Articles | Volume 22, issue 16
https://doi.org/10.5194/acp-22-10841-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-10841-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impacts of combined microphysical and land-surface uncertainties on convective clouds and precipitation in different weather regimes
Christian Barthlott
CORRESPONDING AUTHOR
Institute of Meteorology and Climate Research – Department Troposphere (IMK-TRO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Amirmahdi Zarboo
Institute of Meteorology and Climate Research – Department Troposphere (IMK-TRO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Takumi Matsunobu
Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany
Christian Keil
Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany
Related authors
Lina Lucas, Christian Barthlott, Corinna Hoose, and Peter Knippertz
EGUsphere, https://doi.org/10.5194/egusphere-2025-3069, https://doi.org/10.5194/egusphere-2025-3069, 2025
Short summary
Short summary
We studied how climate change and cleaner air could affect severe storms in Central Europe. Using high-resolution weather simulations of past supercell storms under warmer and less polluted conditions, we found that storms may become more intense, with heavier rainfall and larger hailstones. These changes suggest an increased risk of damage in the future. Our findings help improve understanding of how extreme storms may evolve in a changing climate.
Takumi Matsunobu, Christian Keil, and Christian Barthlott
Weather Clim. Dynam., 3, 1273–1289, https://doi.org/10.5194/wcd-3-1273-2022, https://doi.org/10.5194/wcd-3-1273-2022, 2022
Short summary
Short summary
This study quantifies the impact of poorly constrained parameters used to represent aerosol–cloud–precipitation interactions on precipitation and cloud forecasts associated with uncertainties in input atmospheric states. Uncertainties in these parameters have a non-negligible impact on daily precipitation amount and largely change the amount of cloud. The comparison between different weather situations reveals that the impact becomes more important when convection is triggered by local effects.
Christian Barthlott, Amirmahdi Zarboo, Takumi Matsunobu, and Christian Keil
Atmos. Chem. Phys., 22, 2153–2172, https://doi.org/10.5194/acp-22-2153-2022, https://doi.org/10.5194/acp-22-2153-2022, 2022
Short summary
Short summary
The relative impact of cloud condensation nuclei (CCN) concentrations and the shape parameter of the cloud droplet size distribution is evaluated in realistic convection-resolving simulations. We find that an increase in the shape parameter can produce almost as large a variation in precipitation as a CCN increase from maritime to polluted conditions. The choice of the shape parameter may be more important than previously thought for determining cloud radiative characteristics.
Lina Lucas, Christian Barthlott, Corinna Hoose, and Peter Knippertz
EGUsphere, https://doi.org/10.5194/egusphere-2025-3069, https://doi.org/10.5194/egusphere-2025-3069, 2025
Short summary
Short summary
We studied how climate change and cleaner air could affect severe storms in Central Europe. Using high-resolution weather simulations of past supercell storms under warmer and less polluted conditions, we found that storms may become more intense, with heavier rainfall and larger hailstones. These changes suggest an increased risk of damage in the future. Our findings help improve understanding of how extreme storms may evolve in a changing climate.
Takumi Matsunobu, Christian Keil, and Christian Barthlott
Weather Clim. Dynam., 3, 1273–1289, https://doi.org/10.5194/wcd-3-1273-2022, https://doi.org/10.5194/wcd-3-1273-2022, 2022
Short summary
Short summary
This study quantifies the impact of poorly constrained parameters used to represent aerosol–cloud–precipitation interactions on precipitation and cloud forecasts associated with uncertainties in input atmospheric states. Uncertainties in these parameters have a non-negligible impact on daily precipitation amount and largely change the amount of cloud. The comparison between different weather situations reveals that the impact becomes more important when convection is triggered by local effects.
Christian Barthlott, Amirmahdi Zarboo, Takumi Matsunobu, and Christian Keil
Atmos. Chem. Phys., 22, 2153–2172, https://doi.org/10.5194/acp-22-2153-2022, https://doi.org/10.5194/acp-22-2153-2022, 2022
Short summary
Short summary
The relative impact of cloud condensation nuclei (CCN) concentrations and the shape parameter of the cloud droplet size distribution is evaluated in realistic convection-resolving simulations. We find that an increase in the shape parameter can produce almost as large a variation in precipitation as a CCN increase from maritime to polluted conditions. The choice of the shape parameter may be more important than previously thought for determining cloud radiative characteristics.
Cited articles
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a
Alpert, P.: Meso-meteorology: Factor separation examples in atmospheric
meso-scale motions, Factor Separation in the Atmosphere: Applications and
Future Prospects, edited by: Alpert, P. and Sholokhman, T., Cambridge University Press, 53–66, https://doi.org/10.1017/CBO9780511921414.007, 2011. a
Altaratz, O., Koren, I., Remer, L., and Hirsch, E.: Review: Cloud invigoration by aerosols–Coupling between microphysics and dynamics, Atmos. Res., 140–141, 38–60, https://doi.org/10.1016/j.atmosres.2014.01.009, 2014. a, b
Barthlott, C. and Barrett, A. I.: Large impact of tiny model domain shifts for the Pentecost 2014 mesoscale convective system over Germany, Weather Clim. Dynam., 1, 207–224, https://doi.org/10.5194/wcd-1-207-2020, 2020. a
Barthlott, C. and Hoose, C.: Spatial and temporal variability of clouds and precipitation over Germany: multiscale simulations across the “gray zone”, Atmos. Chem. Phys., 15, 12361–12384, https://doi.org/10.5194/acp-15-12361-2015, 2015. a
Barthlott, C. and Kalthoff, N.: A Numerical Sensitivity Study on the Impact of Soil Moisture on Convection-related Parameters and Convective Precipitation over Complex Terrain, J. Atmos. Sci., 68, 2971–2987,
https://doi.org/10.1175/JAS-D-11-027.1, 2011. a, b, c
Barthlott, C., Mühr, B., and Hoose, C.: Sensitivity of the 2014 Pentecost storms over Germany to different model grids and microphysics schemes, Q. J. Roy. Meteor. Soc., 143, 1485–1503, https://doi.org/10.1002/qj.3019, 2017. a, b, c
Baur, F., Keil, C., and Craig, G.: Soil Moisture - Precipitation Coupling over Central Europe: Interactions between surface anomalies at different scales and its dynamical implication, Q. J. Roy. Meteor. Soc., 144, 2863–2875, https://doi.org/10.1002/qj.3415, 2018. a, b
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M.,
Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in simulating
atmospheric variability with the ECMWF model: From synoptic to decadal
time-scales, Q. J. Roy. Meteor. Soc., 134, 1337–1351, https://doi.org/10.1002/qj.289, 2008. a
Bennett, L. J., Browning, K. A., Blyth, A. M., Parker, D. J., and Clark, P. A.: A review of the initiation of precipitating convection in the United
Kingdom, Q. J. Roy. Meteor. Soc., 132, 1001–1020, https://doi.org/10.1256/qj.05.54, 2006. a
Bouttier, F., Vié, B., Nuissier, O., and Raynaud, L.: Impact of Stochastic
Physics in a Convection-Permitting Ensemble, Mon. Weather Rev., 140, 3706–3721, https://doi.org/10.1175/MWR-D-12-00031.1, 2012. a
Clark, P., Roberts, N., Lean, H., Ballard, S. P., and Charlton-Perez, C.:
Convection-permitting models: a step-change in rainfall forecasting,
Meteorol. Appl., 23, 165–181, https://doi.org/10.1002/met.1538, 2016. a
Costa-Surós, M., Sourdeval, O., Acquistapace, C., Baars, H., Carbajal Henken, C., Genz, C., Hesemann, J., Jimenez, C., König, M., Kretzschmar, J., Madenach, N., Meyer, C. I., Schrödner, R., Seifert, P., Senf, F., Brueck, M., Cioni, G., Engels, J. F., Fieg, K., Gorges, K., Heinze, R., Siligam, P. K., Burkhardt, U., Crewell, S., Hoose, C., Seifert, A., Tegen, I., and Quaas, J.: Detection and attribution of aerosol–cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model, Atmos. Chem. Phys., 20, 5657–5678, https://doi.org/10.5194/acp-20-5657-2020, 2020. a
Drager, A. J., Grant, L. D., and van den Heever, S. C.: A Non-Monotonic
Precipitation Response to Changes in Soil Moisture in the Presence of
Vegetation, J. Hydrometeor., 23, 1095–1111, https://doi.org/10.1175/JHM-D-21-0109.1, 2022. a, b
Fan, J., Yuan, T., Comstock, J. M., Ghan, S., Khain, A., Leung, L. R., Li, Z., Martins, V. J., and Ovchinnikov, M.: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds, J. Geophys. Res., 114, D22206, https://doi.org/10.1029/2009JD012352, 2009. a
Fan, J., Wand, Y., Rosenfeld, D., and Liu, X.: Review of Aerosol-Cloud
Interactions: Mechanisms, Significance, and Challenges, J. Atmos. Sci., 73,
4221–4252, https://doi.org/10.1175/JAS-D-16-0037.1, 2016. a
Fan, J., Leung, L. R., Rosenfeld, D., and DeMott, P. J.: Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds, Atmos. Chem. Phys., 17, 1017–1035, https://doi.org/10.5194/acp-17-1017-2017, 2017. a
Findell, K. L. and Eltahir, E. A. B.: Atmospheric controls on soil moisture-boundary layer interactions. Part I: Framework development, J.
Hydrometeor., 4, 552–569, 2003. a
Gossard, E. E.: Measurement of Cloud Droplet Size Spectra by Doppler Radar,
J. Atmos. Ocean. Tech., 11, 712–726,
https://doi.org/10.1175/1520-0426(1994)011<0712:MOCDSS>2.0.CO;2, 1994. a
Grant, L. D. and van den Heever, S. C.: Cold pool and precipitation responses to aerosol loading: Modulation by dry layers, J. Atmos. Sci., 72,
1398–1408, https://doi.org/10.1175/JAS-D-14-0260.1, 2015. a
Griffin, S. M., Otkin, J. A., Thompson, G., Frediani, M., Berner, J., and Kong, F.: Assessing the impact of stochastic perturbations in cloud microphysics using GOES-16 infrared brightness temperatures, Mon. Weather Rev., 148, 3111–3137, https://doi.org/10.1175/MWR-D-20-0078.1, 2020. a
Hande, L. B., Engler, C., Hoose, C., and Tegen, I.: Seasonal variability of Saharan desert dust and ice nucleating particles over Europe, Atmos. Chem. Phys., 15, 4389–4397, https://doi.org/10.5194/acp-15-4389-2015, 2015. a
Hande, L. B., Engler, C., Hoose, C., and Tegen, I.: Parameterizing cloud condensation nuclei concentrations during HOPE, Atmos. Chem. Phys., 16, 12059–12079, https://doi.org/10.5194/acp-16-12059-2016, 2016. a
Hauck, C., Barthlott, C., Krauss, L., and Kalthoff, N.: Soil moisture
variability and its influence on convective precipitation over complex
terrain, Q. J. Roy. Meteor. Soc., 137, 42–56, https://doi.org/10.1002/qj.766,
2011. a, b
Heinze, R., Dipankar, A., Carbajal Henken, C., Moseley, C., Sourdeval, O., Trömel, S., Xie, X., Adamidis, P., Ament, F., Baars, H., Barthlott, C., Behrendt, A., Blahak, U., Bley, S., Brdar, S., Brueck, M., Crewell, S., Deneke, H., Di Girolamo, P., Evaristo, R., Fischer, J., Frank, C., Friederichs, P., Göcke, T., Gorges, K., Hande, L., Hanke, M., Hansen, A., Hege, H.-C., Hoose, C., Jahns, T., Kalthoff, N., Klocke, D., Kneifel, S., Knippertz, P., Kuhn, A., van Laar, T., Macke, A., Maurer, V., Mayer, B., Meyer, C. I., Muppa, S. K., Neggers, R. A. J., Orlandi, E., Pantillon, F., Pospichal, B., Röber, N., Scheck, L., Seifert, A., Seifert, P., Senf, F.,
Siligam, P., Simmer, C., Steinke, S., Stevens, B., Wapler, K., Weniger, M.,
Wulfmeyer, V., Zängl, G., Zhang, D., and Quaas, J.: Large-eddy
simulations over Germany using ICON: a comprehensive evaluation, Q. J. Roy. Meteor. Soc., 143, 69–100, https://doi.org/10.1002/qj.2947, 2017. a
Heise, E., Ritter, B., and Schrodin, E.: Operational implementation of the multilayer soil model TERRA, Technical Report 9, 19 pp., http://www.cosmo-model.org (last access: 18 September 2018),
2006. a
Hohenegger, C., Brockhaus, P., Bretherton, C. S., and Schär, C.: The soil
moisture precipitation feedback in simulations with explicit and
parameterized convection, J. Climate, 22, 5003–5020,
https://doi.org/10.1175/2009JCLI2604.1, 2009. a
Igel, A. L. and van den Heever, S. C.: The Importance of the Shape of Cloud
Droplet Size Distributions in Shallow Cumulus Clouds. Part II: Bulk
Microphysics Simulations, J. Atmos. Sci., 74, 259–273,
https://doi.org/10.1175/JAS-D-15-0383.1, 2017. a
Igel, A. L. and van den Heever, S. C.: Invigoration or Enervation of Convective Clouds by Aerosols?, Geophys. Res. Lett., 48, e2021GL093804,
https://doi.org/10.1029/2021GL093804, 2021. a
Imamovic, A., Schlemmer, L., and Schär, C.: Collective Impacts of Orography and Soil Moisture on the Soil Moisture-Precipitation Feedback, Geophys. Res. Lett., 44, 11682–11691, https://doi.org/10.1002/2017GL075657, 2017. a
Jorgensen, D. P. and Weckwerth, T. M.: Forcing and organization of convective systems, in: Radar and Atmospheric Science: A collection of essays in Honor of David Atlas, edited by: Wakimoto, R. M. and Srivastava, R., American Meteorological Society, Boston, 75–103, https://doi.org/10.1175/0065-9401(2003)030<0075:FAOOCS>2.0.CO;2, 2003. a
Kärcher, B. and Lohmann, U.: A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols, J. Geophys. Res., 107, AAC 4-1–AAC 4-10, https://doi.org/10.1029/2001JD000470, 2002. a
Kärcher, B., Hendricks, J., and Lohmann, U.: Physically based
parameterization of cirrus cloud formation for use in global atmospheric
models, J. Geophys. Res., 111, D01205, https://doi.org/10.1029/2005JD006219, 2006. a
Keil, C., Heinlein, F., and Craig, G. C.: The convective adjustment time-scale as indicator of predictability of convective precipitation, Q. J. Roy. Meteor. Soc., 140, 480–490, https://doi.org/10.1002/qj.2143, 2014. a
Keil, C., Baur, F., Bachmann, K., Rasp, S., Schneider, L., and Barthlott, C.:
Relative contribution of soil moisture, boundary-layer and microphysical
perturbations on convective predictability in different weather regimes, Q.
J. Roy. Meteor. Soc., 145, 3102–3115, https://doi.org/10.1002/qj.3607, 2019. a, b, c, d, e, f, g, h
Khain, A. P., BenMoshe, N., and Pokrovsky, A.: Factors Determining the Impact
of Aerosols on Surface Precipitation from Clouds: An Attempt at
Classification, J. Atmos. Sci., 65, 1721–1748, https://doi.org/10.1175/2007JAS2515.1, 2008. a
Khain, A. P., Beheng, K. D., Heymsfield, A., Korolev, A., Krichak, S. O., Levin, Z., Pinsky, M., Phillips, V., Prabhakaran, T., Teller, A., van den Heever, S. C., and Yano, J.-I.: Representation of microphysical processes in
cloud-resolving models: Spectral (bin) microphysics versus bulk
parameterization, Rev. Geophys., 53, 247–322, https://doi.org/10.1002/2014RG000468,
2015. a
Leuenberger, D., Koller, M., Fuhrer, O., and Schär, C.: A Generalization of
the SLEVE Vertical Coordinate, Mon. Weather Rev., 138, 3683–3689,
https://doi.org/10.1175/2010MWR3307.1, 2010. a
Levin, M.: Functions to represent drop size distributions in clouds: The
optical density of clouds, Ser. Geofiz., 10, 698–702, 1958. a
Liu, W., Zhang, Q., Li, C., Xu, L., and Xiao, W.: The influence of soil
moisture on convective activity: a review, Theor. Appl. Climatol., 149, 221–232, https://doi.org/10.1007/s00704-022-04046-z, 2022. a
Marinescu, P. J., van den Heever, S. C., Heikenfeld, M., Barrett, A. I., Barthlott, C., Hoose, C., Fan, J., Fridlind, A. M., Matsui, T., Miltenberger, A. K., Stier, P., Vie, B., White, B. A., and Zhang, Y.: Impacts of Varying Concentrations of Cloud Condensation Nuclei On Deep Convective Cloud Updrafts – A Multimodel Assessment, J. Atmos. Sci., 78, 1147–1172,
https://doi.org/10.1175/JAS-D-20-0200.1, 2021. a
Martins, J. A. and Silva Dias, M. A. F.: The impact of smoke from forest
fires on the spectral dispersion of cloud droplet size distributions in the
Amazonian region, Environ. Res. Lett., 4, 1–8,
https://doi.org/10.1088/1748-9326/4/1/015002, 2009. a
Matsunobu, T., Zarboo, A., Barthlott, C., and Keil, C.: Impact of combined microphysical uncertainties on convective clouds and precipitation in ICON-D2-EPS forecasts during different synoptic control, Weather Clim. Dynam. Discuss. [preprint], https://doi.org/10.5194/wcd-2022-17, in review, 2022. a, b, c
Miles, N. L., Verlinde, J., and Clothiaux, E. E.: Cloud Droplet Size Distributions in Low-Level Stratiform Clouds, J. Atmos. Sci., 57, 295–311,
https://doi.org/10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2, 2000. a
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res., 102,
16663–16682, https://doi.org/10.1029/97JD00237, 1997. a
Mohr, S., Wilhelm, J., Wandel, J., Kunz, M., Portmann, R., Punge, H. J., Schmidberger, M., Quinting, J. F., and Grams, C. M.: The role of large-scale dynamics in an exceptional sequence of severe thunderstorms in Europe May–June 2018, Weather Clim. Dynam., 1, 325–348, https://doi.org/10.5194/wcd-1-325-2020, 2020. a
Morales, A., Posselt, D. J., Morrison, H., and He, F.: Assessing the Influence of Microphysical and Environmental Parameter Perturbations on Orographic Precipitation, J. Atmos. Sci., 76, 1373–1395, https://doi.org/10.1175/jas-d-18-0301.1, 2019. a
Pan, Z., Takle, E., Segal, M., and Turner, R.: Influences of model parameterization schemes on the response of rainfall to soil moisture in the
central United States, Mon. Weather Rev., 124, 1786–1802, 1996. a
Park, J. M. and van den Heever, S. C.: Weakening of tropical sea breeze convective systems through interactions of aerosol, radiation, and soil moisture, Atmos. Chem. Phys., 22, 10527–10549, https://doi.org/10.5194/acp-22-10527-2022, 2022. a, b
Piper, D., Kunz, M., Ehmele, F., Mohr, S., Mühr, B., Kron, A., and Daniell, J.: Exceptional sequence of severe thunderstorms and related flash floods in May and June 2016 in Germany – Part 1: Meteorological background, Nat. Hazards Earth Syst. Sci., 16, 2835–2850, https://doi.org/10.5194/nhess-16-2835-2016, 2016. a
Posselt, D. J., He, F., Bukowski, J., and Reid, J. S.: On the Relative Sensitivity of a Tropical Deep Convective Storm to Changes in Environment and
Cloud Microphysical Parameters, J. Atmos. Sci., 76, 1163–1185,
https://doi.org/10.1175/JAS-D-18-0181.1, 2019. a
Raschendorfer, M.: The new turbulence parameterization of LM, COSMO Newsletter 1, 89–97, http://www.cosmo-model.org (last access: 13 May 2020), 2001. a
Raynaud, L. and Bouttier, F.: The impact of horizontal resolution and ensemble size for convective-scale probabilistic forecasts, Q. J. Roy. Meteor. Soc., 143, 3037–3047, https://doi.org/10.1002/qj.3159, 2017. a
Richard, E., Chaboureau, J. P., Flamant, C., Champollion, C., Hagen, M., Schmidt, K., Kiemle, C., Corsmeier, U., Barthlott, C., and Di Girolamo, P.:
Forecasting summer convection over the Black Forest: a case study from
the Convective and Orographically-induced Precipitation Study (COPS)
experiment, Q. J. Roy. Meteor. Soc., 137, 101–117,
https://doi.org/10.1002/qj.710, 2011. a
Rosenfeld, D., Lohmann, U., Raga, G., O'Dowd, C., Kulmala, M., Fuzzi, S.,
Reissell, A., and Andreae, M.: Flood or Drought: How Do Aerosols Affect
Precipitation?, Science, 321, 1309–1313, https://doi.org/10.1126/science.1160606,
2008. a, b
Schneider, L., Barthlott, C., Barrett, A. I., and Hoose, C.: The precipitation response to variable terrain forcing over low-mountain ranges in different weather regimes, Q. J. Roy. Meteor. Soc., 144, 970–989,
https://doi.org/10.1002/qj.3250, 2018. a
Schneider, L., Barthlott, C., Hoose, C., and Barrett, A. I.: Relative impact of aerosol, soil moisture, and orography perturbations on deep convection, Atmos. Chem. Phys., 19, 12343–12359, https://doi.org/10.5194/acp-19-12343-2019, 2019. a, b
Segal, Y. and Khain, A.: Dependence of droplet concentration on aerosol
conditions in different cloud types: application to droplet concentration
parameterization of aerosol conditions, J. Geophys. Res., 111, D15240,
https://doi.org/10.1029/2005JD006561, 2006. a, b
Seifert, A. and Beheng, K. D.: A double-moment parameterization for simulating autoconversion, accretion and selfcollection, Atmos. Res., 59-60, 265–281, https://doi.org/10.1016/S0169-8095(01)00126-0, 2001. a
Seifert, A. and Beheng, K. D.: A two-moment cloud microphysics
parameterization for mixed-phase clouds. Part I: Model description,
Meteorol. Atmos. Phys., 92, 67–82, https://doi.org/10.1007/s00703-005-0112-4,
2006a. a, b, c
Seifert, A. and Beheng, K. D.: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part II: Maritime vs. continental deep convective storms, Meteorol. Atmos. Phys., 92, 45–66, 2006b. a
Seifert, A., Köhler, C., and Beheng, K. D.: Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model, Atmos. Chem. Phys., 12, 709–725, https://doi.org/10.5194/acp-12-709-2012, 2012. a, b
Selz, T. and Craig, G. C.: Upscale Error Growth in a High-Resolution Simulation of a Summertime Weather Event over Europe, Mon. Weather Rev., 143, 813–827, https://doi.org/10.1175/MWR-D-14-00140.1, 2015. a
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil moisture–climate interactions in a changing climate: A review, Earth-Sci. Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004, 2010. a
Stein, U. and Alpert, P.: Factor Separation in Numerical Simulations, J. Atmos. Sci., 50, 2107–2115, https://doi.org/10.1175/1520-0469(1993)050<2107:FSINS>2.0.CO;2, 1993. a
Storer, R. L. and van den Heever, S. C.: Microphysical Processes Evident in
Aerosol Forcing of Tropical Deep Convective Clouds, J. Atmos. Sci., 70,
430–446, https://doi.org/10.1175/JAS-D-12-076.1, 2013. a, b
Storer, R. L., van den Heever, S. C., and Stephens, G. L.: Modeling Aerosol Impacts on Convective Storms in Different Environments, J. Atmos. Sci., 67, 3904–3915, https://doi.org/10.1175/2010JAS3363.1, 2010. a
Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., and Zhang, C.: Impact of aerosols
on convective clouds and precipitation, Rev. Geophys., 50, RG2001,
https://doi.org/10.1029/2011RG000369, 2012.
a, b, c, d
Taylor, C. M., de Jeu, R. A. M., Guichard, F., Harris, P. P., and Dorigo,
W. A.: Afternoon rain more likely over drier soils, Nature, 489, 423–426,
2012. a
Thompson, G., Berner, J., Frediani, M., Otkin, J. A., and Griffin, S. M.: A
Stochastic Parameter Perturbation Method to Represent Uncertainty in a
Microphysics Scheme, Mon. Weather Rev., 149, 1481–1497,
https://doi.org/10.1175/MWR-D-20-0077.1, 2021. a, b
Tiedtke, M.: A comprehensive mass flux scheme for cumulus parameterization in
large-scale models, Mon. Weather Rev., 117, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989. a
van den Heever, S. C., Stephens, G. L., and Wood, N. B.: Aerosol indirect
effects on tropical convection characteristics under conditions of
radiative-convective equilibrium, J. Atmos. Sci., 68, 699–718,
https://doi.org/10.1175/2010JAS3603.1, 2011. a, b
Wellmann, C., Barrett, A. I., Johnson, J. S., Kunz, M., Vogel, B., Carslaw, K. S., and Hoose, C.: Comparing the impact of environmental conditions and microphysics on the forecast uncertainty of deep convective clouds and hail, Atmos. Chem. Phys., 20, 2201–2219, https://doi.org/10.5194/acp-20-2201-2020, 2020. a, b
Wilhelm, J., Mohr, S., Punge, H. J., Mühr, B., Schmidberger, M., Daniell,
J. E., Bedka, K. M., and Kunz, M.: Severe thunderstorms with large hail
across Germany in June 2019, Weather, 76, 228–237, https://doi.org/10.1002/wea.3886,
2021. a
Zängl, G.: Extending the Numerical Stability Limit of Terrain-Following
Coordinate Models over Steep Slopes, Mon. Weather Rev., 140, 3722–3733,
https://doi.org/10.1175/MWR-D-12-00049.1, 2012. a
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON
(ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M:
Description of the non-hydrostatic dynamical core, Q. J. Roy. Meteor. Soc., 141, 563–579, https://doi.org/10.1002/qj.2378, 2015. a
Short summary
The relevance of microphysical and land-surface uncertainties for convective-scale predictability is evaluated with a combined-perturbation strategy in realistic convection-resolving simulations. We find a large ensemble spread which demonstrates that the uncertainties investigated here and, in particular, their collective effect are highly relevant for quantitative precipitation forecasting of summertime convection in central Europe.
The relevance of microphysical and land-surface uncertainties for convective-scale...
Altmetrics
Final-revised paper
Preprint