Articles | Volume 22, issue 17
https://doi.org/10.5194/acp-22-11759-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-11759-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Experimental development of a lake spray source function and its model implementation for Great Lakes surface emissions
Charbel Harb
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
Related authors
No articles found.
Xinyue Huang, Wenyu Gao, and Hosein Foroutan
Atmos. Chem. Phys., 25, 9583–9600, https://doi.org/10.5194/acp-25-9583-2025, https://doi.org/10.5194/acp-25-9583-2025, 2025
Short summary
Short summary
This study investigates the relationship between the size of windblown dust aerosols and wind conditions over topography at a regional scale, utilizing 10 years of dust reanalysis data. Linear regression and machine learning models suggest that greater wind speeds and land slopes, particularly under uphill winds, are associated with increased fractions of coarser dust. Moreover, these positive correlations weaken during summer and afternoon events, probably related to the haboob storms.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Cited articles
Amiri-Farahani, A., Olson, N. E., Neubauer, D., Roozitalab, B., Ault, A. P.,
and Steiner, A. L.: Lake Spray Aerosol Emissions Alter Nitrogen Partitioning
in the Great Lakes Region, Geophys. Res. Lett., 48, e2021GL093 727,
https://doi.org/10.1029/2021GL093727, 2021. a, b, c, d
Anguelova, M. D. and Huq, P.: Effects of Salinity on Bubble Cloud
Characteristics, Journal of Marine Science and Engineering, 6, 1,
https://doi.org/10.3390/jmse6010001, 2018. a, b
Anguelova, M. D. and Webster, F.: Whitecap coverage from satellite
measurements: A first step toward modeling the variability of oceanic
whitecaps, J. Geophys. Res.-Oceans, 111, C03017,
https://doi.org/10.1029/2005JC003158, 2006. a
Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R. C., Hogrefe, C., Hutzell, W. T., Kang, D., Mathur, R., Murphy, B. N., Napelenok, S. L., Nolte, C. G., Pleim, J. E., Pouliot, G. A., Pye, H. O. T., Ran, L., Roselle, S. J., Sarwar, G., Schwede, D. B., Sidi, F. I., Spero, T. L., and Wong, D. C.: The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation, Geosci. Model Dev., 14, 2867–2897, https://doi.org/10.5194/gmd-14-2867-2021, 2021. a, b, c, d
Axson, J. L., May, N. W., Colón-Bernal, I. D., Pratt, K. A., and Ault, A. P.:
Lake Spray Aerosol: A Chemical Signature from Individual Ambient Particles,
Environ. Sci. Technol., 50, 9835–9845,
https://doi.org/10.1021/acs.est.6b01661, 2016. a, b
Barthel, S., Tegen, I., and Wolke, R.: Do new sea spray aerosol source
functions improve the results of a regional aerosol model?,
Atmos. Environ., 198, 265–278, https://doi.org/10.1016/j.atmosenv.2018.10.016, 2019. a
Blenkinsopp, C. and Chaplin, J.: Void fraction measurements and scale effects
in breaking waves in freshwater and seawater, Coast. Eng., 58,
417–428, https://doi.org/10.1016/j.coastaleng.2010.12.006, 2011. a
Bridgeman, T. B., Chaffin, J. D., and Filbrun, J. E.: A novel method for
tracking western Lake Erie Microcystis blooms, 2002–2011,
J. Great Lakes Res., 39, 83–89, https://doi.org/10.1016/j.jglr.2012.11.004,
2013. a
Ceburnis, D., O'Dowd, C. D., Jennings, G. S., Facchini, M. C., Emblico, L.,
Decesari, S., Fuzzi, S., and Sakalys, J.: Marine aerosol chemistry gradients:
Elucidating primary and secondary processes and fluxes,
Geophys. Res. Lett., 35, L07804, https://doi.org/10.1029/2008GL033462, 2008. a, b, c
Ceburnis, D., Rinaldi, M., Ovadnevaite, J., Martucci, G., Giulianelli, L., and O'Dowd, C. D.: Marine submicron aerosol gradients, sources and sinks, Atmos. Chem. Phys., 16, 12425–12439, https://doi.org/10.5194/acp-16-12425-2016, 2016. a, b, c, d
Chapra, S. C., Dove, A., and Warren, G. J.: Long-term trends of Great Lakes
major ion chemistry, J. Great Lakes Res., 38, 550–560,
https://doi.org/10.1016/j.jglr.2012.06.010, 2012. a
Christenson, H. K., Bowen, R. E., Carlton, J. A., Denne, J. R. M., and Lu, Y.:
Electrolytes that Show a Transition to Bubble Coalescence Inhibition at High
Concentrations, J. Phys. Chem. C, 112, 794–796,
https://doi.org/10.1021/jp075440s, 2008. a
Clarke, A. D., Owens, S. R., and Zhou, J.: An ultrafine sea-salt flux from
breaking waves: Implications for cloud condensation nuclei in the remote
marine atmosphere, J. Geophys. Res.-Atmos., 111, D06202,
https://doi.org/10.1029/2005JD006565, 2006. a, b, c
Creamean, J. M., Cross, J. N., Pickart, R., McRaven, L., Lin, P., Pacini, A.,
Hanlon, R., Schmale, D. G., Ceniceros, J., Aydell, T., Colombi, N., Bolger,
E., and DeMott, P. J.: Ice Nucleating Particles Carried From Below a
Phytoplankton Bloom to the Arctic Atmosphere, Geophys. Res. Lett.,
46, 8572–8581, https://doi.org/10.1029/2019GL083039, 2019. a, b
Deike, L.: Mass Transfer at the Ocean-Atmosphere Interface: The Role of Wave
Breaking, Droplets, and Bubbles, Annu. Rev. Fluid Mech., 54,
191–224, https://doi.org/10.1146/annurev-fluid-030121-014132, 2022. a
Fuentes, E., Coe, H., Green, D., de Leeuw, G., and McFiggans, G.: Laboratory-generated primary marine aerosol via bubble-bursting and atomization, Atmos. Meas. Tech., 3, 141–162, https://doi.org/10.5194/amt-3-141-2010, 2010. a
Gantt, B., Kelly, J. T., and Bash, J. O.: Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2, Geosci. Model Dev., 8, 3733–3746, https://doi.org/10.5194/gmd-8-3733-2015, 2015. a
Geever, M., O'Dowd, C. D., van Ekeren, S., Flanagan, R., Nilsson, E. D.,
de Leeuw, G., and Rannik, U.: Submicron sea spray fluxes, Geophys. Res. Lett., 32, L15810, https://doi.org/10.1029/2005GL023081, 2005. a, b, c
Gronewold, A. D., Fortin, V., Lofgren, B., Clites, A., Stow, C. A., and Quinn,
F.: Coasts, water levels, and climate change: A Great Lakes perspective,
Climatic Change, 120, 697–711, https://doi.org/10.1007/s10584-013-0840-2, 2013. a
Grythe, H., Ström, J., Krejci, R., Quinn, P., and Stohl, A.: A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements, Atmos. Chem. Phys., 14, 1277–1297, https://doi.org/10.5194/acp-14-1277-2014, 2014. a
Harb, C. and Foroutan, H.: Experimental development and model implementation of a lake spray source function: dataset, figshare [data set],
https://doi.org/10.7294/20213357, 2022. a, b
Hofmeier, U., Yaminsky, V., and Christenson, H.: Observations of Solute Effects
on Bubble Formation, J. Colloid Interf. Sci., 174, 199–210,
https://doi.org/10.1006/jcis.1995.1383, 1995. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008. a
Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., and Lin, J.-T.: Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations, Atmos. Chem. Phys., 11, 3137–3157, https://doi.org/10.5194/acp-11-3137-2011, 2011. a, b
Kain, J. S.: The Kain-Fritsch Convective Parameterization: An Update,
J. Appl. Meteorol., 43, 170–181,
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004. a
Khlystov, A., Stanier, C., and Pandis, S. N.: An Algorithm for Combining
Electrical Mobility and Aerodynamic Size Distributions Data when Measuring
Ambient Aerosol Special Issue of Aerosol Science and Technology on Findings
from the Fine Particulate Matter Supersites Program,
Aerosol Sci. Technol., 38, 229–238, https://doi.org/10.1080/02786820390229543, 2004. a
Li, X., Zhong, S., Bian, X., and Heilman, W. E.: Climate and climate
variability of the wind power resources in the Great Lakes region of the
United States, J. Geophys. Res.-Atmos., 115, D18107,
https://doi.org/10.1029/2009JD013415, 2010. a
Lin, K. and Marr, L. C.: Aerosolization of Ebola Virus Surrogates in Wastewater
Systems, Environ. Sci. Technol., 51, 2669–2675,
https://doi.org/10.1021/acs.est.6b04846, 2017. a
Long, M. S., Keene, W. C., Kieber, D. J., Erickson, D. J., and Maring, H.: A sea-state based source function for size- and composition-resolved marine aerosol production, Atmos. Chem. Phys., 11, 1203–1216, https://doi.org/10.5194/acp-11-1203-2011, 2011. a
May, N. W., Axson, J. L., Watson, A., Pratt, K. A., and Ault, A. P.: Lake spray aerosol generation: a method for producing representative particles from freshwater wave breaking, Atmos. Meas. Tech., 9, 4311–4325, https://doi.org/10.5194/amt-9-4311-2016, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
May, N. W., Gunsch, M. J., Olson, N. E., Bondy, A. L., Kirpes, R. M., Bertman,
S. B., China, S., Laskin, A., Hopke, P. K., Ault, A. P., and Pratt, K. A.:
Unexpected Contributions of Sea Spray and Lake Spray Aerosol to Inland
Particulate Matter, Environ. Sci. Technol. Lett., 5, 405–412,
https://doi.org/10.1021/acs.estlett.8b00254, 2018a. a, b, c, d
May, N. W., Olson, N. E., Panas, M., Axson, J. L., Tirella, P. S., Kirpes,
R. M., Craig, R. L., Gunsch, M. J., China, S., Laskin, A., Ault, A. P., and
Pratt, K. A.: Aerosol Emissions from Great Lakes Harmful Algal Blooms,
Environ. Sci. Technol., 52, 397–405,
https://doi.org/10.1021/acs.est.7b03609, 2018b. a, b
Mayer, K. J., Sauer, J. S., Dinasquet, J., and Prather, K. A.: CAICE Studies:
Insights from a Decade of Ocean-Atmosphere Experiments in the Laboratory,
Accounts Chem. Res., 53, 2510–2520,
https://doi.org/10.1021/acs.accounts.0c00504, 2020. a
Minor, E. C., Tennant, C. J., and Brown, E. T.: A Seasonal to Interannual View
of Inorganic and Organic Carbon and pH in Western Lake Superior,
J. Geophys. Res.-Biogeo., 124, 405–419,
https://doi.org/10.1029/2018JG004664, 2019. a
Mitts, B. A., Wang, X., Lucero, D. D., Beall, C. M., Deane, G. B., DeMott,
P. J., and Prather, K. A.: Importance of Supermicron Ice Nucleating Particles
in Nascent Sea Spray, Geophys. Res. Lett., 48, e2020GL089633,
https://doi.org/10.1029/2020GL089633, 2021. a, b
Moffet, R. C., Qin, X., Rebotier, T., Furutani, H., and Prather, K. A.:
Chemically segregated optical and microphysical properties of ambient
aerosols measured in a single-particle mass spectrometer, J. Geophys. Res.-Atmos., 113, D12213,
https://doi.org/10.1029/2007JD009393, 2008. a, b
Moffett, B. F., Hill, T. C. J., and DeMott, P. J.: Abundance of Biological Ice
Nucleating Particles in the Mississippi and Its Major Tributaries,
Atmosphere, 9, 307, https://doi.org/10.3390/atmos9080307, 2018. a
Monahan, E. C.: Oceanic Whitecaps, J. Phys. Oceanogr., 1, 139–144, https://doi.org/10.1175/1520-0485(1971)001<0139:OW>2.0.CO;2, 1971. a, b
Monahan, E. C. and Muircheartaigh, I.: Optimal Power-Law Description of Oceanic
Whitecap Coverage Dependence on Wind Speed, J. Phys. Oceanogr.,
10, 2094–2099, https://doi.org/10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2,
1980. a, b, c
Monahan, E. C. and Zietlow, C. R.: Laboratory comparisons of fresh-water and
salt-water whitecaps, J. Geophys. Res., 74,
6961–6966, https://doi.org/10.1029/JC074i028p06961, 1969. a, b, c
Monahan, E. C., Spiel, D. E., and Davidson, K. L.: A model of marine aerosol
generation via whitecaps and wave disruption, in: Oceanic whitecaps,
167–174, Springer, https://doi.org/10.1007/978-94-009-4668-2_16, 1986. a
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of Cloud Microphysics on
the Development of Trailing Stratiform Precipitation in a Simulated Squall
Line: Comparison of One- and Two-Moment Schemes, Mon. Weather Rev., 137,
991–1007, https://doi.org/10.1175/2008MWR2556.1, 2009. a
Méthot, J., Huang, X., and Grover, H.: Demographics and societal values as
drivers of change in the Great Lakes-St. Lawrence River basin, J. Great Lakes Res., 41, 30–44,
https://doi.org/10.1016/j.jglr.2014.11.001, 2015. a
Notaro, M., Holman, K., Zarrin, A., Fluck, E., Vavrus, S., and Bennington, V.:
Influence of the Laurentian Great Lakes on Regional Climate, J.
Climate, 26, 789–804, https://doi.org/10.1175/JCLI-D-12-00140.1, 2013. a
O'Dowd, C. D. and de Leeuw, G.: Marine aerosol production: a review of the
current knowledge, Philosophical Transactions of the Royal Society A:
Mathematical, Phys. Eng. Sci., 365, 1753–1774,
https://doi.org/10.1098/rsta.2007.2043, 2007. a, b, c
Olson, N. E., May, N. W., Kirpes, R. M., Watson, A. E., Hajny, K. D., Slade,
J. H., Shepson, P. B., Stirm, B. H., Pratt, K. A., and Ault, A. P.: Lake
Spray Aerosol Incorporated into Great Lakes Clouds, ACS Earth Space
Chem., 3, 2765–2774, https://doi.org/10.1021/acsearthspacechem.9b00258, 2019. a, b, c
Olson, N. E., Cooke, M. E., Shi, J. H., Birbeck, J. A., Westrick, J. A., and
Ault, A. P.: Harmful Algal Bloom Toxins in Aerosol Generated from Inland Lake
Water, Environ. Sci. Technol., 54, 4769–4780,
https://doi.org/10.1021/acs.est.9b07727, 2020. a, b, c
Otte, T. L. and Pleim, J. E.: The Meteorology-Chemistry Interface Processor (MCIP) for the CMAQ modeling system: updates through MCIPv3.4.1, Geosci. Model Dev., 3, 243–256, https://doi.org/10.5194/gmd-3-243-2010, 2010. a
Ovadnevaite, J., Ceburnis, D., Canagaratna, M., Berresheim, H., Bialek, J.,
Martucci, G., Worsnop, D. R., and O'Dowd, C.: On the effect of wind speed on
submicron sea salt mass concentrations and source fluxes, J. Geophys. Res.-Atmos., 117, D16201,
https://doi.org/10.1029/2011JD017379, 2012. a, b
Ovadnevaite, J., Manders, A., de Leeuw, G., Ceburnis, D., Monahan, C., Partanen, A.-I., Korhonen, H., and O'Dowd, C. D.: A sea spray aerosol flux parameterization encapsulating wave state, Atmos. Chem. Phys., 14, 1837–1852, https://doi.org/10.5194/acp-14-1837-2014, 2014. a, b
Plaas, H. E. and Paerl, H. W.: Toxic Cyanobacteria: A Growing Threat to Water
and Air Quality, Environ. Sci. Technol., 55, 44–64,
https://doi.org/10.1021/acs.est.0c06653, 2021. a
Pleim, J. E.: A Combined Local and Nonlocal Closure Model for the Atmospheric
Boundary Layer. Part I: Model Description and Testing, J. Appl. Meteorol. Clim., 46, 1383–1395, https://doi.org/10.1175/JAM2539.1, 2007. a
Pleim, J. E. and Xiu, A.: Development of a Land Surface Model. Part II: Data
Assimilation, J. Appl. Meteorol., 42, 1811–1822,
https://doi.org/10.1175/1520-0450(2003)042<1811:DOALSM>2.0.CO;2, 2003. a
Prather, K. A., Bertram, T. H., Grassian, V. H., Deane, G. B., Stokes, M. D.,
DeMott, P. J., Aluwihare, L. I., Palenik, B. P., Azam, F., Seinfeld, J. H.,
Moffet, R. C., Molina, M. J., Cappa, C. D., Geiger, F. M., Roberts, G. C.,
Russell, L. M., Ault, A. P., Baltrusaitis, J., Collins, D. B., Corrigan,
C. E., Cuadra-Rodriguez, L. A., Ebben, C. J., Forestieri, S. D., Guasco,
T. L., Hersey, S. P., Kim, M. J., Lambert, W. F., Modini, R. L., Mui, W.,
Pedler, B. E., Ruppel, M. J., Ryder, O. S., Schoepp, N. G., Sullivan, R. C.,
and Zhao, D.: Bringing the ocean into the laboratory to probe the chemical
complexity of sea spray aerosol, P. Natl. Acad.
Sci. USA, 110, 7550–7555, https://doi.org/10.1073/pnas.1300262110, 2013. a, b
Quadros, M. E. and Marr, L. C.: Silver Nanoparticles and Total Aerosols Emitted
by Nanotechnology-Related Consumer Spray Products, Environ. Sci. Technol., 45, 10713–10719, https://doi.org/10.1021/es202770m,
2011. a
Rosenfeld, D., Andreae, M. O., Asmi, A., Chin, M., de Leeuw, G., Donovan,
D. P., Kahn, R., Kinne, S., Kivekäs, N., Kulmala, M., Lau, W., Schmidt,
K. S., Suni, T., Wagner, T., Wild, M., and Quaas, J.: Global observations of
aerosol-cloud-precipitation-climate interactions, Rev. Geophys., 52,
750–808, https://doi.org/10.1002/2013RG000441, 2014. a
Salter, M. E., Nilsson, E. D., Butcher, A., and Bilde, M.: On the seawater
temperature dependence of the sea spray aerosol generated by a continuous
plunging jet, J. Geophys. Res.-Atmos., 119, 9052–9072,
https://doi.org/10.1002/2013JD021376, 2014. a, b
Salter, M. E., Zieger, P., Acosta Navarro, J. C., Grythe, H., Kirkevåg, A., Rosati, B., Riipinen, I., and Nilsson, E. D.: An empirically derived inorganic sea spray source function incorporating sea surface temperature, Atmos. Chem. Phys., 15, 11047–11066, https://doi.org/10.5194/acp-15-11047-2015, 2015. a, b, c, d, e, f, g
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.: NIH Image to ImageJ: 25
years of image analysis, Nat. Methods, 9, 671–675,
https://doi.org/10.1038/nmeth.2089, 2012. a
Scott, J. C.: The role of salt in whitecap persistence, Deep-Sea Res., 22, 653–657,
https://doi.org/10.1016/0011-7471(75)90002-9, 1975. a, b
Slade, J. H., VanReken, T. M., Mwaniki, G. R., Bertman, S., Stirm, B., and
Shepson, P. B.: Aerosol production from the surface of the Great Lakes,
Geophys. Res. Lett., 37, L18807, https://doi.org/10.1029/2010GL043852,
2010. a, b, c
Sofiev, M., Soares, J., Prank, M., de Leeuw, G., and Kukkonen, J.: A
regional-to-global model of emission and transport of sea salt particles in
the atmosphere, J. Geophys. Res.-Atmos., 116, D21302,
https://doi.org/10.1029/2010JD014713, 2011. a, b
Sterner, R. W., Ostrom, P., Ostrom, N. E., Klump, J. V., Steinman, A. D.,
Dreelin, E. A., Vander Zanden, M. J., and Fisk, A. T.: Grand challenges for
research in the Laurentian Great Lakes, Limnol. Oceanogr., 62,
2510–2523, https://doi.org/10.1002/lno.10585, 2017. a
Stokes, M. D., Deane, G. B., Prather, K., Bertram, T. H., Ruppel, M. J., Ryder, O. S., Brady, J. M., and Zhao, D.: A Marine Aerosol Reference Tank system as a breaking wave analogue for the production of foam and sea-spray aerosols, Atmos. Meas. Tech., 6, 1085–1094, https://doi.org/10.5194/amt-6-1085-2013, 2013. a, b, c, d, e, f, g
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Feichter, H., Fillmore, D., Ghan, S., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I., Iversen, I., Kloster, S., Koch, D., Kirkevåg, A., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, Ø., Stier, P., Takemura, T., and Tie, X.: Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmos. Chem. Phys., 6, 1777–1813, https://doi.org/10.5194/acp-6-1777-2006, 2006. a, b, c
United States Environmental Protection Agency (US EPA): CMAQ (Version 5.3), Zenodo [software], https://doi.org/10.5281/zenodo.3379043, 2019a. a
United States Environmental Protection Agency (US EPA): CMAQ Model Version 5.3 Input Data – 1/1/2016 – 12/31/2016 12km
CONUS, UNC Dataverse [code], https://doi.org/10.15139/S3/MHNUNE, 2019b. a, b
Veron, F.: Ocean Spray, Annu. Rev. Fluid Mech., 47, 507–538,
https://doi.org/10.1146/annurev-fluid-010814-014651, 2015. a, b
von der Weiden, S.-L., Drewnick, F., and Borrmann, S.: Particle Loss Calculator – a new software tool for the assessment of the performance of aerosol inlet systems, Atmos. Meas. Tech., 2, 479–494, https://doi.org/10.5194/amt-2-479-2009, 2009. a
Wang, J., Bai, X., Hu, H., Clites, A., Colton, M., and Lofgren, B.: Temporal
and Spatial Variability of Great Lakes Ice Cover, 1973–2010, J.
Climate, 25, 1318–1329, https://doi.org/10.1175/2011JCLI4066.1, 2012. a
Wuebbles, D., Cardinale, B., Cherkauer, K., Davidson-Arnott, R.,
Hellmann, J., Infante, D., and Ballinger, A.: An assessment of the impacts of climate change on the Great Lakes, Environmental Law & Policy Center, https://elpc.org/wp-content/uploads/2020/04/2019-ELPCPublication-Great-Lakes-Climate-Change-Report.pdf (last access: 6 September 2022), 2019. a
Xiu, A. and Pleim, J. E.: Development of a Land Surface Model. Part I:
Application in a Mesoscale Meteorological Model, J. Appl. Meteorol., 40, 192–209,
https://doi.org/10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2, 2001. a
Zhang, K. M., Knipping, E. M., Wexler, A. S., Bhave, P. V., and Tonnesen,
G. S.: Reply to comment on “Size distribution of sea-salt emissions as a
function of relative humidity”, Atmos. Environ., 40, 591–592,
https://doi.org/10.1016/j.atmosenv.2005.08.044, 2006. a
Zhang, Y.: Online-coupled meteorology and chemistry models: history, current status, and outlook, Atmos. Chem. Phys., 8, 2895–2932, https://doi.org/10.5194/acp-8-2895-2008, 2008. a
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(14918 KB) - Full-text XML
- Corrigendum
-
Supplement
(795 KB) - BibTeX
- EndNote
Short summary
A model representation of lake spray aerosol (LSA) ejection from freshwater breaking waves is crucial for understanding their climatic and public health impacts. We develop an LSA emission parameterization and implement it in an atmospheric model to investigate Great Lakes surface emissions. We find that the same breaking wave is likely to produce fewer aerosols in freshwater than in saltwater and that Great Lakes emissions influence the regional aerosol burden and can reach the cloud layer.
A model representation of lake spray aerosol (LSA) ejection from freshwater breaking waves is...
Altmetrics
Final-revised paper
Preprint