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Abstract. Inverse analysis was used to estimate fire carbon emissions in Equatorial Asia induced by the big El Niño event in 

2015. This inverse analysis is unique because it extensively used high-precision atmospheric mole fraction data of carbon 

dioxide (CO2) from the commercial aircraft observation project CONTRAIL. By comparisons with independent shipboard 

observations, especially carbon monoxide (CO) data, the validity of the estimated fire-induced carbon emission was 

demonstrated. The best estimate, which used both aircraft and shipboard CO2 observations, indicated 273 Tg C for fire 15 

emissions during September–October 2015. This two-month-long period accounts for 75% of the annual total fire emission 

and 45% of the annual total net carbon flux within the region, indicating that fire emissions are a dominant driving force of 

interannual variations of carbon fluxes in Equatorial Asia. Several sensitivity experiments demonstrated that aircraft 

observations could measure fire signals, though they showed a certain degree of sensitivity to prior fire-emission data. The 

inversions coherently estimated smaller fire emissions than the priors, partially because of the small contribution of peatland 20 

fires, indicated by enhancement ratios of CO and CO2 observed by the ship. In future warmer climate conditions, Equatorial 

Asia may experience more severe droughts which risks releasing a large amount of carbon into the atmosphere. Therefore, the 

continuation of aircraft and shipboard observations is fruitful for reliable monitoring of carbon fluxes in Equatorial Asia. 

1 Introduction 

Equatorial Asia, which includes Indonesia, Malaysia, Papua New Guinea and surrounding areas (Fig. 1) has experienced 25 

extensive biomass burning, especially during drought conditions induced by El Niño and the Indian Ocean dipole (Field et al., 

2009). This biomass burning has emitted a significant amount of carbon, mainly in the form of carbon dioxide (CO2), into the 

atmosphere (Page et al., 2002; Patra et al., 2005; van der Werf et al., 2008). Much of these fire-induced carbon emissions in 

Equatorial Asia came from peatland, which has a remarkably high carbon density. Since the peatland in Equatorial Asia 

accounts for a significant portion of the global peatland (Page et al., 2011), the region has a distinct role in the global carbon 30 

cycle despite its small terrestrial coverage. 
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In 2015, the extreme El Niño, accompanied by a positive anomaly of the Indian Ocean dipole, induced severe drought 

and devastating biomass burning in Equatorial Asia. This was one of biggest El Niño events in the last 30 years, rivalling the 

well-known major El Niño in 1997/1998 (L’Heureux et al., 2016; Santoso et al., 2017). Page et al. (2002) estimated that the 

biomass burning in 1997 emitted a massive amount of carbon into the atmosphere, ranging between 810 and 2570 Tg C. 

Compared to 1997, more observations were available in 2015, and several studies used those observations to estimate 50 

the fire-induced carbon emissions. Field et al. (2016) reported that the annual total carbon emission induced by the fires in 

2015 was 380 Tg C, which was based on the Global Fire Emissions Database version 4s (GFED4s: Mu et al., 2011; Randerson 

et al., 2012; Giglio et al., 2013; van der Werf et al., 2017). The GFED4s data are derived from active fire data from the 

Moderate Resolution Imaging Spectroradiometers (MODIS) onboard the Terra and Aqua satellites. Huijnen et al. (2016) 

estimated the emission to be 289 Tg C by combining total column carbon monoxide (CO) data from the satellite Measurements 55 

of Pollution in the Troposphere (MOPITT) with emission factors estimated from local measurements of smoke. In their 

estimate, the fire-induced CO emission data from the Global Fire Assimilation System (GFAS v1.2: Kaiser et al., 2012) were 

modified to be consistent with the MOPITT CO observations, resulting in a downward shift from the original estimate of 

GFAS v1.2. Yin et al. (2016) also used the column CO data from MOPITT for estimating the carbon emission in Equatorial 

Asia. They used multi-tracer (CO, methane and formaldehyde) inverse analysis data (Yin et al. 2015) and estimated 122 Tg of 60 

fire-emitted CO for 2015. With a prescribed ratio of the emission factors between total carbon and CO, this number leads to 

510 Tg C for the total carbon emissions. 

The total carbon emission estimates of the above studies were obtained from the fire-related data of MODIS and 

atmospheric CO mole fractions of MOPITT and not from observations of atmospheric CO2, which is the major constituent of 

emitted carbon. Heymann et al. (2017) first used atmospheric CO2 mole fraction data to estimate the fire-induced carbon 65 

emission in Equatorial Asia for 2015. They used the column-averaged dry-air mole fraction of CO2 from the Orbiting Carbon 

Observatory-2 satellite (Crisp et al., 2008, 2015) and obtained a CO2 emission estimate of 748 Mt CO2 (equivalent to 204 Tg 

C) from July to November 2015, which covers the beginning and end of the fire season. Their estimate was 35% and 30% 

smaller than the MODIS-based emission estimates of GFED4s and GFAS v1.2, respectively. This lower estimate is more 

consistent with the estimate of Huijnen et al. (2016) than that of Yin et al. (2015). 70 

Thus, the estimates of the fire-induced carbon emissions in Equatorial Asia for 2015 are still uncertain, though they 

are consistently much smaller than those of 1997. As discussed by Field et al. (2009, 2016) and Yin et al. (2016), a nonlinear 

sensitivity of the fire emissions to the climate conditions contributed to the notable discrepancy of the fire-emission amount 

between 1997 and 2015. However, the underlying mechanisms are unclear, and further investigation and a more accurate 

emission estimate are required. Importantly, the previous studies mainly relied on satellite data of atmospheric CO2 or CO. 75 

These estimates have possible errors because satellite data are not well retrieved when there are smoke or clouds. Heavy smoke 

occurred from the fires in 2015 (Field et al., 2016). Furthermore, cumulus clouds are frequent over Equatorial Asia, although 

convective activity decreases during the dry season. 
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In this study, we estimated carbon emissions in Equatorial Asia for 2015 using in situ atmospheric observations by 90 

aircraft and ship. The observational data were obtained from the commercial aircraft observation project of Comprehensive 

Observation Network for TRace gases by AIrLiner (CONTRAIL: Machida et al., 2008) and the National Institute for 

Environmental Studies (NIES) Volunteer Observing Ship (VOS) Programme (Tohjima et al., 2005; Terao et al., 2011; Nakaoka 

et al., 2013; Nara et al., 2011, 2014, 2017). Because of in situ measurements, the observational data provide much higher 

accuracy than the satellite observations used in previous studies. The moderate distance of the observational locations from 95 

the source areas (i.e., in the free troposphere or offshore) should ensure enough spatial representativeness of the observations 

in the inverse analysis. Given the sparse ground-based observations in Equatorial Asia, these programmes provide valuable 

opportunities to investigate the fire-induced emissions in the region. The long-term aircraft observation (the predecessor of 

CONTRAIL) observed CO2 and CO mole fraction variations associated with El Niño over the western Pacific since 1993 

(Matsueda et al., 2002, 2019). Its occasional flights to Singapore (Matsueda and Inoue, 1999) and a campaign flight over 100 

Australia and Indonesia (Sawa et al., 1999) captured pronounced elevations of CO from the Equatorial fires in 1997. 

Furthermore, Nara et al. (2017) observed prominent CO2 and CO enhancements from the peatland fires in Equatorial Asia in 

2013 by NIES VOS. 

To link the atmospheric observations to surface carbon fluxes, we performed an inverse analysis of atmospheric CO2 

using the NICAM-based Inverse Simulation for Monitoring CO2 (NISMON-CO2) (formerly NICAM-TM 4D-Var: Niwa et al., 105 

2017a, 2017b). The inversion system uses the Nonhydrostatic Icosahedral Atmospheric Model (NICAM: Tomita and Satoh, 

2004; Satoh et al., 2008, 2014)-based transport model (NICAM-TM: Niwa et al., 2011b). Using the same atmospheric transport 

model, Niwa et al. (2012) performed a CO2 inverse analysis and demonstrated a strong constraint of the CONTRAIL data for 

Equatorial Asia. In this study, we estimated surface fluxes at a higher resolution using a more sophisticated inversion method 

than that of Niwa et al. (2012), namely the four-dimensional variational (4D-Var) method (Niwa et al., 2017a). The 4D-Var 110 

estimates fluxes at a model grid-resolution to address flux signals from spatially limited phenomena such as biomass burning. 

We newly implemented CO into the inverse system to evaluate combustion sources. In our inverse analysis, we predominantly 

used atmospheric CO2 observations from CONTRAIL and evaluated the inversion results using independent CO2 and CO 

observations from NIES VOS. Finally, we performed an inverse analysis using both the CONTRAIL and NIES VOS CO2 

observations to enhance the reliability of the inverse analysis. 115 
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Figure 1: Locations of the observations obtained by CONTRAIL (magenta) and NIES VOS (blue) for Nov 2014–Jan 2016. Pentagons and 
hexagons in grey denote the icosahedral grids of NICAM (the grid interval is ~112 km), those filled in orange indicate Equatorial Asia, the 120 
target region of this study. 

 

2 Methods 

2.1 Observations 

In this inverse analysis, we only used the CONTRAIL and NIES VOS data, because they are predominant in the area we 125 

focused on. Here, we briefly describe those observations and further information can be found in the literatures cited therein   

2.1.1 CONTRAIL 

The CONTRAIL data were obtained from in situ CO2 measurements by Continuous CO2 Measurement Equipment (CME), 

which is installed onboard the Boeing 777-200ER and -300ER of Japan Airlines (Machida et al., 2008; Sawa et al., 2012; 

Umezawa et al., 2018). For the analysis period from November 2014 to January 2016, the number of CONTRAIL-CME data 130 

exceeds 1.3 million, comprising 10-s interval data from ascending/descending sections and 1-min interval data from cruising 

sections. In the analysis, we only used data in the free troposphere, derived by excluding data in the stratosphere and the 

planetary boundary layer identified by thresholds of two potential vorticity units (PVU, 1 PVU = 10−6 m2 s−1 K kg−1) and Ri = 

0.25 (Ri is the bulk Richardson number), respectively (Sawa et al., 2008, 2012). This data filtering is needed because the 

signals of surface fluxes are efficiently attenuated in the stratosphere, and lower altitude data could be affected by local 135 
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emissions from a neighbouring city of an airport (Umezawa et al., 2020). After filtering, the number of observations is still as 

large as 1.1 million. In particular, the observational coverage for Equatorial Asia is noteworthy, which is predominantly the 

result of high-frequency flights between Japan and Singapore. 

2.1.2 NIES VOS programme 140 

The NIES VOS programme has been conducting atmospheric and surface ocean observations in the Pacific Ocean using 

commercial cargo vessels (Tohjima et al., 2005; Terao et al., 2011; Nakaoka et al., 2013; Nara et al., 2011, 2014, 2017). The 

observation network ranges from Japan to North America, Oceania (Australia and New Zealand), and Southeast and Equatorial 

Asia. In 2015, the vessel Fujitrans World (owned by the Kagoshima Senpaku Kaisha, Ltd. Kagoshima, Japan) was used for 

observations in Southeast and Equatorial Asia. Onboard the ship, an in situ measurement system continuously observed 145 

atmospheric mole fractions of greenhouse gases and other related atmospheric species (Nara et al., 2017). In this study, in 

addition to CO2, atmospheric CO data were used for the proxy of fire-induced emissions. The ship normally travels once a 

month, but for 2015, observational data were obtained in January and from May to November. It takes approximately two 

weeks to travel around Southeast and Equatorial Asia. In this study, we used 1-h interval data that passed careful quality control. 

Using ancillary data of the cruising speed and mole fractions of related species (e.g., ozone), the quality control excluded mole 150 

fraction data of CO2 and CO that were judged as the ship’s exhaust and contaminated by local ports. 

2.2 Inverse analysis 

2.2.1 Inversion system and transport model 

Similar to previous inversions (e.g., Baker et al., 2006; Chevallier et al., 2010; Rödenbeck, 2005), the inverse analysis of this 

study is based on Bayesian estimation (e.g., Rayner et al., 1996; Enting, 2002). The cost function is defined as 155 

𝐽(𝛿𝒙) = !
"
𝛿𝒙#𝐁$!𝛿𝒙 + !

" (𝑀(𝒙% + 𝛿𝒙) − 𝒚)
#𝐑$!(𝑀(𝒙% + 𝛿𝒙) − 𝒚),     (1) 

where 𝛿𝒙 is the control vector, including parameters to be optimised, y represents the vector of observations, and x0 denotes 

the basic model state of the parameters. The matrices B and R are the prescribed error covariance for 𝛿𝒙 and the model-

observation mismatch, respectively. The operator M(.) describes the forward simulation, including linear spatiotemporal 

interpolation to each observational location/time. In this inverse analysis, x0 and 𝛿𝒙 comprise prescribed surface CO2 flux data 160 

and deviations from them, respectively, and the operator M(.) represents the atmospheric transport. Atmospheric mole fraction 

observations of CO2 are input to the vector y. 

In this study, we used the 4D-Var method to obtain an optimal vector 𝛿𝐱 that minimises the cost function. In the 

method, an optimal parameter vector is sought by iterative calculations using the gradient of the cost function, 

∇𝐽&𝒙 = 𝐁$!𝛿𝒙 +𝐌#𝐑$!(𝑀(𝒙% + 𝛿𝒙) − 𝒚),        (2) 165 
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where MT is the transpose of the tangent linear operator M (in this study, 𝐌𝛿𝒙 ≈ 𝑀(𝛿𝒙) because of the linearity of the 

problem). The MT calculation requires an adjoint model. 170 

The inversion system NISMON is specifically designed for the inverse analysis of an atmospheric constituent (Niwa 

et al., 2017a, 2017b). In the system, the forward model of NICAM-TM simulates atmospheric mole fractions from given 

surface fluxes, and its adjoint model calculates the sensitivities of fluxes against atmospheric mole fractions (Niwa et al., 

2017b). Specifically, the continuous adjoint model was chosen for the adjoint calculation, assuring monotonicity of tracer 

concentrations and sensitivities at the expense of minor nonlinearity (Niwa et al., 2017b). The optimisation calculation uses 175 

the quasi-Newtonian algorithm of the Preconditioned Optimizing Utility for Large-dimensional analyses (POpULar: Fujii and 

Kamachi, 2003; Fujii, 2005; Niwa et al., 2017a). 

The atmospheric transport model NICAM-TM adopts an icosahedral grid system with hexagonal or pentagon-shaped 

grids (Fig. 1) that are produced by the recursive division of an icosahedron. All the model simulations were performed at a 

horizontal resolution of glevel-6 (n of glevel-n denotes the number of divisions of an icosahedron, representing the level of the 180 

model horizontal resolution). The averaged grid interval of glevel-6 is 112 km, sufficiently resolving the major archipelagos 

in Equatorial Asia (Fig. 1). For forward and adjoint simulations of atmospheric transport, archived meteorological data drive 

NICAM-TM, which is an off-line calculation. The meteorological data were prepared in advance from the simulation of the 

parent model NICAM, whose wind fields are nudged towards Japanese 55-year Reanalysis data (JRA-55: Kobayashi et al., 

2015; Harada et al., 2016) (see Niwa et al., 2017b for a detailed description of the archived meteorological data). Other model 185 

settings can be found in Niwa et al. (2017b). 

2.2.2 Implementation of CO 

In this study, we newly implemented a CO function in the above inversion system to use CO as a proxy of fire-induced 

emissions. It also considers oxidation from CO to CO2, which could have measurable effects on CO2 observations near fires. 

Figure 2 shows a schematic diagram for the forward and adjoint simulations of NICAM-TM, including CO. This CO function 190 

considers only the chemical reaction with hydroxyl radicals (OH). The OH fields are given as input data and, hence, the model 

does not have nonlinear chemical reactions, retaining the linearity, which is assumed in the inverse analysis theory. 

Furthermore, the oxidation from methane (CH4) to CO with OH is also considered. For simplicity, however, the atmospheric 

mole fraction of CH4 was set at a globally constant value of 1844 ppb (= 10−9 mol−1), which was derived from the global annual 

mean mole fraction for 2015, reported by the World Data Center for Greenhouse Gases (WDCGG: WMO, 2018). The 195 

atmospheric three-dimensional data of OH were derived from the TransCom-CH4 project (Spivakovsky et al., 2000; Patra et 

al., 2011). In the model, the contribution of oxidation from biogenic volatile organic compounds (BVOCs) to CO is not 

considered yet, but direct CO emissions from vegetation are given at the earth’s surface. Although the oxidations of CH4 and 

BVOCs are significant sources of atmospheric CO, we treated the former very simply and did not consider the latter. Therefore, 
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we did not input CO observations to the inverse analysis. In the inversion, the biomass burning emissions of CO, which were 

predominant in Equatorial Asia, were modified along with those of CO2, as described in the next section. 

2.2.3 Flux model 

As described in Fig. 2, we introduced scaling factors to surface fluxes, which is another updated feature of the inversion system 

from Niwa et al. (2017a). The surface CO2 flux input to the model, 𝑓()!, is described as 205 

𝑓()!(𝑥, 𝑡) = 51 + ∆𝑎*+,(𝑥, 𝑡)9𝑓*+,(𝑥, 𝑡) − 51 + ∆𝑎-..(𝑥, 𝑡)9𝑓-..(𝑥, 𝑡)     

+51 + ∆𝑎/0(𝑥, 𝑡)9𝑓/0(𝑥, 𝑡) +51 + ∆𝑎*123(𝑥, 𝑡)9𝑓*123(𝑥, 𝑡)      

+𝑓+45(𝑥, 𝑡) + ∆𝑓+45(𝑥, 𝑡),         (3) 

where x and t indicate flux location and time, and f represents prescribed flux data, whose subscripts of fos, GPP, RE, fire and 

ocn denote flux components of fossil fuel combustion and cement production, Gross Primary Production (GPP) and respiration 210 

(RE) of the terrestrial biosphere, biomass burning and ocean, respectively. Note that a positive value indicates a flux towards 

the atmosphere. Each flux component data could have different temporal resolutions (e.g., monthly, daily), and flux values are 

linearly interpolated in time to each model time step. Datasets used for each flux component are described in the following 

section. Their coefficients of Δafos, ΔaGPP, ΔaRE and Δafire are scaling factors for corresponding flux components, of which the 

values could be varied at each model grid. We did not apply the scaling factor to the ocean flux but introduced the deviation 215 

of the prescribed flux Δfocn because the ocean flux has both negative and positive values and its spatiotemporal flux phase 

could not be modified when introducing a scaling factor. Note that the other flux components should have all positive values. 

The phases of spatiotemporal variations of terrestrial biosphere flux (e.g., seasonal cycle) could be modified because GPP and 

RE are separately optimised. The above scaling factors and Δfocn were the parameters to be optimised in the inverse analysis. 

For the surface CO flux, we considered fossil fuel, vegetation and biomass burning emissions. For the biomass 220 

burning emissions, we imposed a common scaling factor with that of CO2. Therefore, in the inversion, the biomass burning 

emission of CO was modified along with that of CO2. The modification of the biomass burning emission could also be made 

by signals transported via atmospheric CO that should have oxidised to CO2 (Fig. 2). 

In Eq. (3), the temporal resolution of a flux-scaling factor could be different from that of its corresponding flux and 

be different by regions (Table 1). In this study, we set a daily temporal resolution for the scaling factors of GPP, RE and 225 

biomass burning emissions in Equatorial Asia so that the inversion could exploit the full information of those surface fluxes 

from the observations. For the rest of the region, we set monthly temporal resolutions. For the scaling factor of fossil fuel 

emissions, we set an annual temporal resolution for Equatorial Asia, and we did not optimise the flux for the rest of the region, 

i.e., the modification factor was set to 0. We set a monthly temporal resolution for the deviation of the ocean flux. 
 230 
Table 1: Temporal resolution and standard error and error correlation of each flux component, which were separately configured for 
Equatorial Asia and the rest of the world. Note that the ocean flux was optimised by its absolute value and the others by their scaling factors; 
therefore, the monthly standard deviation (SD) of the long-term data was used for the ocean flux error and ratios were used for the other flux 
errors. 
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Flux 
component 

Temporal resolution  Standard error  Error correlation (space/time) 

Eq. Asia Rest  Eq. Asia Rest  Eq. Asia Rest 

fos Annual N/A  10% N/A  None/None N/A 
GPP, RE Daily Monthly  40% 10%  None/3 day 1000 km/None 
fire Daily Monthly  80% 100%  None/3 day None/None 
ocn N/A Monthly  N/A SD  N/A 3000 km 

 
 

 250 
Figure 2: Schematic diagram of the CO2–CO forward/adjoint calculations in NICAM-TM 

 

2.2.4 Error covariance matrices 

As in the case of the different flux temporal resolutions, we constructed the flux error covariance matrix B for Equatorial Asia 

and the rest of the world separately. Table 1 summarises the standard errors and error correlations that were introduced into 255 

the diagonal and off-diagonal elements of B, respectively. For GPP and RE, we assume 40% error for daily fluxes in Equatorial 

Asia and 10% for monthly fluxes in the rest of the world, which means 0.16 and 0.01 for the diagonal elements of B. The 

higher standard error for Equatorial Asia allows observations to modify surface fluxes sufficiently. Nevertheless, a 3-day 

temporal error correlation was introduced to stabilise flux estimates. The smaller standard error for the rest of the world had 

to constrain the surface flux to the prior because we did not use enough observations to cover the globe. Furthermore, for 260 

stabilisation, a spatial error correlation length scale of 1000 km was introduced. The above error correlations were defined by 
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the Gaussian function (Niwa et al., 2017a). Similarly, 80% and 100% errors for fire emissions were introduced for Equatorial 

Asia and the rest of the world, respectively, but without spatial error correlations. Note that the fire errors for Equatorial Asia 

are practically larger than 80%, because the 3-day temporal correlation inflates the errors. We put a 10% error on the fossil 

fuel emissions in Equatorial Asia. For the monthly ocean flux errors, we used the standard deviation of the long-term data 270 

(1990–2016) and introduced a spatial error correlation of 3000 km. Table 1 shows each parameter. 

2.2.5 Prescribed flux dataset 

For ffos and focn in Eq. (3), we used monthly mean data of fossil fuel and cement production emission from the Carbon Dioxide 

Information Analysis Center (CDIAC) (Andres et al., 2016) and of air-sea CO2 flux from the Japan Meteorological Agency 

(Takatani et al. 2014; Iida et al., 2015), respectively. Here, the fossil fuel emission data for 2015 were produced from the latest 275 

gridded CDIAC data for 2013 by scaling with the global total value for 2015 that is preliminarily reported by Le Quéré et al. 

(2015). For fGPP and fRE, we used 3-hourly data to resolve the distinct diurnal cycles of terrestrial biosphere flux. These fGPP 

and fRE were originally based on monthly mean data from the Carnegie-Ames-Stanford Approach (CASA) model (Randerson 

et al., 1997), but were modified according to the inversion of Niwa et al. (2012). They were further downscaled in time to 3-

hourly with 2 m temperature and downward shortwave radiation data of JRA-55 using Olsen and Randerson’s (2004) method. 280 

In the inversion of Niwa et al. (2012), the classical low-resolution inversion method (e.g., Enting, 2002) was used, in 

which the global terrestrial area was divided into 31 regions, and the scaling factors for those regions were optimised. 

Furthermore, the inversion used both surface and CONTRAIL data for 2006–2008, and the mean flux data of those three years 

were used in this study. Therefore, such an integrated flux could produce consistent atmospheric mole factions with the 

observations from the surface to the upper troposphere, although some discrepancies could arise because of the different 285 

analysis period. In this study, these fluxes were optimized based on the CONTRAIL data from the study year and further flux 

information was exploited because of using the 4D-Var high-resolution (model grid level) inversion, with a specific focus on 

Equatorial Asia. 

For the biomass burning flux of ffire, we used four datasets and performed independent inversions to evaluate 

sensitivities to the biomass burning data (Table 2). The first is the mean of the GFED4s and GFAS v1.2 (noted as GG). The 290 

second and third ones are from GFED4s (GD) and GFAS v1.2 (GS), respectively. The fourth one is made by excluding 

emissions in Equatorial Asia from GG (NO). For NO, we replaced the biomass burning term of Eq. (3) by 

50 + ∆𝑎*123(𝑥, 𝑡)9𝑓*123(𝑥, 𝑡) in Equatorial Asia, where ffire is the same as GG. 

For CO, the same biomass burning datasets from GFED4s and GFAS v1.2 were used. Note that both the datasets use 

similar emission factors of CO2 and CO based on Akagi et al (2011); particularly, the same emission factor from Christian et 295 

al. (2003) was applied to peatland, from which a large part of fires arises in Equatorial Asia (van der Werf et al., 2017).  The 

rest of the CO fluxes from fossil fuel use and vegetation were derived from the Emission Database for Global Atmospheric 

Research (EDGAR) version 4.3.2 (Janssens-Maenhout et al., 2019) and the process-based model of terrestrial ecosystems, the 

Vegetation Integrative SImulator for Trace gases (VISIT: Ito and Inatomi, 2012; Ito, 2019), respectively. In the VISIT 

Deleted: the 300 
Deleted: fossil fuel and 

Deleted: the 

Deleted: for 

Deleted: ing

Deleted: those discrepancies were modified using the consistent 305 
year data of CONTRAIL 

Formatted: Subscript

Formatted: Not Highlight

Deleted: oxidation of BVOCs



10 
 

simulation, CO emissions are estimated with the scheme of Guenther (1997), but using an emission factor by Tao and Jain 

(2005). The emission rates are estimated by light, temperature, vegetation leaf amount and seasonality, and the scheme has 

been calibrated with observational data. For EDGAR v4.3.2, we used emission data of 2012 (the latest data available) for the 310 

simulation of 2015. 

 
Table 2: Observation and prior fire-emission data for each inverse analysis experiment 

Experiment name Observation Fire prior 

C_GG CONTRAIL (GFAS + GFED)/2 
C_GD CONTRAIL GFED 
C_GS CONTRAIL GFAS 
C_NO CONTRAIL No fire in Equatorial Asia 
CV_GG CONTRAIL, VOS (GFAS + GFED)/2 

 
 315 

2.2.6 Initial mole fraction field and analysis period 

In addition to the flux-scaling factors, the model parameter vector includes the global offset of atmospheric mole fractions. 

Therefore, 𝛿𝒙 of Eqs. (1) and (2) is constructed as 

𝛿𝒙 = (∆𝒂, ∆𝒇+45, ∆𝑐)#,           (4) 

where ∆𝒂 and ∆focn represent all the modification scaling factors and ocean flux deviations of Eq. (3), respectively, and ∆𝑐 320 

denotes the modification to the global offset. Thus, its corresponding basic state vector x0 is described as 𝒙% =

(1,… ,1, 𝒇+45, 0)#. Note that the forward model calculation started from a reasonable spatial gradient, which was prepared in 

advance by a spin-up calculation. At the beginning of the 4D-Var iterative calculation, all the elements of 𝛿𝐱 were set to zero 

as the initial estimates. 

The target period for this study is the whole year of 2015. However, in the inverse calculation, two extra months were 325 

added before the target period to attenuate the errors in the initial mole fraction fields before the beginning of 2015, which was 

inevitable because of the global unique parameter described above (∆𝑐). Nevertheless, the initial mole fraction fields are 

consistent with observations to some extent, as they were prepared by the inversion flux of Niwa et al. (2012). This makes the 

two-month inversion spin-up reasonable. Furthermore, one more month was also added after the target period to well constrain 

fluxes at the end of 2015. Therefore, the inverse calculation period consists of 15 months from November 2014 to January 330 

2016.  

Deleted:  



11 
 

2.3 Notation of sensitivity tests 

As described in 2.2.5, we performed inversion analyses with four biomass burning datasets (GG, GD, GS and NO). We only 

used the CONTRAIL data, but with GG, we additionally performed an inversion using the NIES VOS data and CONTRAIL 335 

to leverage all available observations, denoting C_ and CV_ as prefixes, respectively. Thus, we have five inversion results 

(C_GG, C_GD, C_GS, C_NO and CV_GG) (Table 2). Note that although they used different biomass burning data, prior flux 

errors for biomass burning (Table 1) were commonly used. It is true even in C_NO whose practical prior uncertainty in 

Equatorial Asia is 80% of GG. 

3 Results 340 

In this section, we first describe spatiotemporal features of the CONTRAIL and NIES VOS observational data with 

supplemental model analyses. Then, we show the inversion results and demonstrate their validity by comparing posterior mole 

fractions of CO and CO2 with the NIES VOS data. 

3.1 Observational features 

As shown in Fig. 3, the CONTRAIL aircraft flew to Singapore 209 times during 2015. These high-frequency observations 345 

show a small but distinct seasonal cycle of CO2 mole fractions around Equatorial Asia, with double peaks in April–May and 

December, and a minimum during June–October, depending on altitudes and latitudes. Furthermore, the CONTRAIL aircraft 

frequently observed additional highly elevated mole fractions below 3 km altitude over Singapore (Fig. 3a, lower panel), which 

could be attributable to local or regional emissions in Equatorial Asia. The model with the prior flux data produced similar 

mole fraction elevations; however, their timing and magnitudes were sometimes different from the observations (Fig. 3b). A 350 

further model analysis with prior biomass burning data suggested that fire contributions to the observed mole fraction 

elevations were limited mostly to the latter period of the dry season from mid-August to the beginning of November (Fig. 4b). 

Nevertheless, a model simulation that separately calculated CO2 mole fractions from other different sources (fossil fuel 

emissions, terrestrial biosphere and ocean fluxes, and oxidation of CO) indicated that these fire contributions are dominant in 

the CO2 mole fraction variations over Singapore for this period). In the other seasons, the model showed almost no 355 

contributions from fire emissions (not shown). In particular, the model showed a distinct fire contribution at the end of 

September, which elevated mole fractions up to the upper troposphere by ~4 ppm. In the observations, although similar mole 

fraction elevations are found in the upper troposphere, its magnitude is smaller (~2 ppm). Furthermore, the observation shows 

a slightly later peak that lasted until the beginning of October (Fig. 4a). After that, the observations also captured elevated 

mole fraction events from mid-October onward. However, the prior model estimate showed smaller fire contributions in 360 

October than in September (Fig. 4b), although the simulated total CO2 mole fractions were comparable to the observations 

(Fig. 3b), indicating that non-fire emissions (e.g., from terrestrial biosphere respiration and fossil fuel emission) had a certain 

level of contribution during this period. 
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Figure 3: CO2 mole fractions in the free troposphere around Equatorial Asia (note that data in the boundary layer and stratosphere are 
excluded (see the main text)) observed by CONTRAIL (a) and their corresponding prior (GG) (b) and posterior (C_GG) (c) model values 
deviated from the observations. Each upper panel presents a time-latitude cross-section from cruising mode data (~11 km above sea level) 370 
within the longitude range of 90°–130°E, and the lower one shows a time-altitude cross-section from ascending/descending data over 
Singapore. Note that the data in the upper panels are not only from the Singapore flights but from all flights within the range. For visualisation, 
data are all 5-day running means. Note also that an additional offset of 1.93 ppm is added to the prior mole fractions so that the resulting 
global offset equals the posterior one. On the right-hand side, correlation coefficients and root-mean-square difference (RMSD) (ppm) 
between the simulated and observed mole fractions are noted for each time-latitude and time-altitude cross-section. 375 
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Figure 4: The same as Fig. 3, but for 15 August–15 November. The model simulations here show only fire contributions. 

 380 

Figure 5 shows CO2 and CO mole fractions observed along the track of the NIES VOS around Equatorial Asia. The 

NIES VOS observations in both September and October 2015 captured coincident elevations of CO2 and CO mole fractions 

in the east of the Malay Peninsula and west of Borneo. By performing a transport simulation of tagged fire-induced CO tracers 

(the fire emissions of GG was used here), we found that the fires in Borneo and Sumatra contributed almost every notable 

mole fraction elevation, except for 17 September and 15–16 October, both of which might be contributed by the fossil fuel 385 

emissions in Jakarta city (Fig. 6). As highlighted by the grey shades in Fig. 6, seven of those events contributed by the fires 

are designated by P1, P2,…, P7 in this study. These events will be used for evaluating the inverse analysis, especially for fire-

emission features, as described in Section 3.2.2. Note that mole fraction data during 13–15 September and 11–14 October were 

excluded before the analysis. During these periods, some data were not correctly obtained because the signals were too large 

and out of the measurable range. Furthermore, the NIES VOS ship travelled slowly or stayed around the Malacca Straits, 390 

resulting in contamination by the ship’s own exhaust. Deleted: -self
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Figure 5: Mole fractions of CO2 (left) and CO (right) along the cruise tracks of NIES VOS for September (upper) and October (lower) 2015. 
Data enclosed by black lines with P# represent designated fire-induced high mole fraction events (see also Fig. 6). 395 

 

 
Figure 6: Time series of CO mole fractions obtained by the in situ NIES VOS measurement (black) for September (a) and October (b) and 
corresponding simulation results by NICAM-TM with prior CO emission data (red). These time series depict the data limited within the 
range of 95°–125°E and 10°S–15°N consistently with Figs. 5b and d. Model simulations only from fire emissions in Sumatra and Borneo 400 
are also denoted by blue and cyan colours, respectively. Grey shades with P# indicate the fire-induced elevated mole fraction events. 
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Figure 7 shows sensitivities of the CONTRAIL and NIES VOS observations against surface CO2 fluxes, i.e., 

footprints, for September and October 2015, calculated by the adjoint model of NICAM-TM (Niwa et al., 2017b). The 

CONTRAIL footprints represent sensitivities of observations obtained during ascending or descending flights over Singapore 405 

(i.e., the data shown in the lower panel of Fig. 4a). For both September and October, the calculated footprints indicate that the 

CONTRAIL observations could provide significant constraints on flux estimates for Equatorial Asia, especially Borneo (Figs. 

7a and b). These widespread footprint features are because the data were obtained in the free troposphere, which is an advantage 

of aircraft observations in terms of representativeness. Figure 7 also suggests that the constraint is stronger during October 

than September because the number of data is larger in October (Fig. 3 or Fig. 4). Compared to CONTRAIL, the NIES VOS 410 

footprints are restricted to the ocean (Figs. 7c and d) because the observations were made within the marine boundary layer. 

Another contributing factor is the weak wind fields, which are typical in the tropics. Nevertheless, there are some sensitivities 

of the NIES VOS observations on the coasts of the islands, with which the significantly large fire emissions elevated the mole 

fractions of atmospheric CO2 and CO (Figs. 5 and 6). 

 415 
Figure 7: Sensitivity of surface CO2 flux against the observations (e.g., footprints) of CONTRAIL over Singapore (upper) and NIES VOS 
(lower) for September (left) and October (right) 2015. 
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3.2 Inversion results 

3.2.1 Posterior fluxes 

In this study, we investigate surface fluxes by the sum of CO2 and CO fluxes, defined as a carbon flux. Furthermore, we 

evaluate the carbon flux separately for the total net flux and biomass burning emissions. Note that the total net flux includes 

terrestrial biosphere fluxes, biomass burnings emissions and fossil fuel emissions. 425 

Table 3 summarises the total net and fire carbon fluxes of Equatorial Asia estimated by the five sets of inversions. 

The prior biomass burning emissions of GG, GD and GS are consistently 300 Tg C for September–October, which constitutes 

~80% of the annual total fire emission and amounts to more than 80% of the total net flux we prescribed as the prior (355–360 

Tg C) for September–October. By inversion, all experiments, other than C_NO, estimated smaller total net fluxes by ~10% 

(304–324 Tg C) than the priors, and they were mostly contributed by the smaller estimates of fire emissions (256–277 Tg C). 430 

Interestingly, even when prior fire emissions were excluded in Equatorial Asia (C_NO), high fire emissions of 122 Tg C were 

retrieved for September–October, indicating that the CONTRAIL data measure fire-emission signals. However, the estimate 

is half of the others, indicating some dependency of the inversion on the prior fire emissions. 

Our conceivably best estimate of CV_GG, which used both the CONTRAIL and NIES VOS data, amounts to 273 Tg 

C and 362 Tg C for fire-induced carbon emissions during September–October and all months in 2015, respectively. These 435 

numbers are in better agreement with previous top-down estimates of Huijnen et al. (2016) (227 Tg C for September–October, 

and 289 Tg C for the annual total) and Heymann al. (2017) (204 Tg C for July–November) than that of Yin et al. (2016) (510 

Tg C for the annual total). Furthermore, the fire-induced carbon emission of 273 Tg C for September–October is also consistent 

with an aerosol-based study of Kiely et al. (2019), the best estimate of which is 247 Tg C as the sum of CO2 and CO emissions 

for Equatorial Asia but not including eastern areas (e.g., Papua New Guinea). Field et al. (2016) pointed out that the fire 440 

emissions estimated by GFED for Equatorial Asia in 2015 are higher than the annual fossil fuel emissions of Japan. Our 

estimate is smaller than that of GFED, but still comparable to the latest Japanese inventory (338 TgC yr−1 for 2018 (GIO and 

MOE, 2020)).  

 

Table 3: Total net flux and fire emission of carbon from Equatorial Asia for September–October 2015. Figure 1 defines the geographical 445 
region of Equatorial Asia. Note that the total net flux includes terrestrial biosphere fluxes, biomass burnings emissions and fossil fuel 
emissions. Annual flux values for 2015 are also noted in parentheses. The prior fluxes with the four biomass burning emissions are presented, 
as well as the posterior fluxes of the five inversions. 

 Total net flux [Tg C] Fire emission [Tg C] 
Prior (GG) 357 (677) 299 (388) 
Prior (GD) 360 (685) 301 (396) 
Prior (GS) 355 (669) 296 (379) 
Prior (NO) 59 (289) 0 (0) 
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C_GG 324 (613) 277 (363) 
C_GD 304 (598) 256 (343) 
C_GS 320 (604) 265 (348) 
C_NO 211 (451) 122 (131) 
CV_GG 322 (608) 273 (362) 

 455 

Figures 8 and 9 show the CO2 flux distributions for September and October, respectively. Here, we present the 

posterior fluxes of C_GG and C_NO only, but those of the other inversions show similar distribution features to C_GG. In 

September, C_GG estimated high emissions in southeast Sumatra and south of Borneo, where the fire emission dominated in 

the prior flux (Fig. 8), supporting prior knowledge of biomass burnings. However, the total emission estimate is smaller than 

the prior by 31 Tg (Fig. 8c). In October, the differences between prior and posterior fluxes of C_GG were moderate, with a 460 

net difference of 2.7 Tg (Fig. 9c). In fact, these flux changes are small compared with the differences between GFED and 

GFAS (GFED minus GFAS is 92 Tg C and –87 Tg for September and October, respectively), indicating that the simulated 

mole fractions from the prior flux of C_GG were overall consistent with the CONTRAIL observations. 

 

 465 
Figure 8: Prior (a) and posterior (b: C_GG, e: C_NO) surface CO2 flux distributions averaged for September 2015. Differences between 
prior and posterior fluxes (c,f) and prior fire emissions (d) are also shown. Note that the prior estimate of (a) was used both for C_GG and 
C_NO, while the prior fire estimate of (d) was used only for C_GG. 
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Figure 9: Same as Fig. 8, but for October 2015. 475 

 

As shown in Table 3, even when the fire emission was excluded from the prior, the inversion estimated notable fire 

emissions (C_NO), in both September and October (Figs. 8e and 9e). Furthermore, the locations of the estimated fire emissions 

are well coincident with those of prior fire emissions in southeast Sumatra and south of Borneo. They were to some extent 

guided by the higher prior flux errors that were derived from the fire-emission data (the uncertainty was set as 80% of GG), 480 

which was confirmed by another sensitivity test without prior uncertainty of fire emissions (not shown). Nevertheless, this 

result confirms that the CONTRAIL data have information about biomass burning emissions. 

Figure 10 shows temporal variations of the total net carbon flux in Equatorial Asia. Here, the posterior fluxes of 

C_GG and CV_GG are shown (panel a) and the difference from each prior is presented as Δ (panel b). Note that the time series 

of Δ is smoother because Δ is the parameter optimised by the inversion with a 3-day temporal correlation scale. This temporal 485 

correlation works as a smoother. The differences between the two posterior fluxes are marginal, indicating a limited effect of 

adding the NIES VOS data to the CONTRAIL data because the number of CONTRAIL data is overwhelming and the footprint 

of CONTRAIL covers Equatorial Asia much more extensively in space (Fig. 7). Compared to the prior flux, the posterior 

fluxes have a smaller peak at the beginning of September, whereas they show larger peaks from the end of September to the 

beginning of October. In the latter part of October, the prior and posterior fluxes are similar. 490 
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Figure 10: Time series of posterior total net carbon fluxes (a) and their differences from prior (Δ) (b) for 2015. Posterior fluxes of C_GG 
(blue) and CV_GG (red) and their prior flux (grey) are presented. 

 495 

Figure 11 exhibits temporal variations of fire emissions during the fire season. In Equatorial Asia, although the timings 

of the emission peaks presented by GFED and GFAS are coincident with each other, their magnitudes are significantly different. 

GFED has larger peaks than GFAS in September, whereas it has smaller ones in October (Fig.11a). Generally, the posterior 

fire emissions, except for C_NO, fall within the range of both prior emission estimates. In September, the posterior estimates 

are consistent and their magnitudes are closer to GFAS rather than GFED. In October, however, notable discrepancies occur 500 

among the posterior emissions, which is contributed by different emission estimates for Sumatra rather than Borneo according 

to the breakdown of the posterior estimates (Figs. 11b and c). In October, GFAS has higher emissions than GFED on both 

islands and its degree is more prominent in Sumatra. These different prior fire-emission estimates might have contributed to 

the large discrepancy among posterior estimates. 

 505 
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Figure 11: Time series of posterior and prior fire carbon emissions over the fire season (mainly, September–October) of 2015. The posterior 
fluxes of C_GG (blue solid), C_GD (orange solid), C_GS (cyan solid), and C_NO (magenta solid) are shown. Prior data of GFED (black 
dotted) and GFAS (grey dotted) are also shown. 

 510 

As shown in Fig. 7, the CONTRAIL footprint covers Borneo better than Sumatra, and the sensitivity is larger in 

October than in September. In practice, however, the constraint on fire emission has a different feature, as seen in the noticeable 

spread of fire-emission estimates in October (Fig. 11c). Note that the spread of estimates, including C_NO, is small in Sumatra 

at the end of September (Fig. 11b). In this period, the observational data and model analysis indicated that strong fire signals 

reached Singapore, although its timing, as suggested by the model, was slightly earlier (Fig. 4b). For this event, the inversion 515 

successfully optimised the fire emission in Sumatra with strong constraints by the observations, even from the no-fire prior 

(C_NO), resulting in the later-shifted peak with the consistent magnitude of 4–5 Tg C dy−1 (Fig. 11b). 

3.2.2 Posterior mole fractions 

In this section, we evaluate the simulated atmospheric CO2 and CO mole fractions from the posterior fluxes. First, as shown 

in Fig. 3, the posterior mole fractions of CO2 simulated for CONTRAIL have shown much better agreement with the 520 

observations than the prior ones, demonstrating that the inverse analyses were reasonably well performed. Compared to the 

simulation results of the prior fluxes, the posterior mole fractions have greater correlation coefficients and smaller root-mean-

square differences from the observations (see the numbers at the right-hand side of Fig. 3). In the following, we will compare 
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the model with the CO2 and CO observations of NIES VOS, which were left independent of the inversions, except for CV_GG. 525 

As demonstrated by Fig. 2, the posterior CO flux includes the fire emission modified according to the modification of CO2 fire 

emissions. To elucidate carbon fluxes in Equatorial Asia, the NIES VOS data used here are limited in the neighbouring region 

(95°–125°E and 10°S–15°N). 

In the comparative analysis of CO2 observations, an additional offset of 1.93 ppm is added to the prior CO2 mole 

fractions so that the resulting global offset becomes equivalent to the posterior ones, i.e., ∆𝒄 of Eq. (4) is 1.93 ppm (note that 530 

there is almost no difference in the global offset among the five inversions). Because the initial global offset was arbitrarily 

given, the comparison analysis of CO2 should exclude the effect of the improvement in the global offset to better understand 

the inversion effects. 

Figure 12 demonstrates how the posterior mole fractions of CO2 and CO were improved from the prior ones. 

Comparing the posterior results with the prior ones, we found better consistency with the NIES VOS observation, which is 535 

true for both CO2 and CO. This is especially true for September; all inversions, except CV_GG, reduced the root-mean-square 

difference (RMSD) of CO2 from 2.14–2.62 ppm to 2.05–2.09 ppm, whereas those of CO were reduced from 92–211 ppb to 

80–111 ppb. These results indicate the validity of the inversions that used the CONTRAIL CO2 observations. Meanwhile, the 

RMSDs of both CO2 and CO were not necessarily reduced for October. This is attributable to insufficient representativeness 

of surface fluxes or atmospheric transport, which can be inferred from the larger RMSDs and the smaller correlations in 540 

October than those of September. Nevertheless, the experiment without the prior fire emission (C_NO) exhibited smaller 

RMSDs with the posterior CO2 and CO fluxes for both September and October. Furthermore, the improvement in the 

correlation coefficients is remarkable (in September from 0.43 to 0.56 for CO2 and from 0.34 to 0.81 for CO, whereas in 

October from 0.29 to 0.49 for CO2 and from −0.18 to 0.49 for CO). The other inversions, except for CV_GG, did not improve 

the correlation coefficients significantly. In both months, CV_GG showed the best scores for CO2, which is reasonable because 545 

it used the CO2 observations of NIES VOS. Note, however, that CV_GG used only the CO2 observations, but not those of CO. 

Therefore, the RMSD reduction of CO for September by CV_GG (from 136 to 103 ppb) demonstrates some improvement in 

fire emissions. Therefore, it is better to use both the CONTRAIL and NIES VOS observations for flux estimations; however, 

the impact of NIES VOS is limited for the total carbon fluxes in Equatorial Asia (Table 3 and Fig. 10). 

 550 
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Figure 12: Correlation coefficient (upper panels) and root-mean-square-difference (RMSD) (lower panels) between the observed and 560 
simulated NIES VOS CO2 (left) and CO (right) mole fractions. The NIES VOS data used here are limited within the range of 95°–125°E 
and 10°S–15°N for September (light blue) and October (light green) 2015. The model simulations are derived from each posterior flux 
(C_GG, C_GD, C_GS, C_NO, and CV_GG) (filled bar) and its corresponding prior flux (open bar). To consider the initial global offset 
error, we added 1.93 ppm to every prior value so that the prior initial global offset becomes equivalent to the posterior one. 

 565 

For each elevated mole fraction event defined by Figs. 5 and 6, we calculated an enhancement ratio of ΔCO/ΔCO2 

from the reduced major axis regression, as Nara et al. (2017) did. For all peaks, except P1 and P2, every correlation between 

CO2 and CO variations is statistically significant (p < 0.05) for both the observations and simulations. For P1 and P2, some 

simulated results could not have significant correlations; therefore, we combined the two events so that every correlation was 

statistically significant (combining P1 and P2 would be reasonable because the Sumatra fires contributed to both; see Fig. 6). 570 

The enhancement ratios for those events could provide implications for emission ratios between CO and CO2. Note that the 

simulated ratios are derived from the posterior fluxes, but the overall feature does not change when the prior fluxes are used 

because the fire-emission ratios between CO and CO2 were unchanged by the inversion. Figure 13 depicts the observed and 

simulated enhancement ratios and the observed correlation coefficients for each event. The figure shows that the observed 

ratio has a significantly large variation from 0.034 ppb/ppb to 0.169 ppb/ppb. Interestingly, the higher ratios were obtained 575 

from events that were likely contributed to by the Borneo fires (P3, P6 and P7; see also Fig. 6). The model reproduced a pattern 

similar to the observed one. However, for the events from September to early October (P1 and P2, P3 and P4), the model 

coherently overestimated the enhancement ratios. The model and observations respectively show 0.067–0.104 ppb/ppb and 

0.038 ppb/ppb for P1 and P2, 0.139–0.165 ppb/ppb and 0.117 ppb/ppb for P3, and 0.115–0.133 ppb/ppb and 0.066 ppb/ppb 

for P4. In the latter events, the simulated ratios have substantial spreads among the different inversions, especially for P6 580 
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(0.080–0.145 ppb/ppb) and P7 (0.123–0.182 ppb/ppb), and the observed ratios are almost at the highest level of the simulated 

spreads. A further discussion is made in the following section. 

 

 585 
Figure 13: Observed and simulated enhancement ratios of ΔCO/ΔCO2 (solid line) and observed correlation coefficients between ΔCO and 
ΔCO2 (grey bar) for each elevated mole fraction event defined by Figs. 5 and 6. The observed enhancement ratios are coloured in black. The 
simulated values were derived from posterior CO and CO2 fluxes of C_GG (magenta), C_GD (red), C_GS (blue), C_NO (green), and 
CV_GG (cyan). 

 590 

4. Discussion 

This study used high-precision in situ observations of CO2 to estimate carbon fluxes in contrast to studies that used satellite 

observations of CO (Huijnen et al., 2016; Yin et al., 2016). Therefore, we obtained the total net carbon flux that included 

biomass burning emission, terrestrial biosphere photosynthesis and respiration, and fossil fuel emission. The estimated total 

net carbon flux amounts to 322 Tg C for September–October (CV_GG), 85% of which is contributed by fire emissions (Table 595 

3), indicating that flux variations of terrestrial photosynthesis and respiration under severe drought were not as large as those 

of the biomass burning emissions in 2015. This result indicates that biomass burning emissions are the main driving force of 

interannual variations of carbon fluxes in Equatorial Asia, which is a unique feature of the carbon fluxes in this region, 

compared with other tropical regions. Carbon fluxes in the tropics are considered to have significant sensitivities to climate 

variations, especially to El Niño, with major driving forces of terrestrial biosphere flux changes in response to temperature and 600 

precipitation changes (Yang and Wang, 2000; Zeng et al., 2005; Wang et al., 2013). 
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As described in Section 2.2, we used a common scaling factor for CO2 and CO fire fluxes; therefore, the ratio of the 630 

emission factors (CO/CO2) was fixed to that of prior fire-emission data (GFED and GFAS) and burned carbon mass was 

modified by the inverse analysis. It is likely that the spatial pattern of fire-emission ratios was reasonably represented because 

the model reproduced the observed variation in the enhancement ratio that might be caused by the difference in their origins 

(Figs. 6 and 13). However, as shown in Fig. 13, the model overestimated the enhancement ratios from September to early 

October, irrespective of its origin (Borneo or Sumatra). Meanwhile, it was not the case for the latter period, although the 635 

simulated ranges were large, indicating that the temporal change of the fire-emission ratio, i.e., a decrease of combustion 

efficiency, might not be well represented in the fire-emission data. Typical fire-emission ratios of CO/CO2 are 0.2–0.3 mol/mol 

for peatlands and 0.1 mol/mol for tropical forests, respectively (Akagi et al., 2011; Huijnen et al. 2016; Stockwell et al., 2016). 

Therefore, the observed smaller enhancement ratio infers that the contribution of fires (or smouldering) in dried peatlands was 

smaller in the early fire period than expected. This might have partially resulted in the smaller-than-prior estimates of the fire-640 

induced carbon emission (Table 3) because peatlands have a high carbon density and are dominant sources of carbon (Page et 

al., 2002). Nevertheless, the uncertainty is high, as demonstrated by the large model spreads, especially for the latter period, 

and we need more observations for robust estimations of the fire-emission ratio. 

We noted that the inverse analysis of this study has several limitations. First, we employed only CO2 observations in 

the inverse analysis, which does not allow us to distinguish biomass burnings from other terrestrial fluxes. To separate fire-645 

induced and other terrestrial fluxes, it would be helpful to incorporate CO observations simultaneously with CO2 observations 

into the inverse analysis; however, the availability of in situ CO observations (Novelli et al., 2003) is limited, especially for 

Equatorial Asia. A joint CO2–CO inversion is left for a future study. 

 The second limitation is the dependency of the inverse analysis results on the prior estimate. We found that our inverse 

calculations had a significant sensitivity to prior fire-emission data. The posterior fluxes were similar when GFED or GFAS 650 

data were used as the prior. However, when the prior fire emissions were excluded (i.e., C_NO), the posterior flux had much 

lower values, indicating that we cannot fully constrain the fluxes with CONTRAIL alone and that prior fire-emission data 

should be as accurate as possible. The relatively small sensitivity to the difference between GFED and GFAS was because the 

original GFED and GFAS data are comparable. Nevertheless, the well-constrained flux at the end of September in Sumatra 

(Fig. 11) tells us that we could obtain a sufficient constraint from CONTRAIL when the time and location of the observations 655 

coincide with the timing of airflow rich in emission signals. Such an airflow dependency could be reduced by making the 

observations denser in space and time. To this end, the CONTRAIL project continues its efforts to improve data coverage. 

Finally, model transport errors would be the third limitation. Figures 3 and 4 show that even after the inversion, the 

model could not sufficiently reproduce high mole fractions near the surface, suggesting some limitation of the model. 

Compared to the wind data obtained from the CONTRAIL aircraft, the speed and direction of winds over Singapore were well 660 

simulated in the model (not shown). Therefore, representative errors that include both model transport and fluxes could be one 

cause. A higher resolution model is desirable, and is left for a future study with advanced computational resources. 

Deleted: the 

Deleted: large 

Deleted: reduce chances of missing data665 



25 
 

In this study, we tried a regionally focused inversion using different flux parameter settings for Equatorial Asia and 

the rest of the world (Table 1), which gave a sufficient degree of freedom to fluxes in Equatorial Asia, while strongly 

constraining fluxes to the prior ones in the rest of the world. This inversion approach would be acceptable only when prior 

fluxes can produce comparable spatiotemporal variations of atmospheric CO2 with observations, which was confirmed using 

the previous inversion flux of Niwa et al. (2012). Furthermore, Niwa et al. (2012) found that CONTRAIL data could 670 

independently constrain the fluxes in Equatorial Asia itself, supporting the validity of separating fluxes in Equatorial Asia from 

those in the other regions. Nevertheless, the inversion flux used as the prior in this study was optimised for different years, 

which introduced a certain level of uncertainty. In future analysis, an effort for reducing uncertainties will be made by 

performing a global inverse analysis by combining ground-based stations and CONTRAIL data.  

In this inversion, we did not calculate the posterior errors, which could give implications of the estimated flux 675 

uncertainties. Instead, the spread of the sensitivity tests shows a reasonable range of conceivable flux estimates. In fact, an 

algorithm for estimating posterior errors was developed by Niwa and Fujii (2020) and it could be applicable to the inverse 

calculation. However, we left it for a future comprehensive inversion because the algorithm is computationally demanding, 

especially for the model resolution we used here.  

5. Conclusions 680 

In this study, an inverse system was developed to estimate high-spatiotemporal resolution fluxes in a focused area and 

incorporate CO as a proxy for combustion sources. We performed the inverse analysis for carbon fluxes in Equatorial Asia 

during the historic El Niño of 2015. 

In contrast to many studies that used aircraft data for evaluating inversion results as independent data (e.g., Chevallier 

et al. 2019), we extensively used the CONTRAIL aircraft data in the inverse analysis. Furthermore, with the help of NIES 685 

VOS observations, especially its CO data, we demonstrated the validity of our inverse analysis and the fact that the aircraft 

data could constrain flux estimates efficiently. It is essential for Equatorial Asia because there are insufficient ground-based 

observations in the region. 

We estimated the fire-induced carbon flux to be 273 Tg C for September–October. This number accounts for 75% of 

the annual fire emission and 45% of the annual net carbon flux in Equatorial Asia, demonstrating that fire emissions are a 690 

major driving force of the carbon flux in the region. Although the inversions have a certain degree of sensitivity to prior fire-

emission data, they coherently estimated smaller amounts than the prescribed biomass burning data. One cause could be that 

peatland fires were not as severe in 2015 as expected, as suggested by the model overestimation of the enhancement ratios 

ΔCO/ΔCO2 captured by the NIES VOS observation. Nevertheless, this study is compatible with previous studies because a 

significantly smaller amount of carbon was released in 2015 than in 1997, of which the El Niño intensity was comparable to 695 

that of 2015. This could be because the intensity of land-use change has decreased in recent decades (Kondo et al., 2018). 

Another possible underlying mechanism is the difference in precipitation patterns and amounts between 2015 and 1997 (Fanin 
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and van der Werf, 2017). However, further investigation is needed by combining process-based terrestrial biosphere models, 

biomass burning emission models and inverse estimates. 

Using an atmospheric climate model, Shiogama et al. (2020) projected that Equatorial Asia would experience stronger 

droughts than that of 2015 in a future warmer climate condition. To reduce fire-induced carbon emissions from such drought 710 

events, the chances of ignition must be reduced. The continuous monitoring of carbon emissions with high-precision 

atmospheric observations is indispensable for mitigation measures against fires. The continuation of the aircraft- and ship-

based observations used in this study will ensure the provision of such relevant information and, along with inverse analysis, 

reliable quantitative estimates of carbon emissions from Equatorial Asia. 
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Data Availability 

The CO2 mole fraction data of CONTRAIL (Machida et al., 2018) and NIES VOS used in this study are available from the 

Global Environmental Database (GED) of NIES (http://db.cger.nies.go.jp/portal/geds/atmosphericAndOceanicMonitoring). 

The CO observational data of NIES VOS are available on request to H. Nara. 
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