Articles | Volume 21, issue 12
https://doi.org/10.5194/acp-21-9705-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-9705-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observations on hygroscopic growth and phase transitions of mixed 1, 2, 6-hexanetriol ∕ (NH4)2SO4 particles: investigation of the liquid–liquid phase separation (LLPS) dynamic process and mechanism and secondary LLPS during the dehumidification
Shuaishuai Ma
The Institute of Chemical Physics, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology, Beijing 100081, China
Zhe Chen
The Institute of Chemical Physics, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology, Beijing 100081, China
The Institute of Chemical Physics, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology, Beijing 100081, China
Yunhong Zhang
CORRESPONDING AUTHOR
The Institute of Chemical Physics, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology, Beijing 100081, China
Related authors
No articles found.
Jing Li, An Ning, Ling Liu, Fengyang Bai, Qishen Huang, Pai Liu, Xiucong Deng, Yunhong Zhang, and Xiuhui Zhang
Atmos. Chem. Phys., 25, 14237–14249, https://doi.org/10.5194/acp-25-14237-2025, https://doi.org/10.5194/acp-25-14237-2025, 2025
Short summary
Short summary
Iodic acid (IA) particles are frequently observed in the upper troposphere and lower stratosphere (UTLS), yet their formation mechanism remains unclear. Nitric acid (NA) and ammonia (NH3) are key nucleation precursors in the UTLS. This study investigates the IA–NA–NH3 system using a theoretical approach. Our proposed nucleation mechanism highlights the crucial role of NA in IA nucleation, providing molecular-level evidence for the missing sources of IA particles in the UTLS.
Hui Yang, Fengfeng Dong, Li Xia, Qishen Huang, Shufeng Pang, and Yunhong Zhang
Atmos. Chem. Phys., 24, 11619–11635, https://doi.org/10.5194/acp-24-11619-2024, https://doi.org/10.5194/acp-24-11619-2024, 2024
Short summary
Short summary
Atmospheric secondary aerosols, composed of organic and inorganic components, undergo complex reactions that impact their phase state. Using molecular spectroscopy, we showed that ammonium-promoted aqueous replacement reaction, unique to these aerosols, is closely linked to phase behavior. The interplay between reactions and aerosol phase state can cause atypical phase transition and irreversible changes in aerosol composition during hygroscopic cycles, further impacting atmospheric processes.
Shuaishuai Ma, Qiong Li, and Yunhong Zhang
Atmos. Chem. Phys., 22, 10955–10970, https://doi.org/10.5194/acp-22-10955-2022, https://doi.org/10.5194/acp-22-10955-2022, 2022
Short summary
Short summary
The nitrate phase state can play a critical role in determining the occurrence and extent of nitrate depletion in internally mixed NaNO3–DCA particles, which may be instructive for relevant aerosol reaction systems. Besides, organic acids have a potential to deplete nitrate based on the comprehensive consideration of acidity, particle-phase state, droplet water activity, and HNO3 gas-phase diffusion.
Cited articles
Ahn, K.-H., Kim, S.-M., Jung, H.-J., Lee, M.-J., Eom, H.-J., Maskey, S.,
and Ro, C.-U.: Combined use of optical and electron microscopic techniques
for the measurement of hygroscopic property, chemical composition, and
morphology of individual aerosol particles, Anal. Chem., 82, 7999–8009,
https://doi.org/10.1021/ac101432y, 2010.
Badger, C. L., Griffiths, P. T., George, I., Abbatt, J. P., and Cox, R. A.:
Reactive uptake of N2O5 by aerosol particles containing mixtures
of humic acid and ammonium sulfate, J. Phys. Chem. A, 110, 6986–6994,
https://doi.org/10.1021/jp0562678, 2006.
Bertram, A. K., Martin, S. T., Hanna, S. J., Smith, M. L., Bodsworth, A.,
Chen, Q., Kuwata, M., Liu, A., You, Y., and Zorn, S. R.: Predicting the
relative humidities of liquid-liquid phase separation, efflorescence, and
deliquescence of mixed particles of ammonium sulfate, organic material, and
water using the organic-to-sulfate mass ratio of the particle and the
oxygen-to-carbon elemental ratio of the organic component, Atmos. Chem.
Phys., 11, 10995–11006, https://doi.org/10.5194/acp-11-10995-2011, 2011.
Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R.,
Sullivan, A. P., Weber, R. J., Dube, W. P., Trainer, M., Meagher, J. F.,
Fehsenfeld, F. C., and Ravishankara, A. R.: Variability in nocturnal
nitrogen oxide processing and its role in regional air quality, Science,
311, 67–70, https://doi.org/10.1126/science.1120120, 2006.
Ciobanu, V. G., Marcolli, C., Krieger, U. K., Weers, U., and Peter, T.:
Liquid-liquid phase separation in mixed organic/inorganic aerosol particles,
J. Phys. Chem. A, 113, 10966–10978, https://doi.org/10.1021/jp905054d, 2009.
Cosman, L. M., Knopf, D. A., and Bertram, A. K.: N2O5 reactive
uptake on aqueous sulfuric acid solutions coated with branched and
straight-chain insoluble organic surfactants, J. Phys. Chem. A, 112,
2386–2396, https://doi.org/10.1021/jp710685r, 2008.
Ebert, M., Inerle-Hof, M., and Weinbruch, S.: Environmental scanning
electron microscopy as a new technique to determine the hygroscopic
behaviour of individual aerosol particles, Atmos. Environ., 36, 5909–5916, https://doi.org/10.1016/S1352-2310(02)00774-4, 2002.
Erdakos, G. B. and Pankow, J. F.: Gas/particle partitioning of neutral and
ionizing compounds to single- and multi-phase aerosol particles, 2. Phase
separation in liquid particulate matter containing both polar and
low-polarity organic compounds, Atmos. Environ., 38, 1005–1013,
https://doi.org/10.1016/j.atmosenv.2003.10.038, 2004.
Fard, M. M., Krieger, U. K., and Peter, T.: Kinetic limitation to inorganic
ion diffusivity and to coalescence of inorganic inclusions in viscous
liquid-liquid phase-separated particles, J. Phys. Chem. A, 121, 9284–9296,
https://doi.org/10.1021/acs.jpca.7b05242, 2017.
Gao, Y., Chen, S. B., and Yu, L. E.: Efflorescence relative humidity for
ammonium sulfate particles, J. Phys. Chem. A, 110, 7602–7608,
https://doi.org/10.1021/jp057574g, 2006.
Gao, Y., Yu, L. E., and Chen, S. B.: Theoretical investigation of substrate
effect on deliquescence relative humidity of NaCl particles, J. Phys. Chem.
A, 111, 633–639, https://doi.org/10.1021/jp0654967, 2007.
Hämeri, K., Laaksonen, A., Väkevä, M., and Suni, T.: Hygroscopic
growth of ultrafine sodium chloride particles, J. Geophys. Res.-Atmos., 106,
20749–20757, https://doi.org/10.1029/2000jd000200, 2001.
Haywood, J. and Boucher, O.: Estimates of the direct and indirect radiative
forcing due to tropospheric aerosols: A review, Rev. Geophys., 38, 513–543,
https://doi.org/10.1029/1999RG000078, 2000.
Heald, C. L., Kroll, J. H., Jimenez, J. L., Docherty, K. S., Decarlo, P. F.,
Aiken, A. C., Chen, Q., Martin, S. T., Farmer, D. K., and Artaxo, P.: A
simplified description of the evolution of organic aerosol composition in
the atmosphere, Geophys. Res. Lett., 37, L08803,
https://doi.org/10.1029/2010GL042737, 2010.
Hodas, N., Zuend, A., Schilling, K., Berkemeier, T., Shiraiwa, M., Flagan,
R. C., and Seinfeld, J. H.: Discontinuities in hygroscopic growth below and
above water saturation for laboratory surrogates of oligomers in organic
atmospheric aerosols, Atmos. Chem. Phys., 16, 12767–12792,
https://doi.org/10.5194/acp-16-12767-2016, 2016.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J.,
Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J.,
Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J.,
Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati,
E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate
modelling: a review, Atmos. Chem. Phys., 5, 1053–1123,
https://doi.org/10.5194/acp-5-1053-2005, 2005.
Krieger, U. K., Marcolli, C., and Reid, J. P.: Exploring the complexity of
aerosol particle properties and processes using single particle techniques,
Chem. Soc. Rev., 41, 6631–6662, https://doi.org/10.1039/c2cs35082c, 2012.
Lee, S. H., Murphy, D. M., Thomson, D. S., and Middlebrook, A. M.: Chemical
components of single particles measured with Particle Analysis by Laser Mass
Spectrometry (PALMS) during the Atlanta SuperSite Project: Focus on
organic/sulfate, lead, soot, and mineral particles, J. Geophys. Res.-Atmos.,
107, 4003, https://doi.org/10.1029/2000JD000011, 2002.
Liu, P. F., Song, M., Zhao, T. N., Gunthe, S. S., Ham, S., He, Y. P., Qin,
Y. M., Gong, Z. H., Amorim, J. C., Bertram, A. K., and Martin, S. T.:
Resolving the mechanisms of hygroscopic growth and cloud condensation nuclei
activity for organic particulate matter, Nat. Commun., 9, 4076,
https://doi.org/10.1038/s41467-018-06622-2, 2018.
Lv, X. J., Chen, Z., Ma, J. B., and Zhang, Y. H.: Volatility measurements of
1, 2, 6-hexanetriol in levitated viscous aerosol particles, J. Aerosol Sci.,
138, 105449, https://doi.org/10.1016/j.jaerosci.2019.105449, 2019.
Ma, S. S., Yang, W., Zheng, C. M., Pang, S. F., and Zhang, Y. H.: Subsecond
measurements on aerosols: From hygroscopic growth factors to efflorescence
kinetics, Atmos. Environ., 210, 177–185,
https://doi.org/10.1016/j.atmosenv.2019.04.049, 2019.
Ma, S. S., Chen, Z., Pang, S. F., and Zhang, Y. H.: Data of “Observations on
hygroscopic growth and phase transitions of 1, 2,
6-hexanetriol/(NH4)2SO4 mixed particles: Investigation of
liquid-liquid phase separation (LLPS) dynamic process and mechanism and
secondary LLPS during the dehumidification”, Zenodo [Dataset], https://doi.org/10.5281/zenodo.4863581, 2021.
Marcolli, C., Luo, B. P., Peter, T., and Wienhold, F. G.: Internal mixing of
the organic aerosol by gas phase diffusion of semivolatile organic
compounds, Atmos. Chem. Phys., 4, 2593–2599,
https://doi.org/10.5194/acp-4-2593-2004, 2004.
Marcolli, C. and Krieger, U. K.: Phase changes during hygroscopic cycles of
mixed organic/inorganic model systems of tropospheric aerosols, J. Phys.
Chem. A, 110, 1881–1893, https://doi.org/10.1021/jp0556759, 2006.
Martin, S. T.: Phase transitions of aqueous atmospheric particles, Chem.
Rev., 100, 3403–3453, https://doi.org/10.1021/cr990034t, 2000.
Martin, S. T., Hung, H. M., Park, R. J., Jacob, D. J., Spurr, R. J. D.,
Chance, K. V., and Chin, M.: Effects of the physical state of tropospheric
ammonium-sulfate-nitrate particles on global aerosol direct radiative
forcing, Atmos. Chem. Phys., 4, 183–214,
https://doi.org/10.5194/acp-4-183-2004, 2004.
McNeill, V. F., Patterson, J., Wolfe, G. M., and Thornton, J. A.: The effect
of varying levels of surfactant on the reactive uptake of N2O5 to
aqueous aerosol, Atmos. Chem. Phys., 6, 1635–1644,
https://doi.org/10.5194/acp-6-1635-2006, 2006.
McNeill, V. F., Wolfe, G. M., and Thornton, J. A.: The oxidation of oleate
in submicron aqueous salt aerosols: Evidence of a surface process, J. Phys.
Chem. A, 111, 1073–1083, https://doi.org/10.1021/jp066233f, 2007.
Middlebrook, A. M., Murphy, D. M., and Thomson, D. S.: Observations of
organic material in individual marine particles at Cape Grim during the
First Aerosol Characterization Experiment (ACE 1), J. Geophys. Res.-Atmos.,
103, 16475, https://doi.org/10.1029/97JD03719, 1998.
Murphy, D. M., Cziczo, D. J., Froyd, K. D., Hudson, P. K., Matthew, B. M.,
Middlebrook, A. M., Peltier, R. E., Sullivan, A., Thomson, D. S., and Weber,
R. J.: Single-particle mass spectrometry of tropospheric aerosol particles,
J. Geophys. Res.-Atmos., 111, D23S32, https://doi.org/10.1029/2006JD007340, 2006.
Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich,
I. M., Kroll, J. H., Docherty, K. S., Chhabra, P. S., and Bahreini, R.:
Organic aerosol components observed in Northern Hemispheric datasets from
Aerosol Mass Spectrometry, Atmos. Chem. Phys., 10, 4625–4641,
https://doi.org/10.5194/acp-10-4625-2010, 2010.
O'Brien, R. E., Wang, B. B., Kelly, S. T., Lundt, N., You, Y., Bertram, A.
K., Leone, S. R., Laskin, A., and Gilles, M. K.: Liquid-liquid phase
separation in aerosol particles: Imaging at the nanometer scale, Environ.
Sci. Technol., 49, 4995–5002, https://doi.org/10.1021/acs.est.5b00062, 2015.
Pant, A., Fok, A., Parsons, M. T., Mak, J., and Bertram, A. K.:
Deliquescence and crystallization of ammonium sulfate-glutaric acid and
sodium chloride-glutaric acid particles, Geophys. Res. Lett., 31, L12111,
https://doi.org/10.1029/2004gl020025, 2004.
Papon, P., Leblond, J., and Meijer, P. H. E.: The Physics of phase
transitions: Concepts and applications, Springer, Berlin, 1999.
Qiu, Y. Q. and Molinero, V.: Morphology of liquid-liquid phase separated
aerosols, J. Am. Chem. Soc., 137, 10642–10651,
https://doi.org/10.1021/jacs.5b05579, 2015.
Renbaum-Wolff, L., Song, M., Marcolli, C., Zhang, Y., Liu, P. F., Grayson,
J. W., Geiger, F. M., Martin, S. T., and Bertram, A. K.: Observations and
implications of liquid–liquid phase separation at high relative humidities
in secondary organic material produced by α-pinene ozonolysis
without inorganic salts, Atmos. Chem. Phys., 16, 7969–7979,
https://doi.org/10.5194/acp-16-7969-2016, 2016.
Robinson, C. B., Schill, G. P., Zarzana, K. J., and Tolbert, M. A.: Impact
of organic coating on optical growth of ammonium sulfate particles, Environ.
Sci. Technol., 47, 13339–13346, https://doi.org/10.1021/es4023128, 2013.
Russell, L. M. and Ming, Y.: Deliquescence of small particles, J. Chem.
Phys., 116, 311–321, https://doi.org/10.1063/1.1420727, 2002.
Shelby, J. E.: Introduction to glass science and technology, The Royal
Society of Chemistry, Cambridge, UK, 1997.
Shiraiwa, M., Zuend, A., Bertram, A. K., and Seinfeld, J. H.: Gas-particle
partitioning of atmospheric aerosols: interplay of physical state, non-ideal
mixing and morphology, Phys. Chem. Chem. Phys., 15, 11441–11453,
https://doi.org/10.1039/c3cp51595h, 2013.
Sjogren, S., Gysel, M., Weingartner, E., Baltensperger, U., Cubison, M. J.,
Coe, H., Zardini, A. A., Marcolli, C., Krieger, U. K., and Peter, T.:
Hygroscopic growth and water uptake kinetics of two-phase aerosol particles
consisting of ammonium sulfate, adipic and humic acid mixtures, J. Aerosol
Sci., 38, 157–171, https://doi.org/10.1016/j.jaerosci.2006.11.005, 2007.
Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.:
Liquid-liquid phase separation in aerosol particles: Dependence on O:C,
organic functionalities, and compositional complexity, Geophys. Res. Lett.,
39, L19801, https://doi.org/10.1029/2012gl052807, 2012a.
Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.:
Liquid-liquid phase separation and morphology of internally mixed
dicarboxylic acids/ammonium sulfate/water particles, Atmos. Chem. Phys., 12,
2691–2712, https://doi.org/10.5194/acp-12-2691-2012, 2012b.
Song, M., Liu, P. F., Martin, S. T., and Bertram, A. K.: Liquid–liquid
phase separation in particles containing secondary organic material free of
inorganic salts, Atmos. Chem. Phys., 17, 11261–11271,
https://doi.org/10.5194/acp-17-11261-2017, 2017.
Thornton, J. A. and Abbatt, J. P. D.: N2O5 reaction on submicron
sea salt aerosol: kinetics, products, and the effect of surface active
organics, J. Phys. Chem. A, 109, 10004–10012,
https://doi.org/10.1021/jp054183t, 2005.
Wang, F., Zhang, Y. H., Li, S. H., Wang L.Y., and Zhao, L. J.: A strategy
for single supersaturated droplet analysis: Confocal Raman investigations on
the complicated hygroscopic properties of individual MgSO4 droplets on
the quartz substrate, Anal. Chem., 77, 7148–7155,
https://doi.org/10.1021/ac050938g, 2005.
Wang, X. W., Jing, B., Tan, F., Ma, J. B., Zhang, Y. H., and Ge, M. F.:
Hygroscopic behavior and chemical composition evolution of internally mixed
aerosols composed of oxalic acid and ammonium sulfate, Atmos. Chem. Phys.,
17, 12797–12812, https://doi.org/10.5194/acp-17-12797-2017, 2017.
Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T.
L., Balkanski, Y., Bellouin, N., Boucher, O., and Christopher, S.: A review
of measurement-based assessments of the aerosol direct radiative effect and
forcing, Atmos. Chem. Phys., 6, 613–666,
https://doi.org/10.5194/acp-6-613-2006, 2005.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H.,
Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L.,
Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch,
T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N.,
Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian,
K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J.,
Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and
dominance of oxygenated species in organic aerosols in
anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res.
Lett., 34, L13801, https://doi.org/10.1029/2007gl029979, 2007.
Zhou, Q., Pang, S. F., Wang, Y., Ma, J. B., and Zhang, Y. H.: Confocal raman
studies of the evolution of the physical state of mixed phthalic
acid/ammonium sulfate aerosol droplets and the effect of substrates, J.
Phys. Chem. B, 118, 6198–6205, https://doi.org/10.1021/jp5004598, 2014.
Zuend, A. and Seinfeld, J. H.: Modeling the gas-particle partitioning of
secondary organic aerosol: the importance of liquid-liquid phase separation,
Atmos. Chem. Phys., 12, 3857–3882, https://doi.org/10.5194/acp-12-3857-2012,
2012.
Zuend, A., Marcolli, C., Peter, T., and Seinfeld, J. H.: Computation of
liquid-liquid equilibria and phase stabilities: implications for
RH-dependent gas/particle partitioning of organic-inorganic aerosols, Atmos.
Chem. Phys., 10, 7795–7820, https://doi.org/10.5194/acp-10-7795-2010, 2010.
Short summary
LLPS, efflorescence and deliquescence of aerosol particles can be observed visually and determined quantitatively. Different LLPS mechanisms may dominate successively in mixed organic–inorganic particles. The formation of more concentrated inorganic inclusions may cause secondary LLPS. Furthermore, high inorganic factions may result in an inorganic salt crust enclosing the separated organic phases.
LLPS, efflorescence and deliquescence of aerosol particles can be observed visually and...
Altmetrics
Final-revised paper
Preprint