Articles | Volume 21, issue 12
https://doi.org/10.5194/acp-21-9455-2021
https://doi.org/10.5194/acp-21-9455-2021
Research article
 | 
23 Jun 2021
Research article |  | 23 Jun 2021

Estimation of fire-induced carbon emissions from Equatorial Asia in 2015 using in situ aircraft and ship observations

Yosuke Niwa, Yousuke Sawa, Hideki Nara, Toshinobu Machida, Hidekazu Matsueda, Taku Umezawa, Akihiko Ito, Shin-Ichiro Nakaoka, Hiroshi Tanimoto, and Yasunori Tohjima

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Yosuke Niwa on behalf of the Authors (05 May 2021)  Author's response    Author's tracked changes    Manuscript
ED: Publish as is (20 May 2021) by Dominick Spracklen
Download
Short summary
Fires in Equatorial Asia release a large amount of carbon into the atmosphere. Extensively using high-precision atmospheric carbon dioxide (CO2) data from a commercial aircraft observation project, we estimated fire carbon emissions in Equatorial Asia induced by the big El Niño event in 2015. Additional shipboard measurement data elucidated the validity of the analysis and the best estimate indicated 273 Tg C for fire emissions during September–October 2015.
Altmetrics
Final-revised paper
Preprint