Articles | Volume 22, issue 17
https://doi.org/10.5194/acp-22-11275-2022
https://doi.org/10.5194/acp-22-11275-2022
Research article
 | 
02 Sep 2022
Research article |  | 02 Sep 2022

Airborne observations during KORUS-AQ show that aerosol optical depths are more spatially self-consistent than aerosol intensive properties

Samuel E. LeBlanc, Michal Segal-Rozenhaimer, Jens Redemann, Connor Flynn, Roy R. Johnson, Stephen E. Dunagan, Robert Dahlgren, Jhoon Kim, Myungje Choi, Arlindo da Silva, Patricia Castellanos, Qian Tan, Luke Ziemba, Kenneth Lee Thornhill, and Meloë Kacenelenbogen

Data sets

KorUS-AQ Airborne Mission Overview Gao Chen http://doi.org/10.5067/Suborbital/KORUSAQ/DATA01

Model code and software

samuelleblanc/LeBlanc_2022_KORUSAQ: KORUS-AQ Science code analysis release for LeBlanc et al., 2022, ACP: "Airborne observation during KORUS-AQ show aerosol optical depths are more spatially self-consistent than aerosol intensive properties" LeBlanc, S. https://doi.org/10.5281/zenodo.6965167

Download
Short summary
Airborne observations of atmospheric particles and pollution over Korea during a field campaign in May–June 2016 showed that the smallest atmospheric particles are present in the lowest 2 km of the atmosphere. The aerosol size is more spatially variable than optical thickness. We show this with remote sensing (4STAR), in situ (LARGE) observations, satellite measurements (GOCI), and modeled properties (MERRA-2), and it is contrary to the current understanding.
Altmetrics
Final-revised paper
Preprint