Articles | Volume 21, issue 9
https://doi.org/10.5194/acp-21-7395-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-7395-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of increasing stratospheric radiative damping on the quasi-biennial oscillation period
NASA Goddard Institute for Space Studies, New York, NY, USA
Center for Climate Systems Research, Columbia University, New York, NY, USA
Kevin DallaSanta
NASA Goddard Institute for Space Studies, New York, NY, USA
Universities Space Research Association, Columbia, MD, USA
Larissa Nazarenko
NASA Goddard Institute for Space Studies, New York, NY, USA
Center for Climate Systems Research, Columbia University, New York, NY, USA
Gavin A. Schmidt
NASA Goddard Institute for Space Studies, New York, NY, USA
Zhonghai Jin
NASA Goddard Institute for Space Studies, New York, NY, USA
Related authors
Tiehan Zhou, Kevin J. DallaSanta, Clara Orbe, David H. Rind, Jeffrey A. Jonas, Larissa Nazarenko, Gavin A. Schmidt, and Gary Russell
Atmos. Chem. Phys., 24, 509–532, https://doi.org/10.5194/acp-24-509-2024, https://doi.org/10.5194/acp-24-509-2024, 2024
Short summary
Short summary
The El Niño–Southern Oscillation (ENSO) tends to speed up and slow down the phase speed of the Quasi-Biennial Oscillation (QBO) during El Niño and La Niña, respectively. The ENSO modulation of the QBO does not show up in the climate models with parameterized but temporally constant gravity wave sources. We show that the GISS E2.2 models can capture the observed ENSO modulation of the QBO period with a horizontal resolution of 2° by 2.5° and its gravity wave sources parameterized interactively.
Gavin A. Schmidt, Kenneth D. Mankoff, Jonathan L. Bamber, Dustin Carroll, David M. Chandler, Violaine Coulon, Benjamin J. Davison, Matthew H. England, Paul R. Holland, Nicolas C. Jourdain, Qian Li, Juliana M. Marson, Pierre Mathiot, Clive R. McMahon, Twila A. Moon, Ruth Mottram, Sophie Nowicki, Anne Olivé Abelló, Andrew G. Pauling, Thomas Rackow, and Damien Ringeisen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1940, https://doi.org/10.5194/egusphere-2025-1940, 2025
Short summary
Short summary
The impact of increasing mass loss from the Greenland and Antarctic ice sheets has not so far been included in historical climate model simulations. This paper describes the protocols and data available for modeling groups to add this anomalous freshwater to their ocean modules to better represent the impacts of these fluxes on ocean circulation, sea ice, salinity and sea level.
Grégory V. Cesana, Olivia Pierpaoli, Matteo Ottaviani, Linh Vu, Zhonghai Jin, and Israel Silber
Atmos. Chem. Phys., 24, 7899–7909, https://doi.org/10.5194/acp-24-7899-2024, https://doi.org/10.5194/acp-24-7899-2024, 2024
Short summary
Short summary
Better characterizing the relationship between sea ice and clouds is key to understanding Arctic climate because clouds and sea ice affect surface radiation and modulate Arctic surface warming. Our results indicate that Arctic liquid clouds robustly increase in response to sea ice decrease. This increase has a cooling effect on the surface because more solar radiation is reflected back to space, and it should contribute to dampening future Arctic surface warming.
Tiehan Zhou, Kevin J. DallaSanta, Clara Orbe, David H. Rind, Jeffrey A. Jonas, Larissa Nazarenko, Gavin A. Schmidt, and Gary Russell
Atmos. Chem. Phys., 24, 509–532, https://doi.org/10.5194/acp-24-509-2024, https://doi.org/10.5194/acp-24-509-2024, 2024
Short summary
Short summary
The El Niño–Southern Oscillation (ENSO) tends to speed up and slow down the phase speed of the Quasi-Biennial Oscillation (QBO) during El Niño and La Niña, respectively. The ENSO modulation of the QBO does not show up in the climate models with parameterized but temporally constant gravity wave sources. We show that the GISS E2.2 models can capture the observed ENSO modulation of the QBO period with a horizontal resolution of 2° by 2.5° and its gravity wave sources parameterized interactively.
Kevin DallaSanta and Lorenzo M. Polvani
Atmos. Chem. Phys., 22, 8843–8862, https://doi.org/10.5194/acp-22-8843-2022, https://doi.org/10.5194/acp-22-8843-2022, 2022
Short summary
Short summary
Volcanic eruptions cool the earth by reducing the amount of sunlight reaching the surface. Paradoxically, it has been suggested that they may also warm the surface, but the evidence for this is scant. Here, we show that a small warming can be seen in a climate model for large-enough eruptions. However, even for eruptions much larger than those that have occurred in the past two millennia, post-eruption winters over Eurasia are indistinguishable from those occurring without a prior eruption.
Zhonghai Jin, Matteo Ottaviani, and Monika Sikand
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-106, https://doi.org/10.5194/tc-2022-106, 2022
Revised manuscript not accepted
Short summary
Short summary
A rigorous treatment of the sea ice medium has been incorporated in an advanced radiative transfer model. The inherent optical properties of brine pockets and air bubbles are parameterized as a function of the vertical profile of the sea ice physical properties (temperature, salinity and density). We test the model performance using available albedo and transmittance measurements collected during the ICESCAPE and the SHEBA field campaigns.
Daniel J. Lunt, Deepak Chandan, Alan M. Haywood, George M. Lunt, Jonathan C. Rougier, Ulrich Salzmann, Gavin A. Schmidt, and Paul J. Valdes
Geosci. Model Dev., 14, 4307–4317, https://doi.org/10.5194/gmd-14-4307-2021, https://doi.org/10.5194/gmd-14-4307-2021, 2021
Short summary
Short summary
Often in science we carry out experiments with computers in which several factors are explored, for example, in the field of climate science, how the factors of greenhouse gases, ice, and vegetation affect temperature. We can explore the relative importance of these factors by
swapping in and outdifferent values of these factors, and can also carry out experiments with many different combinations of these factors. This paper discusses how best to analyse the results from such experiments.
Cited articles
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics,
Academic Press, 489 pp., 1987.
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H.,
Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T.,
Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi,
M.: The Quasi-biennial oscillation, Rev. Geophys., 39, 179–229,
https://doi.org/10.1029/1999RG000073, 2001.
Bauer, S. E., Tsigaridis, K., Faluvegi, G., Kelley, M., Lo, K. K., Miller,
R. L., Nazarenko, L., Schmidt, G. A., and Wu, J.: Historical (1850–2014)
Aerosol Evolution and Role on Climate Forcing Using the GISS ModelE2.1
Contribution to CMIP6, J. Adv. Model. Earth Sy., 12, e2019MS001978,
https://doi.org/10.1029/2019ms001978, 2020.
Berk, A., Anderson, G. P., Acharya, P. K., and Shettle, E. P.: MODTRAN5 version 2 user's manual, Spectral Sciences Inc., Burlington, Massachusetts, USA and Air Force Geophysics Laboratory, Hanscom Air Force Base, Massachusetts, USA, 2008.
Bushell, A. C., Jackson, D. R., Butchart, N., Hardiman, S. C., Hinton, T.
J., Osprey, S. M., and Gray, L. J.: Sensitivity of GCM tropical middle
atmosphere variability and climate to ozone and parameterized gravity wave
changes, J. Geophys. Res.-Atmos., 115, D15101, https://doi.org/10.1029/2009JD013340, 2010.
Butchart, N.: The Brewer-Dobson circulation, Rev. Geophys., 52,
157–184, https://doi.org/10.1002/2013RG000448, 2014.
Butchart, N., Scaife, A. A., Bourqui, M., Grandpré, J., Hare, S. H.,
Kettleborough, J., Langematz, U., Manzini, E., Sassi, F., Shibata, K.,
Shindell, D., and Sigmond, M.: Simulations of anthropogenic change in the
strength of the Brewer–Dobson circulation, Clim. Dynam., 27, 727–741,
https://doi.org/10.1007/s00382-006-0162-4, 2006.
Butchart, N., Anstey, J. A., Hamilton, K., Osprey, S., McLandress, C., Bushell, A. C., Kawatani, Y., Kim, Y.-H., Lott, F., Scinocca, J., Stockdale, T. N., Andrews, M., Bellprat, O., Braesicke, P., Cagnazzo, C., Chen, C.-C., Chun, H.-Y., Dobrynin, M., Garcia, R. R., Garcia-Serrano, J., Gray, L. J., Holt, L., Kerzenmacher, T., Naoe, H., Pohlmann, H., Richter, J. H., Scaife, A. A., Schenzinger, V., Serva, F., Versick, S., Watanabe, S., Yoshida, K., and Yukimoto, S.: Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi), Geosci. Model Dev., 11, 1009–1032, https://doi.org/10.5194/gmd-11-1009-2018, 2018.
Butchart, N., Anstey, J. A., Kawatani, Y., Osprey, S. M., Richter, J. H.,
and Wu, T.: QBO changes in CMIP6 climate projections, Geophys. Res. Lett., 47, e2019GL086903, https://doi.org/10.1029/2019GL086903, 2020.
Camargo, S. J. and Sobel, A. H.: Revisiting the influence of the
quasi-biennial oscillation on tropical cyclone activity, J. Climate, 23, 5810–5825, https://doi.org/10.1175/2010JCLI3575.1, 2010.
Cionni, I., Eyring, V., Lamarque, J. F., Randel, W. J., Stevenson, D. S., Wu, F., Bodeker, G. E., Shepherd, T. G., Shindell, D. T., and Waugh, D. W.: Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing, Atmos. Chem. Phys., 11, 11267–11292, https://doi.org/10.5194/acp-11-11267-2011, 2011.
Collimore, C. C., Martin, D. W., Hitchman, M. H., Huesmann, A., and Waliser,
D. E.: On the relationship between the QBO and tropical deep convection, J.
Climate, 16, 2552–2568,
https://doi.org/10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2, 2003.
Cordero, E. C. and Nathan, T. R.: The influence of wave- and zonal-mean
ozone feedbacks on the quasi-biennial oscillation, J. Atmos. Sci., 57,
3426–3442, https://doi.org/10.1175/1520-0469(2000)057<3426:TIOWAZ>2.0.CO;2, 2000.
Cordero, E. C., Nathan, T. R., and Echols, R. S.: An analytical study of
ozone feedbacks on Kelvin and Rossby–gravity waves: Effects on the QBO, J.
Atmos. Sci., 55, 1051–1062,
https://doi.org/10.1175/1520-0469(1998)055<1051:AASOOF>2.0.CO;2, 1998.
DallaSanta, K., Orbe, C., Rind, D., Nazarenko, L., and Jonas, J.: Dynamical
and trace gas responses of the Quasi-Biennial Oscillation to increased
CO2, J. Geophys. Res.-Atmos., 126, e2020JD034151,
https://doi.org/10.1029/2020JD034151, 2021.
Dickinson, R. E.: Method of parameterization for infrared cooling between
altitudes of 30 and 70 km, J. Geophys. Res., 78, 4451–4457,
https://doi.org/10.1029/JC078i021p04451, 1973.
Dunkerton, T. J.: The role of gravity waves in the quasi-biennial
oscillation, J. Geophys. Res.-Atmos., 102, 26053–26076,
https://doi.org/10.1029/96JD02999, 1997.
Ebdon, R. A.: Notes on the wind flow at 50 mb in tropical and subtropical
regions in January 1957 and in 1958, Q. J. Roy. Meteorol. Soc., 86, 540–542,
https://doi.org/10.1002/qj.49708637011, 1960.
Eichinger, R. and Šácha, P.: Overestimated acceleration of the advective Brewer-Dobson circulation due to stratospheric cooling, Q. J. Roy. Meteorol. Soc., 146, 3850–3864, https://doi.org/10.1002/qj.3876, 2020.
Fels, S. B.: A parameterization of scale-dependent radiative damping rates
in the middle atmosphere, J. Atmos. Sci., 39, 1141–1152,
https://doi.org/10.1175/1520-0469(1982)039<1141:APOSDR>2.0.CO;2, 1982.
Fels, S. B.: Radiative-dynamical interactions in the middle atmosphere,
Adv. Geophys., 28, 277–300, https://doi.org/10.1016/S0065-2687(08)60227-7, 1985.
Garfinkel, C. I. and Hartmann, D. L.: The influence of the quasi-biennial
oscillation on the troposphere in winter in a hierarchy of models, Part I:
Simplified dry GCMs, J. Atmos. Sci., 68, 1273–1289,
https://doi.org/10.1175/2011JAS3665.1, 2011a.
Garfinkel, C. I. and Hartmann, D. L.: The influence of the quasi-biennial
oscillation on the troposphere in winter in a hierarchy of models, Part II:
Perpetual winter WACCM runs, J. Atmos. Sci., 68, 2026–2041,
https://doi.org/10.1175/2011JAS3702.1, 2011b.
Geller, M. A., Zhou, T., Shindell, D., Ruedy, R., Aleinov, I., Nazarenko,
L., Tausnev, N. L., Kelley, M., Sun, S., Cheng, Y., Field, R. D., and
Faluvegi, G.: Modeling the QBO-improvements resulting from higher-model
vertical resolution, J. Adv. Model. Earth Sy., 8, 1092–1105,
https://doi.org/10.1002/2016MS000699, 2016a.
Geller, M. A., Zhou, T., and Yuan, W.: The QBO, gravity waves forced by
tropical convection, and ENSO, J. Geophys. Res.-Atmos., 121, 8886–8895,
https://doi.org/10.1002/2015JD024125, 2016b.
Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest, E., and Takahashi, K.: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century, Geosci. Model Dev., 12, 1443–1475, https://doi.org/10.5194/gmd-12-1443-2019, 2019.
Giorgetta, M. A. and Doege, M. C.: Sensitivity of the Quasi-Biennial
Oscillation to CO2 doubling, Geophys. Res. Lett., 32, L08701,
https://doi.org/10.1029/2004GL021971, 2005.
Giorgetta, M. A., Bengtson, L., and Arpe, K.: An investigation of QBO
signals in the east Asian and Indian monsoon in GCM experiments, Clim. Dynam., 15, 435–450, https://doi.org/10.1007/s003820050292, 1999.
Giorgetta, M. A., Manzini, E., and Roeckner, E.: Forcing of the
quasi-biennial oscillation from a broad spectrum of atmospheric waves, Geophys. Res. Lett., 29, 1245, https://doi.org/10.1029/2002GL014756, 2002.
Giorgetta, M. A., Manzini, E., Roeckner, E., Esch, M., and Bengtsson, L.: Climatology and forcing of the quasi-biennial oscillation in the MAECHEM5 model, J. Climate, 19, 3882–3901, https://doi.org/10.1175/JCLI3830.1, 2006.
Gray, W. M.: Atlantic seasonal hurricane frequency, Part I: El Niño and
30 mb quasi-biennial oscillation influences, Mon. Weather Rev., 112,
1649–1688, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2, 1984.
Gray, W. M., Sheaffer, J. D., and Knaff, J.: Influence of the Stratospheric QBO on ENSO Variability, J. Meteorol. Soc. Jpn., 70, 975–995, https://doi.org/10.2151/jmsj1965.70.5_975, 1992.
Hamilton, K.: The vertical structure of the quasi-biennial oscillation:
Observations and theory, Atmos. Ocean, 19, 236–250,
https://doi.org/10.1080/07055900.1981.9649111, 1981.
Hansen, F., Matthes, K., and Wahl, S.: Tropospheric QBO-ENSO interactions
and differences between the Atlantic and Pacific, J. Climate, 29, 1353–1368, https://doi.org/10.1175/JCLI-D-15-0164.1, 2016.
Hasebe, F.: Quasi-biennial oscillations of ozone and diabatic circulation in
the equatorial stratosphere, J. Atmos. Sci., 51, 729–745,
https://doi.org/10.1175/1520-0469(1994)051<0729:QBOOOA>2.0.CO;2, 1994.
Hitchman, M. H. and Huesmann, A. S.: Seasonal influence of the quasi-biennial oscillation on stratospheric jets and Rossby wave breaking, J. Atmos. Sci., 66, 935–946, https://doi.org/10.1175/2008JAS2631.1, 2009.
Ho, C.-H., Kim, H.-S., Jeong, J.-H., and Son, S.-W.: Influence of stratospheric quasi-biennial oscillation on tropical cyclone tracks in the
western North Pacific, Geophys. Res. Lett., 36, L06702,
https://doi.org/10.1029/2009GL037163, 2009.
Holt, L., Lott, F., Garcia, R., Kiladis, G. N., Anstey, J. A., Braesicke, P.,
Bushell, A. C., Butchart, N., Cagnazzo, C., Chen, C.-C., Chun, H.-Y.,
Hamilton, K., Kawatani, Y., Kerzenmacher, T., Kim, Y.-H., McLandress, C.,
Naoe, H., Osprey, S., Richter, J. H., Scinocca, J., Serva, F., Versick, S.,
Watanabe, S., Yoshida, K., and Yukimoto, S.: An evaluation of tropical waves
and wave forcing of the QBO in the QBOi models, Q. J. Roy. Meteorol. Soc.,
https://doi.org/10.1002/qj.3827, in press, 2020.
Holton, J. R. and Lindzen, R. S.: An updated theory for the quasi-biennial
cycle of the tropical stratosphere, J. Atmos. Sci., 29, 1076–1080,
https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2, 1972.
Holton, J. R. and Tan, H.: The Influence of the equatorial quasi-biennial
oscillation on the global circulation at 50 mb, J. Atmos. Sci., 37, 2200–2208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2, 1980.
Huang, B. H., Hu, Z. Z., Kinter, J. L., Wu, Z. H., and Kumar, A.: Connection
of stratospheric QBO with global atmospheric general circulation and tropical SST, Part I: Methodology and composite life cycle, Clim. Dynam., 38, 1–23, https://doi.org/10.1007/s00382-011-1250-7, 2012.
Jin, Z., Zhang, Y.-C., Del Genio, A., Schmidt, G., and Kelley, M.: Cloud
scattering impact on thermal radiative transfer and global longwave radiation, J. Quant. Spectrosc. Ra., 239, 106669, https://doi.org/10.1016/j.jqsrt.2019.106669, 2019.
Jonsson, A., de Grandpre, J., Fomichev, V., McConnell, J., and Beagley, S.:
Doubled CO2-induced cooling in the middle atmosphere: Photochemical analysis of the ozone radiative feedback, J. Geophys. Res.-Atmos., 109, D24103, https://doi.org/10.1029/2004JD005093, 2004.
Kawatani, Y. and Hamilton, K.: Weakened stratospheric Quasi-Biennial
Oscillation driven by increased tropical mean upwelling, Nature, 497, 478–481, https://doi.org/10.1038/nature12140, 2013.
Kawatani, Y., Takahashi, M., Sato, K., Alexander, S. P., and Tsuda, T.:
Global distribution of atmospheric waves in the equatorial upper troposphere
and lower stratosphere: AGCM simulation of sources and propagation, J.
Geophys. Res.-Atmos., 114, D01102, https://doi.org/10.1029/2008JD010374, 2009.
Kawatani, Y., Watanabe, S., Sato, K., Dunkerton, T. J., Miyahara, S., and
Takahashi, M.: The roles of equatorial trapped waves and internal
inertia-gravity waves in driving the Quasi-Biennial oscillation, Part I:
Zonal mean wave forcing, J. Atmos. Sci., 67, 963–980, https://doi.org/10.1175/2009JAS3222.1, 2010.
Kawatani, Y., Hamilton, K., and Watanabe, S.: The quasi-biennial oscillation
in a double CO2 climate, J. Atmos. Sci., 68, 265–283,
https://doi.org/10.1175/2010JAS3623.1, 2011.
Kawatani, Y., Lee, J. N., and Hamilton, K.: Interannual variations of
stratospheric water vapor in MLS observations and climate model
simulations, J. Atmos. Sci., 71, 4072–4085, https://doi.org/10.1175/JAS-D-14-0164.1, 2014.
Kawatani, Y., Hamilton, K., Sato, K., Dunkerton, T. J., Watanabe, S., and
Kikuchi, K.: ENSO Modulation of the QBO: Results from MIROC Models with and
without Nonorographic Gravity Wave Parameterization, J. Atmos. Sci., 76,
3893–3917, https://doi.org/10.1175/JAS-D-19-0163.1, 2019.
Keeble, J., Hassler, B., Banerjee, A., Checa-Garcia, R., Chiodo, G., Davis, S., Eyring, V., Griffiths, P. T., Morgenstern, O., Nowack, P., Zeng, G., Zhang, J., Bodeker, G., Burrows, S., Cameron-Smith, P., Cugnet, D., Danek, C., Deushi, M., Horowitz, L. W., Kubin, A., Li, L., Lohmann, G., Michou, M., Mills, M. J., Nabat, P., Olivié, D., Park, S., Seland, Ø., Stoll, J., Wieners, K.-H., and Wu, T.: Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100, Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, 2021.
Labitzke, K.: On the interannual variability of the middle stratosphere
during the northern winters, J. Meteorol. Soc. Jpn., 80, 963–971,
https://doi.org/10.2151/jmsj1965.60.1_124, 1982.
Lait, L. R., Schoeberl, M. R., and Newman, P. A.: Quasi-biennial modulation
of the Antarctic ozone depletion, J. Geophys. Res.-Atmos., 94, 11559–11571,
https://doi.org/10.1029/JD094iD09p11559, 1989.
Li, F., Austin, J., and Wilson, R. J.: The strength of the Brewer-Dobson
circulation in a changing climate: Coupled chemistry-climate model simulations, J. Climate, 21, 40–57, https://doi.org/10.1175/2007JCLI1663.1, 2008.
Liess, S. and Geller, M. A.: On the relationship between QBO and
distribution of tropical deep convection, J. Geophys. Res.-Atmos., 117, D03108, https://doi.org/10.1029/2011JD016317, 2012.
Lindzen, R. S.: Equatorial planetary waves in shear: Part I, J. Atmos. Sci.,
28, 609–622, https://doi.org/10.1175/1520-0469(1971)028<0609:EPWISP>2.0.CO;2, 1971.
Lindzen, R. S. and Holton, J. R.: A theory of the quasi-biennial
oscillation, J. Atmos. Sci., 25, 1095–1107,
https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2, 1968.
Marshall, A. G. and Scaife, A. A.: Impact of the QBO on surface winter
climate, J. Geophys. Res.-Atmos., 114, D18110, https://doi.org/10.1029/2009JD011737, 2009.
Match, A. and Fueglistaler, S.: The buffer zone of the quasi-biennial
oscillation, J. Atmos. Sci., 76, 3553–3567, https://doi.org/10.1175/JAS-D-19-0151.1, 2019.
Match, A. and Fueglistaler, S.: Mean-flow damping forms the buffer zone of
the quasi-biennial oscillation: 1D theory, J. Atmos. Sci., 77, 1955–1967,
https://doi.org/10.1175/JAS-D-19-0293.1, 2020.
Matsuno, T.: Numerical integrations of primitive equations by use of a
simulated backward difference method, J. Meteorol. Soc. Jpn., 44, 76–84,
https://doi.org/10.2151/jmsj1965.44.1_76, 1966.
Orbe, C., Rind, D., Jonas, J., Nazarenko, L., Faluvegi, G., Murray, L. T.,
Shindell, D. T., Tsigaridis, K., Zhou, T., Kelley, M., and Schmidt, G.: GISS
Model E2.2: A climate model optimized for the middle atmosphere, Part 2:
Validation of large-scale transport and evaluation of climate response, J. Geophys. Res.-Atmos., 125, e2020JD033151, https://doi.org/10.1029/2020JD033151, 2020.
Pawson, S., Harwood, R. S., and Haigh, J. D.: A study of the radiative
dissipation of planetary waves using satellite data, J. Atmos. Sci., 49, 1304–1317, https://doi.org/10.1175/1520-0469(1992)049<1304:ASOTRD>2.0.CO;2, 1992.
Plumb, R. A.: The interaction of two internal waves with the mean flow:
Implications for the theory of the quasi-biennial oscillation, J. Atmos.
Sci., 34, 1847–1858, https://doi.org/10.1175/1520-0469(1977)034<1847:TIOTIW>2.0.CO;2, 1977.
Reed, R. J., Campbell, W. J., Rasmussen, L. A., and Rogers, D. G.: Evidence
of a downward-propagating, annual wind reversal in the equatorial stratosphere, J. Geophys. Res., 66, 813–818, https://doi.org/10.1029/JZ066i003p00813, 1961.
Richter, J. H., Anstey, J. A., Butchart, N., Kawatani, Y., Meehl, G. A., Osprey, S., and Simpson, I. R.: Progress in simulating the quasi-biennial oscillation in CMIP models, J. Geophys. Res.-Atmos., 125, e2019JD032362, https://doi.org/10.1029/2019JD032362, 2020a.
Richter, J. H., Butchart, N., Kawatani, Y., Bushell, A. C., Holt, L., Serva,
F., Anstey, J., Simpson, I. R., Osprey, S., Hamilton, K., Braesicke, P.,
Cagnazzo, C., Chen, C.-C., Garcia, R. R., Gray, L. J., Kerzenmacher, T.,
Lott, F., McLandress, C., Naoe, H., Scinocca, J., Stockdale, T. N., Versick,
S., Watanabe, S., Yoshida, K., and Yukimoto, S.: Response of the Quasi-Biennial Oscillation to a warming climate in global climate models, Q. J. Roy. Meteorol. Soc., https://doi.org/10.1002/qj.3749, in press, 2020b.
Rind, D., Jonas, J., Balachandran, N., Schmidt, G., and Lean, J.: The QBO in
two GISS global climate models: 1. Generation of the QBO, J. Geophys. Res.-Atmos., 119, 8798–8824, https://doi.org/10.1002/2014JD021678, 2014.
Rind, D., Orbe, C., Jonas, J., Nazarenko, L., Zhou, T., Kelley, M., Lacis,
A., Shindell, D., Faluvegi, G., Russell, G., Bauer, M., Schmidt, G., Romanou, A., and Tausnev, N.: GISS Model E2.2: A climate model optimized for the middle atmosphere – Model structure, climatology, variability and climate sensitivity, J. Geophys. Res.-Atmos., 125, e2019JD032204, https://doi.org/10.1029/2019JD032204, 2020.
Saravanan, R.: A multiwave model of the quasi-biennial oscillation, J. Atmos. Sci., 47, 2465–2474, https://doi.org/10.1175/1520-0469(1990)047<2465:AMMOTQ>2.0.CO;2, 1990.
Scaife, A. A., Butchart, N., Warner, C. D., Stainforth, D., Norton, W., and
Austin, J.: Realistic quasi-biennial oscillations in a simulation of the
global climate, Geophys. Res. Lett., 27, 3481–3484, https://doi.org/10.1029/2000GL011625, 2000.
Schirber, S., Manzini, E., Krismer, T., and Giorgetta, M.: The Quasi-Biennial
Oscillation in a warmer climate: sensitivity to different gravity wave
parameterizations, Clim. Dynam., 45, 825–836, https://doi.org/10.1007/s00382-014-2314-2, 2015.
Shibata, K. and Deushi, M.: Radiative effect of ozone on the quasi- biennial oscillation in the equatorial stratosphere, Geophys. Res. Lett., 32, L24802, https://doi.org/10.1029/2005GL023433, 2005.
Trepte, C. R. and Hitchman, M. H.: Tropical stratospheric circulation
deduced from satellite aerosol data, Nature, 355, 626–628,
https://doi.org/10.1038/355626a0, 1992.
Watanabe, S. and Kawatani, Y.: Sensitivity of the QBO to mean tropical
upwelling under a changing climate simulated with an Earth System Model, J. Meteorol. Soc. Jpn., 90, 351–360, https://doi.org/10.2151/jmsj.2012-A20, 2012.
Yoo, C. and Son, S.-W.: Modulation of the boreal wintertime Madden-Julian
oscillation by the stratospheric quasi-biennial oscillation, Geophys. Res. Lett., 43, 1392–1398, https://doi.org/10.1002/2016GL067762, 2016.
Zawodny, J. M. and McCormick, M. P.: Stratospheric Aerosol and Gas
Experiment II measurements of the quasi-biennial oscilla- tions in ozone and
nitrogen dioxide, J. Geophys. Res.-Atmos., 96, 9371–9377,
https://doi.org/10.1029/91JD00517, 1991.
Short summary
Stratospheric radiative damping increases with rising CO2. Sensitivity experiments using the one-dimensional mechanistic models of the quasi-biennial oscillation (QBO) indicate a shortening of the simulated QBO period due to the enhancing of the radiative damping. This result suggests that increasing radiative damping may play a role in determining the QBO period in a warming climate along with wave momentum flux entering the stratosphere and tropical vertical residual velocity.
Stratospheric radiative damping increases with rising CO2. Sensitivity experiments using the...
Altmetrics
Final-revised paper
Preprint