. Chem. Phys., 15, 10219–10237, https://doi.org/10.5194/acp-15-10219-2015, https://doi.org/10.5194/acp-15-10219-2015, 2015
Short summary
Short summary
Aerosol size distribution measurements from three ground sites, two mobile laboratories, and one airplane are combined to investigate the spatial and temporal variability of ultrafine particles in and around Paris during the summer and winter MEGAPOLI campaigns. The role of nucleation as a particle source and the influence of Paris emissions on their surroundings are examined.
L. Hildebrandt Ruiz, A. L. Paciga, K. M. Cerully, A. Nenes, N. M. Donahue, and S. N. Pandis
Atmos. Chem. Phys., 15, 8301–8313, https://doi.org/10.5194/acp-15-8301-2015, https://doi.org/10.5194/acp-15-8301-2015, 2015
Short summary
Short summary
Secondary organic aerosol (SOA) is transformed after its initial formation. We explored the effects of this chemical aging on the composition, mass yield, volatility, and hygroscopicity of SOA formed from the photo-oxidation of small aromatic volatile organic compounds. Higher exposure to the hydroxyl radical resulted in different SOA composition, average carbon oxidation state, and mass yield. The vapor pressure of SOA formed under different conditions varied by as much as a factor of 30.
M. R. Canagaratna, J. L. Jimenez, J. H. Kroll, Q. Chen, S. H. Kessler, P. Massoli, L. Hildebrandt Ruiz, E. Fortner, L. R. Williams, K. R. Wilson, J. D. Surratt, N. M. Donahue, J. T. Jayne, and D. R. Worsnop
Atmos. Chem. Phys., 15, 253–272, https://doi.org/10.5194/acp-15-253-2015, https://doi.org/10.5194/acp-15-253-2015, 2015
Short summary
Short summary
Atomic oxygen-to-carbon (O:C), hydrogen-to-carbon (H:C), and organic mass-to-organic carbon (OM:OC) ratios of ambient organic aerosol (OA) species provide key constraints for understanding their sources and impacts. Here an improved method for obtaining accurate O:C, H:C, and OM:OC with a widely used aerosol mass spectrometer is developed. These results imply that OA is more oxidized than previously estimated and indicate the need for new chemical mechanisms that simulate ambient oxidation.
T. Yli-Juuti, K. Barsanti, L. Hildebrandt Ruiz, A.-J. Kieloaho, U. Makkonen, T. Petäjä, T. Ruuskanen, M. Kulmala, and I. Riipinen
Atmos. Chem. Phys., 13, 12507–12524, https://doi.org/10.5194/acp-13-12507-2013, https://doi.org/10.5194/acp-13-12507-2013, 2013
M. R. Pennington, B. R. Bzdek, J. W. DePalma, J. N. Smith, A.-M. Kortelainen, L. Hildebrandt Ruiz, T. Petäjä, M. Kulmala, D. R. Worsnop, and M. V. Johnston
Atmos. Chem. Phys., 13, 10215–10225, https://doi.org/10.5194/acp-13-10215-2013, https://doi.org/10.5194/acp-13-10215-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China
Automated compound speciation, cluster analysis, and quantification of organic vapours and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Atmospheric evolution of environmentally persistent free radicals in rural North China Plain: insights into water solubility and effects on PM2.5 oxidative potential
Impact of weather patterns and meteorological factors on PM2.5 and O3 responses to the COVID-19 lockdown in China
Daytime and nighttime aerosol soluble iron formation in clean and slightly polluted moist air in a coastal city in eastern China
Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing
A Multi-site Passive Approach for Studying the Emissions and Evolution of Smoke from Prescribed Fires
Simultaneous organic aerosol source apportionment at two Antarctic sites reveals large-scale and ecoregion-specific components
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Measurement report: Optical characterization, seasonality, and sources of brown carbon in fine aerosols from Tianjin, North China: year-round observations
Bayesian inference-based estimation of hourly primary and secondary organic carbon in suburban Hong Kong: multi-temporal-scale variations and evolution characteristics during PM2.5 episodes
Primary and secondary emissions from a modern fleet of city buses
Dominant Influence of Biomass Combustion and Cross-Border Transport on Nitrogen-Containing Organic Compound Levels in the Southeastern Tibetan Plateau
Measurement report: Characteristics of aminiums in PM2.5 during winter clean and polluted episodes in China: aminium outbreak and its constraint
Impact assessment of terrestrial and marine air-mass on the constituents and intermixing of bioaerosols over coastal atmosphere
Assessing the influence of long-range transport of aerosols on the PM2.5 chemical composition and concentration in the Aburrá Valley
Measurement report: Characteristics of nitrogen-containing organics in PM2.5 in Ürümqi, northwestern China – differential impacts of combustion of fresh and aged biomass materials
Measurement report: Bio-physicochemistry of tropical clouds at Maïdo (Réunion, Indian Ocean): overview of results from the BIO-MAÏDO campaign
Impacts of elevated anthropogenic emissions on physicochemical characteristics of BC-containing particles over the Tibetan Plateau
Chemical properties and single-particle mixing state of soot aerosol in Houston during the TRACER campaign
Measurement report: Evaluation of the TOF-ACSM-CV for PM1.0 and PM2.5 measurements during the RITA-2021 field campaign
Sea salt reactivity over the northwest Atlantic: an in-depth look using the airborne ACTIVATE dataset
Measurement report: Atmospheric ice nuclei in the Changbai Mountains (2623 m a.s.l.) in northeastern Asia
Morphological and optical properties of carbonaceous aerosol particles from ship emissions and biomass burning during a summer cruise measurement in the South China Sea
Tropical tropospheric aerosol sources and chemical composition observed at high altitude in the Bolivian Andes
Chemical composition, sources and formation mechanism of urban PM2.5 in Southwest China: a case study at the beginning of 2023
Chemical characterization of atmospheric aerosols at a high-altitude mountain site: a study of source apportionment
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024, https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Short summary
The determination of ions in the mass spectra of individual particles remains uncertain. We have developed a standard-free mass calibration algorithm applicable to more than 98 % of ambient particles. With our algorithm, ions with ~ 0.05 Th mass difference could be determined. Therefore, many more atmospheric species could be determined and involved in the source apportionment of aerosols, the study of chemical reaction mechanisms, and the analysis of single-particle mixing states.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1671, https://doi.org/10.5194/egusphere-2024-1671, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
EGUsphere, https://doi.org/10.5194/egusphere-2024-1622, https://doi.org/10.5194/egusphere-2024-1622, 2024
Short summary
Short summary
A study in rural North China Plain revealed Environmental persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs’ atmospheric evolution for climate and health impacts.
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024, https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Short summary
We attempt to use a novel structural self-organising map and machine learning models to identify a weather system and quantify the importance of each meteorological factor in driving the unexpected PM2.5 and O3 changes under the specific weather system during the COVID-19 lockdown in China. The result highlights that temperature under the double-centre high-pressure system plays the most crucial role in abnormal events.
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024, https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary
Short summary
Aerosol particles from mainland can transport to oceans and deposit, providing soluble Fe and affecting phytoplankton growth. Thus, we studied the dissolution process of aerosol Fe and found that photochemistry played a key role in promoting Fe dissolution in clean conditions. RH-dependent reactions were more influential in slightly polluted conditions. These results highlight the distinct roles of two weather-related parameters (radiation and RH) in influencing geochemical cycles related to Fe.
Yanqin Ren, Zhenhai Wu, Yuanyuan Ji, Fang Bi, Junling Li, Haijie Zhang, Hao Zhang, Hong Li, and Gehui Wang
Atmos. Chem. Phys., 24, 6525–6538, https://doi.org/10.5194/acp-24-6525-2024, https://doi.org/10.5194/acp-24-6525-2024, 2024
Short summary
Short summary
Nitrated aromatic compounds (NACs) and oxygenated derivatives of polycyclic aromatic hydrocarbons (OPAHs) in PM2.5 were examined from an urban area in Beijing during the autumn and winter. The OPAH and NAC concentrations were much higher during heating than before heating. They majorly originated from the combustion of biomass and automobile emissions, and the secondary generation was the major contributor throughout the whole sampling period.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O’Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1485, https://doi.org/10.5194/egusphere-2024-1485, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires, however, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in two different years, we characterize the emissions and evolution up to 8 hours of PM2.5 mass, BC, and BrC in smoke from burning of forested lands in the southeastern US.
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
EGUsphere, https://doi.org/10.5194/egusphere-2024-1262, https://doi.org/10.5194/egusphere-2024-1262, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterized: sulfate-rich plumes from use of heavy fuel oil with scrubbers and organic-rich plumes from use of low sulfur fuels. The latter were more frequent, emitting double the particle number, and having atypical V/Ni ratio for ship emission.
Zhichao Dong, Chandra Mouli Pavuluri, Peisen Li, Zhanjie Xu, Junjun Deng, Xueyan Zhao, Xiaomai Zhao, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 5887–5905, https://doi.org/10.5194/acp-24-5887-2024, https://doi.org/10.5194/acp-24-5887-2024, 2024
Short summary
Short summary
Comprehensive study of optical properties of brown carbon (BrC) in fine aerosols from Tianjin, China, implied that biological emissions are major sources of BrC in summer, whereas fossil fuel combustion and biomass burning emissions are in cold periods. The direct radiation absorption caused by BrC in short wavelengths contributed about 40 % to that caused by BrC in 300–700 nm. Water-insoluble but methanol-soluble BrC contains more protein-like chromophores (PLOM) than that of water-soluble BrC.
Shan Wang, Kezheng Liao, Zijing Zhang, Yuk Ying Cheng, Qiongqiong Wang, Hanzhe Chen, and Jian Zhen Yu
Atmos. Chem. Phys., 24, 5803–5821, https://doi.org/10.5194/acp-24-5803-2024, https://doi.org/10.5194/acp-24-5803-2024, 2024
Short summary
Short summary
In this work, hourly primary and secondary organic carbon were estimated by a novel Bayesian inference approach in suburban Hong Kong. Their multi-temporal-scale variations and evolution characteristics during PM2.5 episodes were examined. The methodology could serve as a guide for other locations with similar monitoring capabilities. The observation-based results are helpful for understanding the evolving nature of secondary organic aerosols and refining the accuracy of model simulations.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
EGUsphere, https://doi.org/10.5194/egusphere-2024-494, https://doi.org/10.5194/egusphere-2024-494, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1130, https://doi.org/10.5194/egusphere-2024-1130, 2024
Short summary
Short summary
This study explores nitrogen-containing organic compounds (NOCs) in PM2.5 particles on the Southeastern Tibetan Plateau. We discovered that biomass burning and transboundary transport are the primary sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they contribute to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-975, https://doi.org/10.5194/egusphere-2024-975, 2024
Short summary
Short summary
This study has explored the characteristics of aminiums, ammonium, and PM2.5 from the clean days to the polluted days according to the observational data from 11 different Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols, or the displacement of aminiums by ammonia under a high ammonia condition. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristic and formation in China.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
EGUsphere, https://doi.org/10.5194/egusphere-2024-841, https://doi.org/10.5194/egusphere-2024-841, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing processes of terrestrial and marine aerosols. Terrestrial air mass constituted a larger proportion during severe air pollution, harboring more animal and human pathogens. A relative shift towards marine air-mass with respect to pollution elimination, where saprophytic bacteria and fungi were predominant. Mixed air-mass reveals the intermixing processes of terrestrial and marine sources.
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
EGUsphere, https://doi.org/10.5194/egusphere-2024-695, https://doi.org/10.5194/egusphere-2024-695, 2024
Short summary
Short summary
For the Aburrá Valley, Colombia, local emissions dominate aerosol concentrations, which degrade air quality (AQ) and impact human health. However, this can be exacerbated by the influx of external emissions from sources such as regional fires, Saharan dust, and volcanic degassing. While substantially increasing city-wide aerosols, these external sources can also degrade the aerosol chemical composition (i.e. their toxicity) and impact AQ, which we investigate in this study.
Yi-Jia Ma, Yu Xu, Ting Yang, Hong-Wei Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 24, 4331–4346, https://doi.org/10.5194/acp-24-4331-2024, https://doi.org/10.5194/acp-24-4331-2024, 2024
Short summary
Short summary
This study provides field-based evidence about the differential impacts of combustion of fresh and aged biomass materials on aerosol nitrogen-containing organic compounds (NOCs) in different seasons in Ürümqi, bridging the linkages between the observations and previous laboratory studies showing the formation mechanisms of NOCs.
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-879, https://doi.org/10.5194/egusphere-2024-879, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black carbon -containing aerosol in TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Ryan N. Farley, James E. Lee, Laura-Hélèna Rivellini, Alex K. Y. Lee, Rachael Dal Porto, Christopher D. Cappa, Kyle Gorkowski, Abu Sayeed Md Shawon, Katherine B. Benedict, Allison C. Aiken, Manvendra K. Dubey, and Qi Zhang
Atmos. Chem. Phys., 24, 3953–3971, https://doi.org/10.5194/acp-24-3953-2024, https://doi.org/10.5194/acp-24-3953-2024, 2024
Short summary
Short summary
The black carbon aerosol composition and mixing state were characterized using a soot particle aerosol mass spectrometer. Single-particle measurements revealed the major role of atmospheric processing in modulating the black carbon mixing state. A significant fraction of soot particles were internally mixed with oxidized organic aerosol and sulfate, with implications for activation as cloud nuclei.
Xinya Liu, Bas Henzing, Arjan Hensen, Jan Mulder, Peng Yao, Danielle van Dinther, Jerry van Bronckhorst, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 3405–3420, https://doi.org/10.5194/acp-24-3405-2024, https://doi.org/10.5194/acp-24-3405-2024, 2024
Short summary
Short summary
We evaluated the time-of-flight aerosol chemical speciation monitor (TOF-ACSM) following the implementation of the PM2.5 aerodynamic lens and a capture vaporizer (CV). The results showed that it significantly improved the accuracy and precision of ACSM in the field observations. The paper elucidates the measurement outcomes of various instruments and provides an analysis of their biases. This comprehensive evaluation is expected to benefit the ACSM community and other aerosol field measurements.
Eva-Lou Edwards, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Claire E. Robinson, Michael A. Shook, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 3349–3378, https://doi.org/10.5194/acp-24-3349-2024, https://doi.org/10.5194/acp-24-3349-2024, 2024
Short summary
Short summary
We investigate Cl− depletion in sea salt particles over the northwest Atlantic from December 2021 to June 2022 using an airborne dataset. Losses of Cl− are greatest in May and least in December–February and March. Inorganic acidic species can account for all depletion observed for December–February, March, and June near Bermuda but none in May. Quantifying Cl− depletion as a percentage captures seasonal trends in depletion but fails to convey the effects it may have on atmospheric oxidation.
Yue Sun, Yujiao Zhu, Yanbin Qi, Lanxiadi Chen, Jiangshan Mu, Ye Shan, Yu Yang, Yanqiu Nie, Ping Liu, Can Cui, Ji Zhang, Mingxuan Liu, Lingli Zhang, Yufei Wang, Xinfeng Wang, Mingjin Tang, Wenxing Wang, and Likun Xue
Atmos. Chem. Phys., 24, 3241–3256, https://doi.org/10.5194/acp-24-3241-2024, https://doi.org/10.5194/acp-24-3241-2024, 2024
Short summary
Short summary
Field observations were conducted at the summit of Changbai Mountain in northeast Asia. The cumulative number concentration of ice-nucleating particles (INPs) varied from 1.6 × 10−3 to 78.3 L−1 over the temperature range of −5.5 to −29.0 ℃. Biological INPs (bio-INPs) accounted for the majority of INPs, and the proportion exceeded 90% above −13.0 ℃. Planetary boundary layer height, valley breezes, and long-distance transport of air mass influence the abundance of bio-INPs.
Cuizhi Sun, Yongyun Zhang, Baoling Liang, Min Gao, Xi Sun, Fei Li, Xue Ni, Qibin Sun, Hengjia Ou, Dexian Chen, Shengzhen Zhou, and Jun Zhao
Atmos. Chem. Phys., 24, 3043–3063, https://doi.org/10.5194/acp-24-3043-2024, https://doi.org/10.5194/acp-24-3043-2024, 2024
Short summary
Short summary
In a May–June 2021 expedition in the South China Sea, we analyzed black and brown carbon in marine aerosols, key to light absorption and climate impact. Using advanced in situ and microscope techniques, we observed particle size, structure, and tar balls mixed with various elements. Results showed biomass burning and fossil fuels majorly influence light absorption, especially during significant burning events. This research aids the understanding of carbonaceous aerosols' role in marine climate.
C. Isabel Moreno, Radovan Krejci, Jean-Luc Jaffrezo, Gaëlle Uzu, Andrés Alastuey, Marcos F. Andrade, Valeria Mardóñez, Alkuin Maximilian Koenig, Diego Aliaga, Claudia Mohr, Laura Ticona, Fernando Velarde, Luis Blacutt, Ricardo Forno, David N. Whiteman, Alfred Wiedensohler, Patrick Ginot, and Paolo Laj
Atmos. Chem. Phys., 24, 2837–2860, https://doi.org/10.5194/acp-24-2837-2024, https://doi.org/10.5194/acp-24-2837-2024, 2024
Short summary
Short summary
Aerosol chemical composition (ions, sugars, carbonaceous matter) from 2011 to 2020 was studied at Mt. Chacaltaya (5380 m a.s.l., Bolivian Andes). Minimum concentrations occur in the rainy season with maxima in the dry and transition seasons. The origins of the aerosol are located in a radius of hundreds of kilometers: nearby urban and rural areas, natural biogenic emissions, vegetation burning from Amazonia and Chaco, Pacific Ocean emissions, soil dust, and Peruvian volcanism.
Junke Zhang, Yunfei Su, Chunying Chen, Wenkai Guo, Qinwen Tan, Miao Feng, Danlin Song, Tao Jiang, Qiang Chen, Yuan Li, Wei Li, Yizhi Wang, Xiaojuan Huang, Lin Han, Wanqing Wu, and Gehui Wang
Atmos. Chem. Phys., 24, 2803–2820, https://doi.org/10.5194/acp-24-2803-2024, https://doi.org/10.5194/acp-24-2803-2024, 2024
Short summary
Short summary
Typical haze events in Chengdu at the beginning of 2023 were investigated with bulk-chemical and single-particle analyses along with numerical model simulations. By integrating the obtained chemical composition, source, mixing state and numerical simulation results, we infer that Haze-1 was mainly caused by pollutants related to fossil fuel combustion, especially local mobile sources, while Haze-2 was triggered by the secondary pollutants, which mainly came from regional transmission.
Elena Barbaro, Matteo Feltracco, Fabrizio De Blasi, Clara Turetta, Marta Radaelli, Warren Cairns, Giulio Cozzi, Giovanna Mazzi, Marco Casula, Jacopo Gabrieli, Carlo Barbante, and Andrea Gambaro
Atmos. Chem. Phys., 24, 2821–2835, https://doi.org/10.5194/acp-24-2821-2024, https://doi.org/10.5194/acp-24-2821-2024, 2024
Short summary
Short summary
The study analyzed a year of atmospheric aerosol composition at Col Margherita in the Italian Alps. Over 100 chemical markers were identified, including major ions, organic compounds, and trace elements. It revealed sources of aerosol, highlighted impacts of Saharan dust events, and showed anthropogenic pollution's influence despite the site's remoteness. Enrichment factors emphasized non-natural sources of trace elements. Source apportionment identified four key factors affecting the area.
Cited articles
Abdullahi, K. L., Delgado-Saborit, J. M., and Harrison, R. M.: Emissions and
indoor concentrations of particulate matter and its specific chemical
components from cooking: a review, Atmos. Environ., 71, 260–294,
https://doi.org/10.1016/j.atmosenv.2013.01.061, 2013.
Agarwal, R., Shukla, K., Kumar, S., Aggarwal, S. G., and Kawamura, K.:
Chemical composition of waste burning organic aerosols at landfill and urban
sites in Delhi, Atmos. Pollut. Res., 11, 554–565,
https://doi.org/10.1016/j.apr.2019.12.004, 2020.
Ahern, A. T., Robinson, E. S., Tkacik, D. S., Saleh, R., Hatch, L. E.,
Barsanti, K. C., Stockwell, C. E., Yokelson, R. J., Presto, A. A., Robinson,
A. L., Sullivan, R. C., and Donahue, N. M.: Production of secondary organic
aerosol during aging of biomass burning smoke from fresh fuels and its
relationship to VOC precursors, J. Geophys. Res.-Atmos., 124, 3583–3606,
https://onlinelibrary.wiley.com/doi/abs/10.1029/2018JD029068, 2019.
Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn, M. J., Lee, J., Nemitz, E., Phillips, G. J., Gallagher, M. W., and Coe, H.: Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities, Atmos. Chem. Phys., 10, 647–668, https://doi.org/10.5194/acp-10-647-2010, 2010.
Apte, J. S. and Pant, P.: Toward cleaner air for a billion Indians,
P. Natl. Acad. Sci. USA, 166, 10614–10616,
https://doi.org/10.1073/pnas.1905458116, 2019.
Apte, J. S., Marshall, J. D., Cohen, A. J., and Brauer, M.: Addressing
global mortality from ambient PM2.5, Environ. Sci.
Technol., 49, 8057–8066, https://doi.org/10.1021/acs.est.5b01236,
2015.
ARAI and TERI: Source apportionment of PM2.5 and PM10 of Delhi NCR
for identification of major sources,
https://www.teriin.org/project/source-apportionment-pm25-pm10-delhi-ncr-identification-major-sources
(last access: 20 March 2022), 2018
Arub, Z., Bhandari, S., Gani, S., Apte, J. S., Hildebrandt Ruiz, L., and Habib, G.: Air mass physiochemical characteristics over New Delhi: impacts on aerosol hygroscopicity and cloud condensation nuclei (CCN) formation, Atmos. Chem. Phys., 20, 6953–6971, https://doi.org/10.5194/acp-20-6953-2020, 2020.
Bahreini, R., Keywood, M. D., Ng, N. L., Varutbangkul, V., Gao, S., Flagan,
R. C., Seinfeld, J. H., Worsnop, D. R., and Jimenez, J. L.: Measurements of
secondary organic aerosol from oxidation of cycloalkenes, terpenes, and
m-xylene using an aerodyne aerosol mass spectrometer, Environ. Sci. Technol., 39, 5674–5688,
https://doi.org/10.1021/es048061a, 2005.
Bhandari, S., Gani, S., Patel, K., Wang, D. S., Soni, P., Arub, Z., Habib, G., Apte, J. S., and Hildebrandt Ruiz, L.: Sources and atmospheric dynamics of organic aerosol in New Delhi, India: insights from receptor modeling, Atmos. Chem. Phys., 20, 735–752, https://doi.org/10.5194/acp-20-735-2020, 2020.
Bhandari, S., Arub, Z., Habib, G., Apte, J. S., and Hildebrandt Ruiz, L.: Source apportionment resolved by time of day for improved deconvolution of primary source contributions to air pollution, Atmos. Meas. Tech., 15, 6051–6074, https://doi.org/10.5194/amt-15-6051-2022, 2022.
Brown, S. G., Lee, T., Norris, G. A., Roberts, P. T., Collett Jr., J. L., Paatero, P., and Worsnop, D. R.: Receptor modeling of near-roadway aerosol mass spectrometer data in Las Vegas, Nevada, with EPA PMF, Atmos. Chem. Phys., 12, 309–325, https://doi.org/10.5194/acp-12-309-2012, 2012.
Canonaco, F., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: Seasonal differences in oxygenated organic aerosol composition: implications for emissions sources and factor analysis, Atmos. Chem. Phys., 15, 6993–7002, https://doi.org/10.5194/acp-15-6993-2015, 2015.
Cappa, C. D. and Jimenez, J. L.: Quantitative estimates of the volatility of ambient organic aerosol, Atmos. Chem. Phys., 10, 5409–5424, https://doi.org/10.5194/acp-10-5409-2010, 2010.
Cash, J. M., Langford, B., Di Marco, C., Mullinger, N. J., Allan, J., Reyes-Villegas, E., Joshi, R., Heal, M. R., Acton, W. J. F., Hewitt, C. N., Misztal, P. K., Drysdale, W., Mandal, T. K., Shivani, Gadi, R., Gurjar, B. R., and Nemitz, E.: Seasonal analysis of submicron aerosol in Old Delhi using high-resolution aerosol mass spectrometry: chemical characterisation, source apportionment and new marker identification, Atmos. Chem. Phys., 21, 10133–10158, https://doi.org/10.5194/acp-21-10133-2021, 2021.
Collaborative Clean Air Policy Centre: Can an airshed governance framework
in India spur clean air for all?, Lessons from Mexico City and Los Angeles,
https://ccapc.org.in/policy-briefs/2020/lessonsonairshedgovernance (last access: 20 March 2022), 2020.
Chowdhury, Z., Zheng, M., Schauer, J. J., Sheesley, R. J., Salmon, L. G.,
Cass, G. R., and Russell, A. G.: Speciation of ambient fine organic carbon
particles and source apportionment of PM2.5 in Indian cities, J. Geophys. Res.-Atmos., 112, D15303,
https://doi.org/10.1029/2007JD008386, 2007.
Conibear, L., Butt, E. W., Knote, C., Arnold, S. R., and Spracklen, D. V.:
Residential energy use emissions dominate health impacts from exposure to
ambient particulate matter in India, Nat. Commun., 9, 1–9, https://doi.org/10.1038/s41467-018-02986-7, 2018.
Central Pollution Control Board: Air quality monitoring, emission inventory
and source apportionment study for Indian cities, National summary
report, https://cpcb.nic.in/source-apportionment-studies/ (last access: 20 March 2022), 2010.
Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M.,
Schieberle, C., Friedrich, R., and Janssens-Maenhout, G.: High resolution
temporal profiles in the Emissions Database for Global Atmospheric Research,
Sci. Data, 7, 1–17, 2020.
Dai, Q., Liu, B., Bi, X., Wu, J., Liang, D., Zhang, Y., Feng, Y., and Hopke,
P. K.: Dispersion normalized PMF provides insights into the significant
changes in source contributions to PM2.5 after the CoviD-19 outbreak,
Environ. Sci. Technol., 54, 9917–9927,
https://doi.org/10.1021/acs.est.0c02776, 2020.
Dallmann, T. R., Onasch, T. B., Kirchstetter, T. W., Worton, D. R., Fortner, E. C., Herndon, S. C., Wood, E. C., Franklin, J. P., Worsnop, D. R., Goldstein, A. H., and Harley, R. A.: Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer, Atmos. Chem. Phys., 14, 7585–7599, https://doi.org/10.5194/acp-14-7585-2014, 2014.
Dall'Osto, M., Ovadnevaite, J., Ceburnis, D., Martin, D., Healy, R. M., O'Connor, I. P., Kourtchev, I., Sodeau, J. R., Wenger, J. C., and O'Dowd, C.: Characterization of urban aerosol in Cork city (Ireland) using aerosol mass spectrometry, Atmos. Chem. Phys., 13, 4997–5015, https://doi.org/10.5194/acp-13-4997-2013, 2013.
Dall'Osto, M., Paglione, M., Decesari, S., Facchini, M. C., O'Dowd, C.,
Plass-Duellmer, C., and Harrison, R. M.: On the origin of AMS “cooking
organic aerosol” at a rural site, Environ. Sci. Technol., 49,
13964–13972,
2015.
DeCarlo, P. F.: Beyond PM2.5 mass: Use of particle composition measurements
to identify and quantify air pollution sources, AGU Fall Meeting,
https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/933637, last access: 19 December 2021.
DEFRA, UK: Estimation of changes in air pollution emissions, concentrations,
and exposure during the COVID-19 outbreak in the UK,
https://uk-air.defra.gov.uk/library/reports?report_id=1005 (last access: 20 March 2022), 2020.
Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled
partitioning, dilution, and chemical aging of semivolatile organics,
Environ. Sci. Technol., 40, 2635–2643,
https://doi.org/10.1021/es052297c, 2006.
Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and Hansen, A. D. A.: The “dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation, Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, 2015.
Drosatou, A. D., Skyllakou, K., Theodoritsi, G. N., and Pandis, S. N.: Positive matrix factorization of organic aerosol: insights from a chemical transport model, Atmos. Chem. Phys., 19, 973–986, https://doi.org/10.5194/acp-19-973-2019, 2019.
Fu, P. Q., Kawamura, K., Pavuluri, C. M., Swaminathan, T., and Chen, J.: Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation, Atmos. Chem. Phys., 10, 2663–2689, https://doi.org/10.5194/acp-10-2663-2010, 2010.
Gadi, R., Shivani, Sharma, S. K., and Mandal, T. K.: Source apportionment
and health risk assessment of organic constituents in fine ambient aerosols
(PM2.5): a complete year study over National Capital Region of India,
Chemosphere, 221, 583–596,
https://doi.org/10.1016/j.chemosphere.2019.01.067, 2019.
Ganguly, T., Selvaraj, K. L., and Guttikunda, S. K.: National Clean Air
Programme (NCAP) for Indian cities: review and outlook of clean air action
plans, Atmos. Environ., 8, 100096,
https://doi.org/10.1016/j.aeaoa.2020.100096, 2020.
Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., and Apte, J. S.: Submicron aerosol composition in the world's most polluted megacity: the Delhi Aerosol Supersite study, Atmos. Chem. Phys., 19, 6843–6859, https://doi.org/10.5194/acp-19-6843-2019, 2019.
Gani, S., Bhandari, S., Patel, K., Seraj, S., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., and Apte, J. S.: Particle number concentrations and size distribution in a polluted megacity: the Delhi Aerosol Supersite study, Atmos. Chem. Phys., 20, 8533–8549, https://doi.org/10.5194/acp-20-8533-2020, 2020.
GBD MAPS Working Group: Burden of Disease Attributable to Major Air
Pollution Sources in India: Special Report 21,
https://www.healtheffects.org/publication/gbd-air-pollution-india (last
access: 5 November 2019), 2018.
Grieshop, A. P., Donahue, N. M., and Robinson, A. L.: Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 2: analysis of aerosol mass spectrometer data, Atmos. Chem. Phys., 9, 2227–2240, https://doi.org/10.5194/acp-9-2227-2009, 2009.
Gulia, S., Mittal, A., and Khare, M.: Quantitative evaluation of source
interventions for urban air quality improvement – a case study of Delhi
city, Atmos. Pollut. Res., 9, 577–583,
https://doi.org/10.1016/j.apr.2017.12.003, 2018.
Guo, H., Kota, S. H., Sahu, S. K., Hu, J., Ying, Q., Gao, A., and Zhang, H.:
Source apportionment of PM2.5 in North India using source-oriented air
quality models, Environ. Pollut., 231, 426–436,
https://doi.org/10.1016/j.envpol.2017.08.016, 2017.
Guo, H., Kota, S. H., Chen, K., Sahu, S. K., Hu, J., Ying, Q., Wang, Y., and Zhang, H.: Source contributions and potential reductions to health effects of particulate matter in India, Atmos. Chem. Phys., 18, 15219–15229, https://doi.org/10.5194/acp-18-15219-2018, 2018.
Guo, H., Kota, S. H., Sahu, S. K., and Zhang, H.: Contributions of local and
regional sources to PM2.5 and its health effects in north India,
Atmos. Environ., 214, 116867,
https://doi.org/10.1016/j.atmosenv.2019.116867, 2019.
Guttikunda, S. K. and Calori, G.: A GIS based emissions inventory at 1 km × 1 km spatial resolution for air pollution analysis in Delhi,
India, Atmos. Environ., 67, 101–111,
https://doi.org/10.1016/j.atmosenv.2012.10.040, 2013.
He, L.-Y., Lin, Y., Huang, X.-F., Guo, S., Xue, L., Su, Q., Hu, M., Luan, S.-J., and Zhang, Y.-H.: Characterization of high-resolution aerosol mass spectra of primary organic aerosol emissions from Chinese cooking and biomass burning, Atmos. Chem. Phys., 10, 11535–11543, https://doi.org/10.5194/acp-10-11535-2010, 2010.
Hildebrandt Ruiz, L. and Bhandari, S.: Data published in “Contributions of primary sources to submicron organic aerosols in Delhi, India”, Texas Data Repository [data set], https://doi.org/10.18738/T8/8FAEDU, 2022.
Hu, W. W., Hu, M., Yuan, B., Jimenez, J. L., Tang, Q., Peng, J. F., Hu, W., Shao, M., Wang, M., Zeng, L. M., Wu, Y. S., Gong, Z. H., Huang, X. F., and He, L. Y.: Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China, Atmos. Chem. Phys., 13, 10095–10112, https://doi.org/10.5194/acp-13-10095-2013, 2013.
Hu, W. W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W., Wang, M., Wu,
Y., Chen, C., Wang, Z., Peng, J., Zeng, L., and Shao, M.: Chemical
composition, sources, and aging process of submicron aerosols in Beijing:
contrast between summer and winter, J. Geophys. Res., 121,
1955–1977, https://doi.org/10.1002/2015JD024020, 2016.
Indian National Science Academy: Seasons of Delhi,
https://www.insaindia.res.in/climate.php (last access: 20 March 2022), 2018.
Jain, S., Sharma, S. K., Vijayan, N., and Mandal, T. K.: Investigating the
seasonal variability in source contribution to PM2.5 and PM10
using different receptor models during 2013–2016 in Delhi, India,
Environ. Sci. Pollut. Res., 28, 4660–4675,
https://doi.org/10.1007/s11356-020-10645-y, 2021.
Jaiprakash, S. A., Habib, G., Raman, R. S., and Gupta, T.: Chemical
characterization of PM1 aerosol in Delhi and source apportionment using
positive matrix factorization, Environ. Sci. Pollut. Res.,
24, 445–462, https://doi.org/10.1007/s11356-016-7708-8, 2017.
Kaltsonoudis, C., Kostenidou, E., Louvaris, E., Psichoudaki, M., Tsiligiannis, E., Florou, K., Liangou, A., and Pandis, S. N.: Characterization of fresh and aged organic aerosol emissions from meat charbroiling, Atmos. Chem. Phys., 17, 7143–7155, https://doi.org/10.5194/acp-17-7143-2017, 2017.
IIT Kanpur: Comprehensive study on air pollution and greenhouse gases (GHGs)
in Delhi, https://cerca.iitd.ac.in/uploads/Reports/1576211826iitk.pdf, (last access: 20 March 2022) 2016.
Kar, A., Pachauri, S., Bailis, R., and Zerriffi, H.: Capital cost subsidies
through India's Ujjwala cooking gas programme promote rapid adoption of
liquefied petroleum gas but not regular use, Nat. Energ., 5, 125–126,
https://doi.org/10.1038/s41560-019-0429-8, 2020.
Karnezi, E., Louvaris, E., Kostenidou, E., Florou, K., Cain, K., and Pandis,
S.: Discrepancies between the volatility distributions of OA in the ambient
atmosphere and the laboratory, International Aerosol Conference,
http://aaarabstracts.com/2018IAC/viewabstract.php?pid=870, last access: 7 September 2018.
Khare, P., Machesky, J., Soto, R., He, M., Presto, A. A., and Gentner, D.
R.: Asphalt-related emissions are a major missing nontraditional source of
secondary organic aerosol precursors, Sci. Adv., 58, 562–586,
https://doi.org/10.1126/sciadv.abb9785, 2021.
Kodros, J. K., Papanastasiou, D. K., Paglione, M., Masiol, M., Squizzato,
S., Florou, K., Skyllakou, K., Kaltsonoudis, C., Nenes, A., and Pandis, S.
N.: Rapid dark aging of biomass burning as an overlooked source of oxidized
organic aerosol, P. Natl. Acad. Sci. USA, 117,
33028–33033, https://doi.org/10.1073/pnas.2010365117,
2020.
Kostenidou, E., Karnezi, E., Hite Jr., J. R., Bougiatioti, A., Cerully, K., Xu, L., Ng, N. L., Nenes, A., and Pandis, S. N.: Organic aerosol in the summertime southeastern United States: components and their link to volatility distribution, oxidation state and hygroscopicity, Atmos. Chem. Phys., 18, 5799–5819, https://doi.org/10.5194/acp-18-5799-2018, 2018.
Kroll, J. H., Smith, J. D., Worsnop, D. R., and Wilson, K. R.:
Characterisation of lightly oxidized organic aerosol formed from the
photochemical aging of diesel exhaust particles, Environ. Chem., 9,
211–220, https://doi.org/10.1071/EN11162, 2012.
Kumar, S., Aggarwal, S. G., Gupta, P. K., and Kawamura, K.: Investigation of
the tracers for plastic-enriched waste burning aerosols, Atmos. Environ., 108, 49–58,
https://doi.org/10.1016/j.atmosenv.2015.02.066, 2015.
Kumari, P. and Mandal, P.: Indoor air pollution at restaurant kitchen in
Delhi NCR, Sustainability in Environmental Engineering and Science,
159–165, https://doi.org/10.1007/978-981-15-6887-9_18,
2021.
Lalchandani, V., Kumar, V., Tobler, A., Thamban, N.M., Mishra, S., Slowik,
J.G., Bhattu, D., Rai, P., Satish, R., Ganguly, D. and Tiwari, S.: Real-time
characterization and source apportionment of fine particulate matter in the
Delhi megacity area during late winter, Sci. Total
Environ., 770, 145324, https://doi.org/10.1016/j.scitotenv.2021.145324, 2021.
Lelieveld, J. and Crutzen, P. J.: The role of clouds in tropospheric
photochemistry, J. Atmos. Chem., 12, 229–267, 1991.
Lin, C., Ceburnis, D., Hellebust, S., Buckley, P., Wenger, J., Canonaco, F.,
Prévôt, A. S. H., Huang, R. J., O'Dowd, C., and Ovadnevaite, J.:
Characterization of primary organic aerosol from domestic wood, peat, and
coal burning in Ireland, Environ. Sci. Technol., 51,
10624–10632, https://doi.org/10.1021/acs.est.7b01926, 2017.
Liu, H., Qi, L., Liang, C., Deng, F., Man, H., and He, K.: How aging process
changes characteristics of vehicle emissions? a review, Crit. Rev. Env. Sci. Tec., 50, 1796–1828, 2020.
Liu, T., Liu, Q., Li, Z., Huo, L., Chan, M. N., Li, X., Zhou, Z., and Chan,
C. K.: Emission of volatile organic compounds and production of secondary
organic aerosol from stir-frying spices, Sci. Total Environ.,
599, 1614–1621, https://doi.org/10.1016/j.scitotenv.2017.05.147,
2017.
Liu, T., Wang, Z., Wang, X., and Chan, C. K.: Primary and secondary organic aerosol from heated cooking oil emissions, Atmos. Chem. Phys., 18, 11363–11374, https://doi.org/10.5194/acp-18-11363-2018, 2018.
Louvaris, E. E., Florou, K., Karnezi, E., Papanastasiou, D. K., Gkatzelis,
G. I., and Pandis, S. N.: Volatility of source apportioned wintertime
organic aerosol in the city of Athens, Atmos. Environ., 158,
138–147, https://doi.org/10.1016/j.atmosenv.2017.03.042, 2017.
Milsom, A., Squires, A. M., Woden, B., Terrill, N. J., Ward, A. D., and Pfrang,
C.: The persistence of a proxy for cooking emissions in megacities: a
kinetic study of the ozonolysis of self-assembled films by simultaneous
small and wide angle X-ray scattering (SAXS/WAXS) and Raman microscopy,
Faraday Discuss., 226, 364–381, https://doi.org/10.1039/D0FD00088D,
2020.
Ministry of Law and Justice, Government of India: The Commission for Air
Quality Management in National Capital Region and Adjoining Areas Ordinance,
http://www.indiaenvironmentportal.org.in/content/469022/the-commission-for-air-quality-management-in-national-capital-region-and-adjoining-areas-ordinance-2020/
(last access: 20 March 2022), 2020.
Mishra, R. K., Pandey, A., Pandey, G., and Kumar, A.: The effect of odd-even
driving scheme on PM2.5 and PM1.0 emission, Transp. Res. D. Transp., 67, 541–552,
https://doi.org/10.1016/j.trd.2019.01.005, 2019.
Misra, P., Imasu, R., Hayashida, S., Arbain, A. A., Avtar, R., and Takeuchi,
W.: Mapping brick kilns to support environmental impact studies around Delhi
using Sentinel-2, ISPRS Int. J. Geo-Info., 9, 544,
https://www.mdpi.com/2220-9964/9/9/544 (last access: 20 March 2022), 2020.
Mitra, A. and Sharma, C.: Indian aerosols: Present status, Chemosphere, 49,
1175–1190, https://doi.org/10.1016/S0045-6535(02)00247-3, 2002.
Mohr, C., Huffman, J. A., Cubison, M. J., Aiken, A. C., Docherty, K. S.,
Kimmel, J. R., Ulbrich, I. M., Hannigan, M., and Jimenez, J. L.:
Characterization of primary organic aerosol emissions from meat cooking,
trash burning, and motor vehicles with high-resolution aerosol mass
spectrometry and comparison with ambient and chamber observations,
Environ. Sci. Technol., 43, 2443–2449,
https://doi.org/10.1021/es8011518, 2009.
Mönkkönen, P., Uma, R., Srinivasan, D., Koponen, I., Lehtinen, K.,
Hämeri, K., Suresh, R., Sharma, V., and Kulmala, M.: Relationship and
variations of aerosol number and PM10 mass concentrations in a highly
polluted urban environment – New Delhi, India, Atmos. Environ., 38,
425–433, https://doi.org/10.1016/j.atmosenv.2003.09071, 2004.
Mönkkönen, P., Koponen, I. K., Lehtinen, K. E. J., Hämeri, K., Uma, R., and Kulmala, M.: Measurements in a highly polluted Asian mega city: observations of aerosol number size distribution, modal parameters and nucleation events, Atmos. Chem. Phys., 5, 57–66, https://doi.org/10.5194/acp-5-57-2005, 2005a.
Mönkkönen, P., Pai, P., Maynard, A., E J Lehtinen, K., Hämeri,
K., Rechkemmer, P., Ramachandran, G., Prasad, B., and Kulmala, M.: Fine
particle number and mass concentration measurements in urban Indian
households, Sci. Total Environ., 347, 131–147,
https://doi.org/10.1016/j.scitotenv.2004.12.023, 2005b.
Nagar, P. K., Singh, D., Sharma, M., Kumar, A., Aneja, V. P., George, M. P.,
Agarwal, N., and Shukla, S. P.: Characterization of PM2.5 in Delhi:
role and impact of secondary aerosol, burning of biomass, and municipal
solid waste and crustal matter, Environ. Sci. Pollut. Res., 24, 25179–25189, https://doi.org/10.1007/s11356-017-0171-3,
2017.
Nagpure, A. S., Ramaswami, A., and Russell, A.: Characterizing the spatial
and temporal patterns of open burning of municipal solid waste (MSW) in
Indian cities, Environ. Sci. Technol., 49, 12911–12912,
https://doi.org/10.1021/acs.est.5b03243, 2015.
Nair, D. J., Gilles, F., Chand, S., Saxena, N., and Dixit, V.:
Characterizing multicity urban traffic conditions using crowdsourced data,
PLOS ONE, 14, e0212845,
https://dx.plos.org/10.1371/journal.pone.0212845, 2019.
NASA Jet Propulsion Laboratory: Getting to the heart of the (particulate)
matter – climate change: vital signs of the planet,
https://climate.nasa.gov/news/3027/getting-to-the-heart-of-the-particulate-matter/ (last access: 20 March 2022), 2020.
NERC-MRC-MoES-DBT: Atmospheric Pollution and Human Health in an Indian
megacity, https://www.urbanair-india.org/ (last access: 20 March 2022), 2021.
Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H., Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H., Hildebrandt, L., Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prévôt, A. S. H., Dinar, E., Rudich, Y., and Worsnop, D. R.: Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry, Atmos. Chem. Phys., 10, 4625–4641, https://doi.org/10.5194/acp-10-4625-2010, 2010.
Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Zhang, Q., Ulbrich, I. M.,
and Worsnop, D. R.: Realtime methods for estimating organic component mass
concentrations from aerosol mass spectrometer data, Environ. Sci. Technol., 45, 910–916,
https://pubs.acs.org/doi/abs/10.1021/es102951k, 2011a.
Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L.,
Onasch, T. B., Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y. L., and Jayne,
J. T.: An Aerosol Chemical Speciation Monitor (ACSM) for routine monitoring
of the composition and mass concentrations of ambient aerosol, Aerosol
Sci. Technol., 45, 780–794, 2011b.
Norris, G., Duvall, R., Brown, S., and Bai, S.: EPA Positive Matrix
Factorization 5.0 fundamentals and user guide,
https://www.epa.gov/air-research/epa-positive-matrix-factorization-50-fundamentals-and-user-guide,
(last access: 20 March 2022), 2014.
Paatero, P.: The Multilinear Engine – a table-driven, least squares program
for solving multilinear problems, including the n-way parallel factor
analysis model, J. Comput. Graph. Stat., 8,
854–888, 1999.
Paatero, P. and Tapper, U.: Positive matrix factorization: a non-negative
factor model with optimal utilization of error estimates of data values,
Environmetrics, 5, 111–126, https://doi.org/10.1002/env.3170050203,
1994.
Paatero, P., Hopke, P. K., Song, X. H., and Ramadan, Z.: Understanding and
controlling rotations in factor analytic models, Chemomet. Int. Labor. Syst., 60, 253–264,
https://doi.org/10.1016/S0169-7439(01)00200-3, 2002.
Paciga, A., Karnezi, E., Kostenidou, E., Hildebrandt, L., Psichoudaki, M., Engelhart, G. J., Lee, B.-H., Crippa, M., Prévôt, A. S. H., Baltensperger, U., and Pandis, S. N.: Volatility of organic aerosol and its components in the megacity of Paris, Atmos. Chem. Phys., 16, 2013–2023, https://doi.org/10.5194/acp-16-2013-2016, 2016.
Pant, P. and Harrison, R. M.: Critical review of receptor modelling for
particulate matter: A case study of India, Atmos. Environ., 49,
1–12, https://doi.org/10.1016/j.atmosenv.2011.11.060, 2012.
Pant, P., Shukla, A., Kohl, S. D., Chow, J. C., Watson, J. G., and Harrison,
R. M.: Characterization of ambient PM2.5 at a pollution hotspot in New
Delhi, India and inference of sources, Atmos. Environ., 109,
178–189, https://doi.org/10.1016/j.atmosenv.2015.02.074, 2015.
Pant, P., Guttikunda, S. K., and Peltier, R. E.: Exposure to particulate
matter in India: A synthesis of findings and future directions,
Environ. Res., 147, 480–496,
https://doi.org/10.1016/j.envres.2016.03.011, 2016.
Pant, P., Habib, G., Marshall, J. D., and Peltier, R. E.: PM2.5
exposure in highly polluted cities: a case study from New Delhi, India,
Environ. Res., 156, 167–174,
https://doi.org/10.1016/j.envres.2017.03.024, 2017.
Park, M. B., Lee, T. J., Lee, E. S., and Kim, D. S.: Enhancing source
identification of hourly PM2.5 data in Seoul based on a dataset
segmentation scheme by positive matrix factorization (PMF), Atmos. Pollut. Res., 10, 1042–1059,
https://doi.org/10.1016/j.apr.2019.01.013, 2019.
Patel, K., Bhandari, S., Gani, S., Campmier, M. J., Kumar, P., Habib, G.,
Apte, J., and Ruiz, L. H.: Sources and dynamics of submicron aerosol during
the Autumn onset of the air pollution season in Delhi, India, ACS Earth Space Chem., 5, 118–128, 2021a.
Patel, K., Campmier, M.J., Bhandari, S., Baig, N., Gani, S., Habib, G.,
Apte, J.S. and Hildebrandt Ruiz, L., 2021. Persistence of Primary and
Secondary Pollutants in Delhi: Concentrations and Composition from 2017
through the COVID Pandemic, Environ. Sci. Technol. Lett.,
8, 492–497, https://doi.org/10.1021/acs.estlett.1c00211, 2021b.
Pauraite, J., Pivoras, A., Plauškaite, K., Bycenkiene, S., Mordas, G.,
Augustaitis, A., Marozas, V., Mozgeris, G., Baumgarten, M., Matyssek, R.,
and Ulevicius, V.: Characterization of aerosol mass spectra responses to
temperature over a forest site in Lithuania, J. Aerosol Sci.,
133, 56–65, https://doi.org/10.1016/j.jaerosci.2019.03.010, 2019.
Platt, S. M.: Primary emissions and secondary organic aerosol formation from
road vehicles, Doctoral thesis, ETH Zurich,
https://doi.org/10.3929/ethz-a-010476708, 2014.
Platt, S. M., El Haddad, I., Zardini, A. A., Clairotte, M., Astorga, C., Wolf, R., Slowik, J. G., Temime-Roussel, B., Marchand, N., Ježek, I., Drinovec, L., Močnik, G., Möhler, O., Richter, R., Barmet, P., Bianchi, F., Baltensperger, U., and Prévôt, A. S. H.: Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber, Atmos. Chem. Phys., 13, 9141–9158, https://doi.org/10.5194/acp-13-9141-2013, 2013.
Pope, C. A. and Dockery, D. W.: Health effects of fine particulate air
pollution: Lines that connect, J. Air Waste Manage.
Assoc., 56, 709–742,
https://doi.org/10.1080/10473289.2006.10464485, 2006.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 20 March 2022), 2019.
Reyes-Villegas, E., Panda, U., Darbyshire, E., Cash, J. M., Joshi, R., Langford, B., Di Marco, C. F., Mullinger, N. J., Alam, M. S., Crilley, L. R., Rooney, D. J., Acton, W. J. F., Drysdale, W., Nemitz, E., Flynn, M., Voliotis, A., McFiggans, G., Coe, H., Lee, J., Hewitt, C. N., Heal, M. R., Gunthe, S. S., Mandal, T. K., Gurjar, B. R., Shivani, Gadi, R., Singh, S., Soni, V., and Allan, J. D.: PM1 composition and source apportionment at two sites in Delhi, India, across multiple seasons, Atmos. Chem. Phys., 21, 11655–11667, https://doi.org/10.5194/acp-21-11655-2021, 2021.
Robinson, E. S., Gu, P., Ye, Q., Li, H. Z., Shah, R. U., Apte, J. S.,
Robinson, A. L., and Presto, A. A.: Restaurant impacts on outdoor air
quality: elevated organic aerosol mass from restaurant cooking with
neighborhood-scale plume extents, Environ. Sci. Technol., 52,
9285–9294, https://pubs.acs.org/doi/abs/10.1021/acs.est.8b02654, 2018.
Rooney, B., Zhao, R., Wang, Y., Bates, K. H., Pillarisetti, A., Sharma, S., Kundu, S., Bond, T. C., Lam, N. L., Ozaltun, B., Xu, L., Goel, V., Fleming, L. T., Weltman, R., Meinardi, S., Blake, D. R., Nizkorodov, S. A., Edwards, R. D., Yadav, A., Arora, N. K., Smith, K. R., and Seinfeld, J. H.: Impacts of household sources on air pollution at village and regional scales in India, Atmos. Chem. Phys., 19, 7719–7742, https://doi.org/10.5194/acp-19-7719-2019, 2019.
Sage, A. M., Weitkamp, E. A., Robinson, A. L., and Donahue, N. M.: Evolving mass spectra of the oxidized component of organic aerosol: results from aerosol mass spectrometer analyses of aged diesel emissions, Atmos. Chem. Phys., 8, 1139–1152, https://doi.org/10.5194/acp-8-1139-2008, 2008.
Sawlani, R., Agnihotri, R., and Sharma, C.: Chemical and isotopic
characteristics of PM2.5 over New Delhi from September 2014 to May
2015: evidences for synergy between air-pollution and meteorological
changes, Sci. Total Environ., 763, 142966, https://doi.org/10.1016/j.scitotenv.2020.142966, 2020.
Schneider, J., Weimer, S., Drewnick, F., Borrmann, S., Helas, G., Gwaze, P.,
Schmid, O., Andreae, M. O., and Kirchner, U.: Mass spectrometric analysis
and aerodynamic properties of various types of combustion-related aerosol
particles, Int. J. Mass Spectrom., 258, 37–49,
https://doi.org/10.1016/j.ijms.2006.07.008, 2006.
Sharma, D. N., Sawant, A. A., Uma, R., and Cocker, D. R.: Preliminary
chemical characterization of particle-phase organic compounds in New Delhi,
India, Atmos. Environ., 37, 4317–4323,
https://doi.org/10.1016/S1352-2310(03)00563-6, 2003.
Sharma, S. and Mandal, T.: Chemical composition of fine mode particulate
matter (PM2.5) in an urban area of Delhi, India and its source
apportionment, Urban Clim., 21, 106–122,
https://doi.org/10.1016/j.uclim.2017.05.009, 2017.
Shivani, Gadi, R., Sharma, S. K., and Mandal, T. K.: Seasonal variation,
source apportionment and source attributed health risk of fine carbonaceous
aerosols over National Capital Region, India, Chemosphere, 237, 124500,
https://doi.org/10.1016/j.chemosphere.2019.124500, 2019.
Shukla, A. K., Lalchandani, V., Bhattu, D., Dave, J. S., Rai, P., Thamban,
N. M., Mishra, S., Gaddamidi, S., Tripathi, N., Vats, P., and Rastogi, N.:
Real-time quantification and source apportionment of fine particulate matter
including organics and elements in Delhi during summertime, Atmos. Environ., 261, 118598, https://doi.org/10.1016/j.atmosenv.2021.118598, 2021.
Srivastava, A., Gupta, S., and K. Jain, V.: Source apportionment of total
suspended particulate matter in coarse and fine size ranges over Delhi,
Aerosol Air Qual. Res., 8, 188–200,
https://doi.org/10.4209/aaqr.2007.09.0040, 2008.
Srivastava, D., Favez, O., Petit, J., Zhang, Y., Sofowotee, U., Hopke, P.,
Bonnaire, N., Perraudin, E., Gros, V., and Villenave, Albinet, A.:
Speciation of organic fractions does matter for aerosol source
apportionment. Part 3: Combining off-line and on-line measurements, Sci. Total Environ., 690, 944–955,
https://doi.org/10.1016/j.scitotenv.2019.06.378, 2019.
Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren, L., Xu, W., Zhao, J., Han, T., Worsnop, D. R., and Wang, Z.: Primary and secondary aerosols in Beijing in winter: sources, variations and processes, Atmos. Chem. Phys., 16, 8309–8329, https://doi.org/10.5194/acp-16-8309-2016, 2016.
The Indian Express: Delhi: trucks can enter city after 11 pm,
https://indianexpress.com/article/cities/delhi/delhi-trucks-can-enter-city-after-11-pm-4559487/ (last access: 20 March 2022), 2017.
Tiwari, S., Srivastava, A. K., Bisht, D. S., Bano, T., Singh, S., Behura,
S., Srivastava, M. K., Chate, D. M., and Padmanabhamurty, B.: Black carbon
and chemical characteristics of PM10 and PM2.5 at an urban site of
North India, J. Atmos. Chem., 62, 193–209,
https://doi.org/10.1007/s10874-010-9148-z, 2009.
Tobler, A., Bhattu, D., Canonaco, F., Lalchandani, V., Shukla, A., Thamban,
N. M., Mishra, S., Srivastava, A. K., Bisht, D. S., Tiwari, S., Singh, S.,
Mocnik, G., Baltensperger, U., Tripathi, S. N., Slowik, J. G., and
Prévôt, A. S.: Chemical characterization of PM2.5 and source
apportionment of organic aerosol in New Delhi, India, Sci. Total
Environ., 745, 140924,
https://doi.org/10.1016/j.scitotenv.2020.140924, 2020.
Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.: Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891–2918, https://doi.org/10.5194/acp-9-2891-2009, 2009.
United Nations: World urbanization prospects,
https://population.un.org/wup/ (last access: 20 March 2022), 2018.
Upadhyay, A., Dey, S., Chowdhury, S., Kumar, R., and Goyal, P.: Tradeoffs
between air pollution mitigation and meteorological response in India,
Sci. Rep., 10, 1–10,
https://doi.org/10.1038/s41598-020-71607-5, 2020.
Venkataraman, C., Bhushan, M., Dey, S., Ganguly, D., Gupta, T., Habib, G.,
Kesarkar, A., Phuleria, H., and Raman, R. S.: Indian network project on
carbonaceous aerosol emissions, source apportionment and climate impacts
(COALESCE), B. Am. Meteorol. Soc., 101,
1052–1068, https://doi.org/10.1175/BAMS-D-19-0030.1, 2020.
Venturini, E., Vassura, I., Raffo, S., Ferroni, L., Bernardi, E., and
Passarini, F.: Source apportionment and location by selective wind sampling
and Positive Matrix Factorization, Environ. Sci. Pollut. Res., 21, 11634–11648, 2014.
Wang, X., Cotter, E., Iyer, K. N., Fang, J., Williams, B. J., and Biswas,
P.: Relationship between pyrolysis products and organic aerosols formed
during coal combustion, P. Combust. Inst., 35,
2347–2354, https://doi.org/10.1016/j.proci.2014.07.073, 2015.
Weimer, S., Alfarra, M. R., Schreiber, D., Mohr, M., Prévôt, A. S.,
and Baltensperger, U.: Organic aerosol mass spectral signatures from
wood-burning emissions: Influence of burning conditions and type, J. Geophys. Res.-Atmos., 113, D10304,
https://doi.org/10.1029/2007JD009309, 2008.
Werden, B., Giordano, M., Mahata, K., Goetz, J. D., Katz, E., Bhave, P.,
Praveen, P. S., Yokelson, R. J., Stone, E. A., Panday, A. K., and DeCarlo,
P.: Source apportionment of regional aerosols and spatial variability from
the 2nd Nepal Ambient Measurement and Source Testing Experiment [NAMaSTE]-2
in the Kathmandu valley, Nepal, AGU Fall Meeting,
https://agu.confex.com/agu/fm20/meetingapp.cgi/Paper/747517, last access: 15 December 2020.
World Health Organization: AAP air quality database,
http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/ (last access: 20 December 2020), 2018.
Xu, W., He, Y., Qiu, Y., Chen, C., Xie, C., Lei, L., Li, Z., Sun, J., Li, J., Fu, P., Wang, Z., Worsnop, D. R., and Sun, Y.: Mass spectral characterization of primary emissions and implications in source apportionment of organic aerosol, Atmos. Meas. Tech., 13, 3205–3219, https://doi.org/10.5194/amt-13-3205-2020, 2020.
Yadav, S., Tandon, A., and Attri, A. K.: Characterization of aerosol
associated non-polar organic compounds using TD-GC-MS: a four year study
from Delhi, India, J. Hazard. Mat., 252, 29–44,
https://doi.org/10.1016/j.jhazmat.2013.02.024, 2013.
Zhang, K. and Batterman, S.: Air pollution and health risks due to vehicle
traffic, Sci. Tot. Environ., 450, 307–316,
https://doi.org/10.1016/j.scitotenv.2013.01.074, 2013.
Zhang, Q., Alfarra, M. R., Worsnop, D. R., Allan, J. D., Coe, H.,
Canagaratna, M. R., and Jimenez, J. L.: Deconvolution and quantification of
hydrocarbon-like and oxygenated organic aerosols based on aerosol mass
spectrometry, Environ. Sci. Technol., 39, 4938–4952,
https://doi.org/10.1021/es048568l, 2005.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L.,
Worsnop, D. R., and Sun, Y.: Understanding atmospheric organic aerosols via
factor analysis of aerosol mass spectrometry: a review, Anal.
Bioanal. Chem., 401, 3045–3067, 2011.
Zhang, Y., Williams, B. J., Goldstein, A. H., Docherty, K. S., and Jimenez, J. L.: A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG), Atmos. Meas. Tech., 9, 5637–5653, https://doi.org/10.5194/amt-9-5637-2016, 2016.
Zhang, Y., Peräkylä, O., Yan, C., Heikkinen, L., Äijälä, M., Daellenbach, K. R., Zha, Q., Riva, M., Garmash, O., Junninen, H., Paatero, P., Worsnop, D., and Ehn, M.: A novel approach for simple statistical analysis of high-resolution mass spectra, Atmos. Meas. Tech., 12, 3761–3776, https://doi.org/10.5194/amt-12-3761-2019, 2019.
Zhang, Z., Zhu, W., Hu, M., Wang, H., Chen, Z., Shen, R., Yu, Y., Tan, R.,
and Guo, S.: Secondary organic aerosol from typical Chinese domestic cooking
emissions, Environ. Sci. Technol. Lett., 8, 24–31, 2021.
Zheng, Y., Cheng, X., Liao, K., Li, Y., Li, Y. J., Huang, R.-J., Hu, W., Liu, Y., Zhu, T., Chen, S., Zeng, L., Worsnop, D. R., and Chen, Q.: Characterization of anthropogenic organic aerosols by TOF-ACSM with the new capture vaporizer, Atmos. Meas. Tech., 13, 2457–2472, https://doi.org/10.5194/amt-13-2457-2020, 2020.
Zhu, Q., Huang, X.-F., Cao, L.-M., Wei, L.-T., Zhang, B., He, L.-Y., Elser, M., Canonaco, F., Slowik, J. G., Bozzetti, C., El-Haddad, I., and Prévôt, A. S. H.: Improved source apportionment of organic aerosols in complex urban air pollution using the multilinear engine (ME-2), Atmos. Meas. Tech., 11, 1049–1060, https://doi.org/10.5194/amt-11-1049-2018, 2018.
Short summary
Here we determine the sources of primary organic aerosol in Delhi, India, in two different seasons. In winter, the main sources are traffic and biomass burning; in the summer, the main sources are traffic and cooking. We obtain this result by conducting source apportionment resolved by time of day, using data from an aerosol chemical speciation monitor. Results from this work can be used to better design policies that target sources of organic aerosol.
Here we determine the sources of primary organic aerosol in Delhi, India, in two different...
Altmetrics
Final-revised paper
Preprint