Articles | Volume 21, issue 7
https://doi.org/10.5194/acp-21-5635-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-5635-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Where there is smoke there is mercury: Assessing boreal forest fire mercury emissions using aircraft and highlighting uncertainties associated with upscaling emissions estimates
David S. McLagan
Air Quality Research Division (ARQD), Environment and Climate Change
Canada, 4905 Dufferin St, North York, ON M3H 5T4, Canada
Dept. Environmental Geochemistry, Institute for Geoecology, Technical
University of Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
Geoff W. Stupple
Air Quality Research Division (ARQD), Environment and Climate Change
Canada, 4905 Dufferin St, North York, ON M3H 5T4, Canada
Andrea Darlington
Air Quality Research Division (ARQD), Environment and Climate Change
Canada, 4905 Dufferin St, North York, ON M3H 5T4, Canada
Katherine Hayden
Air Quality Research Division (ARQD), Environment and Climate Change
Canada, 4905 Dufferin St, North York, ON M3H 5T4, Canada
Alexandra Steffen
CORRESPONDING AUTHOR
Air Quality Research Division (ARQD), Environment and Climate Change
Canada, 4905 Dufferin St, North York, ON M3H 5T4, Canada
Related authors
David S. McLagan, Excellent O. Eboigbe, and Rachel J. Strickman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3847, https://doi.org/10.5194/egusphere-2025-3847, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
ASGM is rapidly expanding and Hg-use in the sector impacts agricultural system surrounding these spatially distributed activities. Contamination of crops from ASGM-derived Hg occurs via both uptake from both air and soil/water. In addition to risks to human consumers, Hg in staple crops can also be passed along to livestock/poultry further conflating risks. Research in this area requires interdisciplinary, collaborative, and adaptable approaches to improve our comprehension of these impacts.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Excellent O. Eboigbe, Nimelan Veerasamy, Abiodun M. Odukoya, Nnamdi C. Anene, Jeroen E. Sonke, Sayuri Sakisaka Méndez, and David S. McLagan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1402, https://doi.org/10.5194/egusphere-2025-1402, 2025
Short summary
Short summary
Air, soil, and three common staple crops were assess at an ASGM processing site and Hg contamination observed at a farm ≈500 m from the processing site. Of the crop tissues examined, foliage had the highest concentrations. Mercury stable isotopes indicate uptake of mercury from the air to the foliage as is the dominant uptake pathway. Using typical dietary data for Nigerians, Hg intake from these crops were below reference dose levels and generally safe for consumption.
David S. McLagan, Carina Esser, Lorenz Schwab, Jan G. Wiederhold, Jan-Helge Richard, and Harald Biester
SOIL, 10, 77–92, https://doi.org/10.5194/soil-10-77-2024, https://doi.org/10.5194/soil-10-77-2024, 2024
Short summary
Short summary
Sorption of mercury in soils, aquifer materials, and sediments is primarily linked to organic matter. Using column experiments, mercury concentration, speciation, and stable isotope analyses, we show that large quantities of mercury in soil water and groundwater can be sorbed to inorganic minerals; sorption to the solid phase favours lighter isotopes. Data provide important insights on the transport and fate of mercury in soil–groundwater systems and particularly in low-organic-matter systems.
David S. McLagan, Harald Biester, Tomas Navrátil, Stephan M. Kraemer, and Lorenz Schwab
Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022, https://doi.org/10.5194/bg-19-4415-2022, 2022
Short summary
Short summary
Spruce and larch trees are effective archiving species for historical atmospheric mercury using growth rings of bole wood. Mercury stable isotope analysis proved an effective tool to characterise industrial mercury signals and assess mercury uptake pathways (leaf uptake for both wood and bark) and mercury cycling within the trees. These data detail important information for understanding the mercury biogeochemical cycle particularly in forest systems.
David S. McLagan, Excellent O. Eboigbe, and Rachel J. Strickman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3847, https://doi.org/10.5194/egusphere-2025-3847, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
ASGM is rapidly expanding and Hg-use in the sector impacts agricultural system surrounding these spatially distributed activities. Contamination of crops from ASGM-derived Hg occurs via both uptake from both air and soil/water. In addition to risks to human consumers, Hg in staple crops can also be passed along to livestock/poultry further conflating risks. Research in this area requires interdisciplinary, collaborative, and adaptable approaches to improve our comprehension of these impacts.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Excellent O. Eboigbe, Nimelan Veerasamy, Abiodun M. Odukoya, Nnamdi C. Anene, Jeroen E. Sonke, Sayuri Sakisaka Méndez, and David S. McLagan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1402, https://doi.org/10.5194/egusphere-2025-1402, 2025
Short summary
Short summary
Air, soil, and three common staple crops were assess at an ASGM processing site and Hg contamination observed at a farm ≈500 m from the processing site. Of the crop tissues examined, foliage had the highest concentrations. Mercury stable isotopes indicate uptake of mercury from the air to the foliage as is the dominant uptake pathway. Using typical dietary data for Nigerians, Hg intake from these crops were below reference dose levels and generally safe for consumption.
David S. McLagan, Carina Esser, Lorenz Schwab, Jan G. Wiederhold, Jan-Helge Richard, and Harald Biester
SOIL, 10, 77–92, https://doi.org/10.5194/soil-10-77-2024, https://doi.org/10.5194/soil-10-77-2024, 2024
Short summary
Short summary
Sorption of mercury in soils, aquifer materials, and sediments is primarily linked to organic matter. Using column experiments, mercury concentration, speciation, and stable isotope analyses, we show that large quantities of mercury in soil water and groundwater can be sorbed to inorganic minerals; sorption to the solid phase favours lighter isotopes. Data provide important insights on the transport and fate of mercury in soil–groundwater systems and particularly in low-organic-matter systems.
David S. McLagan, Harald Biester, Tomas Navrátil, Stephan M. Kraemer, and Lorenz Schwab
Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022, https://doi.org/10.5194/bg-19-4415-2022, 2022
Short summary
Short summary
Spruce and larch trees are effective archiving species for historical atmospheric mercury using growth rings of bole wood. Mercury stable isotope analysis proved an effective tool to characterise industrial mercury signals and assess mercury uptake pathways (leaf uptake for both wood and bark) and mercury cycling within the trees. These data detail important information for understanding the mercury biogeochemical cycle particularly in forest systems.
Debora Griffin, Chris A. McLinden, Enrico Dammers, Cristen Adams, Chelsea E. Stockwell, Carsten Warneke, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Kyle J. Zarzana, Jake P. Rowe, Rainer Volkamer, Christoph Knote, Natalie Kille, Theodore K. Koenig, Christopher F. Lee, Drew Rollins, Pamela S. Rickly, Jack Chen, Lukas Fehr, Adam Bourassa, Doug Degenstein, Katherine Hayden, Cristian Mihele, Sumi N. Wren, John Liggio, Ayodeji Akingunola, and Paul Makar
Atmos. Meas. Tech., 14, 7929–7957, https://doi.org/10.5194/amt-14-7929-2021, https://doi.org/10.5194/amt-14-7929-2021, 2021
Short summary
Short summary
Satellite-derived NOx emissions from biomass burning are estimated with TROPOMI observations. Two common emission estimation methods are applied, and sensitivity tests with model output were performed to determine the accuracy of these methods. The effect of smoke aerosols on TROPOMI NO2 columns is estimated and compared to aircraft observations from four different aircraft campaigns measuring biomass burning plumes in 2018 and 2019 in North America.
Sepehr Fathi, Mark Gordon, Paul A. Makar, Ayodeji Akingunola, Andrea Darlington, John Liggio, Katherine Hayden, and Shao-Meng Li
Atmos. Chem. Phys., 21, 15461–15491, https://doi.org/10.5194/acp-21-15461-2021, https://doi.org/10.5194/acp-21-15461-2021, 2021
Short summary
Short summary
We have investigated the accuracy of aircraft-based mass balance methodologies through computer model simulations of the atmosphere and air quality at a regional high-resolution scale. We have defined new quantitative metrics to reduce emission retrieval uncertainty by evaluating top-down mass balance estimates against the known simulated meteorology and input emissions. We also recommend methodologies and flight strategies for improved retrievals in future aircraft-based studies.
Ashu Dastoor, Andrei Ryjkov, Gregor Kos, Junhua Zhang, Jane Kirk, Matthew Parsons, and Alexandra Steffen
Atmos. Chem. Phys., 21, 12783–12807, https://doi.org/10.5194/acp-21-12783-2021, https://doi.org/10.5194/acp-21-12783-2021, 2021
Short summary
Short summary
An assessment of mercury levels in air and deposition in the Athabasca oil sands region (AOSR) in Northern Alberta, Canada, was conducted to investigate the contribution of Hg emitted from oil sands activities to the surrounding landscape using a 3D process-based Hg model in 2012–2015. Oil sands Hg emissions are found to be important sources of Hg contamination to the local landscape in proximity to the processing activities, particularly in wintertime.
Konstantin Baibakov, Samuel LeBlanc, Keyvan Ranjbar, Norman T. O'Neill, Mengistu Wolde, Jens Redemann, Kristina Pistone, Shao-Meng Li, John Liggio, Katherine Hayden, Tak W. Chan, Michael J. Wheeler, Leonid Nichman, Connor Flynn, and Roy Johnson
Atmos. Chem. Phys., 21, 10671–10687, https://doi.org/10.5194/acp-21-10671-2021, https://doi.org/10.5194/acp-21-10671-2021, 2021
Short summary
Short summary
We find that the airborne measurements of the vertical extinction due to aerosols (aerosol optical depth, AOD) obtained in the Athabasca Oil Sands Region (AOSR) can significantly exceed ground-based values. This can have an effect on estimating the AOSR radiative impact and is relevant to satellite validation based on ground-based measurements. We also show that the AOD can marginally increase as the plumes are being transported away from the source and the new particles are being formed.
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys., 21, 8377–8392, https://doi.org/10.5194/acp-21-8377-2021, https://doi.org/10.5194/acp-21-8377-2021, 2021
Short summary
Short summary
We developed a method using aircraft measurements to determine lifetimes with respect to dry deposition for oxidized sulfur and nitrogen compounds over the boreal forest in Alberta, Canada. Atmospheric lifetimes were significantly shorter than derived from chemical transport models with differences related to modelled dry deposition velocities. The shorter lifetimes suggest models need to reassess dry deposition treatment and predictions of sulfur and nitrogen in the atmosphere and ecosystems.
Attilio Naccarato, Antonella Tassone, Maria Martino, Sacha Moretti, Antonella Macagnano, Emiliano Zampetti, Paolo Papa, Joshua Avossa, Nicola Pirrone, Michelle Nerentorp, John Munthe, Ingvar Wängberg, Geoff W. Stupple, Carl P. J. Mitchell, Adam R. Martin, Alexandra Steffen, Diana Babi, Eric M. Prestbo, Francesca Sprovieri, and Frank Wania
Atmos. Meas. Tech., 14, 3657–3672, https://doi.org/10.5194/amt-14-3657-2021, https://doi.org/10.5194/amt-14-3657-2021, 2021
Short summary
Short summary
Mercury monitoring in support of the Minamata Convention requires effective and reliable analytical tools. Passive sampling is a promising approach for creating a sustainable long-term network for atmospheric mercury with improved spatial resolution and global coverage. In this study the analytical performance of three passive air samplers (CNR-PAS, IVL-PAS, and MerPAS) was assessed over extended deployment periods and the accuracy of concentrations was judged by comparison with active sampling.
Jenna C. Ditto, Megan He, Tori N. Hass-Mitchell, Samar G. Moussa, Katherine Hayden, Shao-Meng Li, John Liggio, Amy Leithead, Patrick Lee, Michael J. Wheeler, Jeremy J. B. Wentzell, and Drew R. Gentner
Atmos. Chem. Phys., 21, 255–267, https://doi.org/10.5194/acp-21-255-2021, https://doi.org/10.5194/acp-21-255-2021, 2021
Short summary
Short summary
Forest fires are an important source of reactive organic gases and aerosols to the atmosphere. We analyzed organic aerosols collected from an aircraft above a boreal forest fire and reported an increasing contribution from compounds containing oxygen, nitrogen, and sulfur as the plume aged, with sulfide and ring-bound nitrogen functionality. Our results demonstrated chemistry that is important in biomass burning but also in urban/developing regions with high local nitrogen and sulfur emissions.
Cited articles
Amiro, B. D., Todd, J. B., Wotton, B. M., Logan, K. A., Flannigan, M. D., Stocks, B. J., Mason, J. A., Martell, D. L., and Hirsch, K. G.: Direct carbon emissions from Canadian forest fires, 1959—1999, Can. J. For. Res., 31, 512–525, https://doi.org/10.1139/cjfr-31-3-512, 2001.
Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523–8546, https://doi.org/10.5194/acp-19-8523-2019, 2019.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from
biomass burning, Global Biogeochem. Cy., 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001.
Ariya, P. A., Amyot, M., Dastoor, A., Deeds, D., Feinberg, A., Kos, G.,
Poulain, A., Ryjkov, A., Semeniuk, K., Subir, M., and Toyota, K.: Mercury
physicochemical and biogeochemical transformation in the atmosphere and at
atmospheric interfaces: A review and future directions, Chem. Rev., 115,
3760–3802, https://doi.org/10.1021/cr500667e, 2015.
Artaxo, P., de Campos, R. C., Fernandes, E. T., Martins, J. V., Xiao, Z.,
Lindqvist, O., Fernández-Jiménez, M. T., and Maenhaut, W.: Large scale
mercury and trace element measurements in the Amazon basin, Atmos.
Environ., 34, 4085–4096, https://doi.org/10.1016/S1352-2310(00)00106-0, 2000.
Baray, S., Darlington, A., Gordon, M., Hayden, K. L., Leithead, A., Li, S.-M., Liu, P. S. K., Mittermeier, R. L., Moussa, S. G., O'Brien, J., Staebler, R., Wolde, M., Worthy, D., and McLaren, R.: Quantification of methane sources in the Athabasca Oil Sands Region of Alberta by aircraft mass balance, Atmos. Chem. Phys., 18, 7361–7378, https://doi.org/10.5194/acp-18-7361-2018, 2018.
Biester, H. and Scholz, C.: Determination of mercury binding forms in
contaminated soils: mercury pyrolysis versus sequential
extractions, Environ. Sci. Technol., 31, 233–239, https://doi.org/10.1021/es960369h, 1996.
Biswas, A., Blum, J. D., and Keeler, G. J.: Mercury storage in surface soils
in a central Washington forest and estimated release during the 2001 Rex
Creek Fire, Sci. Total Environ., 404, 129–138, https://doi.org/10.1016/j.scitotenv.2008.05.043, 2008.
Brunke, E. G., Labuschagne, C., and Slemr, F.: Gaseous mercury emissions
from a fire in the Cape Peninsula, South Africa, during January
2000, Geophys. Res. Lett., 28, 1483–1486, https://doi.org/10.1029/2000GL012193, 2001.
Chatfield, R. B., Vastano, J. A., Li, L., Sachse, G. W., and Connors, V. S.:
The Great African Plume from biomass burning: Generalizations from a
three-dimensional study of TRACE A carbon monoxide, J. Geophys. Res.-Atmos., 103, 28059–28077, https://doi.org/10.1029/97JD03363,
1998.
Chatfield, R. B., Andreae, M. O., ARCTAS Science Team, and SEAC4RS Science Team: Emissions relationships in western forest fire plumes – Part 1: Reducing the effect of mixing errors on emission factors, Atmos. Meas. Tech., 13, 7069–7096, https://doi.org/10.5194/amt-13-7069-2020, 2020.
Chen, C., Wang, H., Zhang, W., Hu, D., Chen, L., and Wang, X.:
High-resolution inventory of mercury emissions from biomass burning in China
for 2000–2010 and a projection for 2020, J. Geophys. Res.-Atmos., 118,
248–256, https://doi.org/10.1002/2013JD019734, 2013.
Cofer III, W. R., Winstead, E. L., Stocks, B. J., Goldammer, J. G., and
Cahoon, D. R.: Crown fire emissions of CO2, CO, H2, CH4, and TNMHC from a
dense jack pine boreal forest fire, Geophys. Res. Lett., 25, 3919–3922,
https://doi.org/10.1029/1998GL900042, 1998.
Cole, A., Steffen, A., Eckley, C., Narayan, J., Pilote, M., Tordon, R.,
Graydon, J. A., St. Louis, V. L., Xu, X., and Branfireun, B.: A survey of
mercury in air and precipitation across Canada: patterns and
trends. Atmos., 5, 635–668, https://doi.org/10.3390/atmos5030635, 2014.
Daniel, J. S. and Solomon, S.: On the climate forcing of carbon
monoxide, J. Geophys. Res.-Atmos., 103, 13249–13260, https://doi.org/10.1029/98JD00822, 1998.
DeBano, L. F.: The role of fire and soil heating on water repellency in
wildland environments: a review, J. Hydro., 231, 195–206, https://doi.org/10.1016/S0022-1694(00)00194-3, 2000.
Demers, J. D., Driscoll, C. T., Fahey, T. J., and Yavitt, J. B.: Mercury
cycling in litter and soil in different forest types in the Adirondack
region, New York, USA, Ecol. Appl., 17, 1341–1351, https://doi.org/10.1890/06-1697.1, 2007.
Demers, J. D., Blum, J. D., and Zak, D. R.: Mercury isotopes in a forested
ecosystem: Implications for air-surface exchange dynamics and the global
mercury cycle, Global Biogeochem. Cy., 27, 222–238, https://doi.org/10.1002/gbc.20021, 2013.
De Simone, F., Cinnirella, S., Gencarelli, C. N., Yang, X., Hedgecock, I.
M., and Pirrone, N.: Model study of global mercury deposition from biomass
burning, Environ. Sci. Technol., 49, 6712–6721, https://doi.org/10.1021/acs.est.5b00969, 2015.
De Simone, F., Artaxo, P., Bencardino, M., Cinnirella, S., Carbone, F., D'Amore, F., Dommergue, A., Feng, X. B., Gencarelli, C. N., Hedgecock, I. M., Landis, M. S., Sprovieri, F., Suzuki, N., Wängberg, I., and Pirrone, N.: Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment, Atmos. Chem. Phys., 17, 1881–1899, https://doi.org/10.5194/acp-17-1881-2017, 2017.
Ebinghaus, R., Slemr, F., Brenninkmeijer, C. A. M., Van Velthoven, P., Zahn, A., Hermann, M., O'Sullivan, D. A., and Oram, D. E.: Emissions of gaseous mercury from biomass burning in South America in 2005 observed during CARIBIC flights, Geophys. Res. Lett., 34, L08813, https://doi.org/10.1029/2006GL028866, 2007.
ECCC: Daily and hourly Climate Normals, Environment and Climate Change
Canada (ECCC), available at: http://climate.weather.gc.ca, last access: 3
September 2019.
Engle, M. A., Gustin, M. S., Johnson, D. W., Murphy, J. F., Miller, W. W.,
Walker, R. F., Wright, J., and Markee, M.: Mercury distribution in two Sierran
forest and one desert sagebrush steppe ecosystems and the effects of
fire, Sci. Total Eviron., 367, 222–233, https://doi.org/10.1016/j.scitotenv.2005.11.025, 2006.
Finley, B. D., Swartzendruber, P. C., and Jaffe, D. A.: Particulate mercury
emissions in regional wildfire plumes observed at the Mount Bachelor
Observatory, Atmos. Environ., 43, 6074–6083, https://doi.org/10.1016/j.atmosenv.2009.08.046, 2009.
Fraser, A., Dastoor, A., and Ryjkov, A.: How important is biomass burning in Canada to mercury contamination?, Atmos. Chem. Phys., 18, 7263–7286, https://doi.org/10.5194/acp-18-7263-2018, 2018.
Freeborn, P. H., Wooster, M. J., Roy, D. P., and Cochrane, M. A.:
Quantification of MODIS fire radiative power (FRP) measurement uncertainty
for use in satellite-based active fire characterization and biomass burning
estimation, Geophys. Res. Lett., 41, 1988–1994, https://doi.org/10.1002/2013GL059086, 2014.
Friedli, H. R., Radke, L. F., and Lu, J. Y.: Mercury in smoke from biomass
fires, Geophys. Res. Lett., 28, 3223–3226, https://doi.org/10.1029/2000GL012704, 2001.
Friedli, H. R., Radke, L. F., Lu, J. Y., Banic, C. M., Leaitch, W. R., and
MacPherson, J. I.: Mercury emissions from burning of biomass from temperate
North American forests: laboratory and airborne measurements, Atmos.
Environ., 37, 253–267, https://doi.org/10.1016/S1352-2310(02)00819-1, 2003a.
Friedli, H. R., Radke, L. F., Prescott, R., Hobbs, P. V., and Sinha, P.:
Mercury emissions from the August 2001 wildfires in Washington State and an
agricultural waste fire in Oregon and atmospheric mercury budget
estimates, Global Biogeochem. Cy., 17, 1039, https://doi.org/10.1029/2002GB001972, 2003b.
Friedli, H. R., Radke, L. F., Payne, N. J., McRae, D. J., Lynham, T. J., and
Blake, T. W.: Mercury in vegetation and organic soil at an upland boreal
forest site in Prince Albert National Park, Saskatchewan, Canada, J.
Geophys. Res.-Biogeosci., 112, G01004,
https://doi.org/10.1029/2005JG000061, 2007.
Friedli, H. R., Arellano, A. F., Cinnirella, S., and Pirrone, N.: Initial
estimates of mercury emissions to the atmosphere from global biomass
burning, Environ. Sci. Technol., 43, 3507–3513,
https://doi.org/10.1021/es802703g, 2009.
Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily,
monthly, and annual burned area using the fourth-generation global fire
emissions database (GFED4), J. Geophys. Res.-Biogeosci., 118, 317–328,
https://doi.org/10.1002/jgrg.20042, 2013.
Godbold, D. L. and Hüttermann, A.: Inhibition of photosynthesis and
transpiration in relation to mercury-induced root damage in spruce
seedlings, Physiol. Plant., 74, 270–275,
https://doi.org/10.1111/j.1399-3054.1988.tb00631.x, 1988.
Gordon, M., Li, S.-M., Staebler, R., Darlington, A., Hayden, K., O'Brien, J., and Wolde, M.: Determining air pollutant emission rates based on mass balance using airborne measurement data over the Alberta oil sands operations, Atmos. Meas. Tech., 8, 3745–3765, https://doi.org/10.5194/amt-8-3745-2015, 2015.
Graydon, J. A., St. Louis, V. L., Lindberg, S. E., Hintelmann, H., and
Krabbenhoft, D. P.: Investigation of mercury exchange between forest canopy
vegetation and the atmosphere using a new dynamic chamber, Environ. Sci.
Technol., 40, 4680–4688, https://doi.org/10.1021/es0604616,
2006.
Graydon, J. A., St. Louis, V. L., Hintelmann, H., Lindberg, S. E.,
Sandilands, K. A., Rudd, J. W., Kelly, C. A., Tate, M. T., Krabbenhoft, D.
P., and Lehnherr, I.: Investigation of uptake and retention of atmospheric
Hg (II) by boreal forest plants using stable Hg isotopes, Environ. Sci.
Technol., 43, 4960–4966, https://doi.org/10.1021/es900357s,
2009.
Hao, W. M., Ward, D. E., Olbu, G., and Baker, S. P.: Emissions of CO2, CO,
and hydrocarbons from fires in diverse African savanna ecosystems, J.
Geophys. Res.-Atmos., 101, 23577–23584,
https://doi.org/10.1029/95JD02198, 1996.
Hély, C., Flannigan, M., Bergeron, Y., and McRae, D.: Role of vegetation
and weather on fire behavior in the Canadian mixedwood boreal forest using
two fire behavior prediction systems, Can. J. For. Res., 31, 430–441,
https://doi.org/10.1139/x00-192, 2001.
Holloway, T., Levy, H., and Kasibhatla, P.: Global distribution of carbon
monoxide, J. Geophys. Res.-Atmos., 105, 12123–12147,
https://doi.org/10.1029/1999JD901173, 2000.
Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao, J., Yang, X., Talbot, R., and Slemr, F.: Global atmospheric model for mercury including oxidation by bromine atoms, Atmos. Chem. Phys., 10, 12037–12057, https://doi.org/10.5194/acp-10-12037-2010, 2010.
Jaffe, D., Prestbo, E., Swartzendruber, P., Weiss-Penzias, P., Kato, S., Takami, A., Hatakeyama, S., and Kajii, Y.: Export of atmospheric mercury from Asia, Atmos. Environ., 39, 3029–3038, https://doi.org/10.1016/j.atmosenv.2005.01.030, 2005.
Jiang, Z., Worden, J. R., Worden, H., Deeter, M., Jones, D. B. A., Arellano, A. F., and Henze, D. K.: A 15-year record of CO emissions constrained by MOPITT CO observations, Atmos. Chem. Phys., 17, 4565–4583, https://doi.org/10.5194/acp-17-4565-2017, 2017.
Jiskra, M., Wiederhold, J. G., Skyllberg, U., Kronberg, R. M., Hajdas, I.,
and Kretzschmar, R.: Mercury deposition and re-emission pathways in boreal
forest soils investigated with Hg isotope signatures, Environ. Sci.
Technol., 49, 7188–7196,
https://doi.org/10.1021/acs.est.5b00742, 2015.
Karion, A., Sweeney, C., Wolter, S., Newberger, T., Chen, H., Andrews, A., Kofler, J., Neff, D., and Tans, P.: Long-term greenhouse gas measurements from aircraft, Atmos. Meas. Tech., 6, 511–526, https://doi.org/10.5194/amt-6-511-2013, 2013.
Kilgore, B. M.: Fire in ecosystem distribution and structure: western
forests and scrublands, in: Proceedings of the Conference: Fire Regimes and
Ecosystem Properties, edited by: Mooney, H. A., Bonnicksen, T. M., and
Christensen, N. L., USDA Forest Service, General Technical Report WO-GTR-26,
58–89, available at: https://www.fs.fed.us/rm/pubs/rmrs_gtr292/1981_kilgore.pdf (last access: 1 April 2021), 1981.
Khalil, M. A. K. and Rasmussen, R. A.: Carbon monoxide in the earth's
atmosphere: increasing trend, Science, 224, 54–56,
https://doi.org/10.1126/science.224.4644.54, 1984.
Koppmann, R., Khedim, A., Rudolph, J., Poppe, D., Andreae, M. O., Helas, G.,
Welling, M., and Zenker, T.: Emissions of organic trace gases from savanna
fires in southern Africa during the 1992 Southern African Fire Atmosphere
Research Initiative and their impact on the formation of tropospheric
ozone, J. Geophys. Res.-Atmos., 102, 18879–18888,
https://doi.org/10.1029/97JD00845, 1997.
Korejbo, A. J.: An archaeological survey in the Clearwater River Provincial
Park, Saskatchewan: insights into the archaeology of the boreal forest of
northwestern Saskatchewan, Master's thesis, Dept. of Archaeology, University
of Saskatchewan, 197 pp., available at:
http://hdl.handle.net/10388/etd-07192011-172449 (last access: 1 April 2021), 2011.
Korontzi, S., Justice, C. O., and Scholes, R. J.: Influence of timing and
spatial extent of savanna fires in southern Africa on atmospheric
emissions, J. Arid Environ., 54, 395–404,
https://doi.org/10.1006/jare.2002.1098, 2003.
Laacouri, A., Nater, E. A., and Kolka, R. K.: Distribution and uptake
dynamics of mercury in leaves of common deciduous tree species in Minnesota,
USA, Environ. Sci. Technol., 47, 10462–10470,
https://doi.org/10.1021/es401357z, 2013.
Lapina, K., Honrath, R. E., Owen, R. C., Val Martin, M., Hyer, E. J., and
Fialho, P.: Late summer changes in burning conditions in the boreal regions
and their implications for NOx and CO emissions from boreal fires, J.
Geophys. Res.-Atmos., 113, D11304,
https://doi.org/10.1029/2007JD009421, 2008.
Liggio, J., Li, S.-M., Hayden, K., Taha, Y. M., Stroud, C., Darlington, A.,
Drollette, B. D., Gordon, M., Lee, P., Liu, P., Leithead, A., Moussa, S. G.,
Wang, D., O'Brien, J., Mittermeier, R. L., Brook, J. R., Lu, G., Staebler,
R. M., Han, Y., Tokarek, T. W., Osthoff, H. D., Makar, P. A., Zhang, J., Plata,
D. L., and Gentner, D. R.: Oil sands operations as a large source of secondary
organic aerosols, Nature, 534, 91–94,
https://doi.org/10.1038/nature17646, 2016.
Liggio, J., Li, S. M., Staebler, R. M., Hayden, K., Darlington, A.,
Mittermeier, R. L., O'Brien, J., McLaren, R., Wolde, M., Worthy, D., and
Vogel, F.: Measured Canadian oil sands CO 2 emissions are higher than
estimates made using internationally recommended methods, Nat. Comm., 10,
1–9, https://doi.org/10.1038/s41467-019-09714-9, 2019.
Lindberg, S. E., Jackson, D. R., Huckabee, J. W., Janzen, S. A., Levin, M.
J., and Lund, J. R.: Atmospheric Emission and Plant Uptake of Mercury from
Agricultural Soils near the Almadén Mercury Mine, J. Environ. Qual., 8,
572–578, https://doi.org/10.2134/jeq1979.00472425000800040026x,
1979.
McLagan, D. S., Hussain, B. A., Huang, H., Lei, Y. D., Wania, F., and
Mitchell, C. P.: Identifying and evaluating urban mercury emission sources
through passive sampler-based mapping of atmospheric
concentrations, Environ. Res. Lett., 13, 074008,
https://doi.org/10.1088/1748-9326/aac8e6, 2018.
McLagan, D. S., Monaci, F., Huang, H., Lei, Y. D., Mitchell, C. P., and
Wania, F.: Characterization and Quantification of Atmospheric Mercury
Sources Using Passive Air Samplers, J. Geophys. Res.-Atmos., 124, 2351–2362,
https://doi.org/10.1029/2018JD029373, 2019.
Montzka, S. A., Dlugokencky, E. J., and Butler, J. H.: Non-CO2
greenhouse gases and climate change, Nature, 476, 43–50,
https://doi.org/10.1038/nature10322, 2011.
Mowat, L. D., St. Louis, V. L., Graydon, J. A., and Lehnherr, I.: Influence
of forest canopies on the deposition of methylmercury to boreal ecosystem
watersheds, Environ. Sci. Technol., 45, 5178–5185,
https://doi.org/10.1021/es104377y, 2011.
NASA: National Aeronautics and Space Administration (NASA) Worldview: Earth
Observing System Data and Information System (EOSDIS), available at:
https://worldview.earthdata.nasa.gov/, last access: 8 August 2020.
Neri, F., Saitta, G., and Chiofalo, S.: An accurate and straightforward
approach to line regression analysis of error-affected experimental data, J.
Phys. E Sci. Instrum., 22, 215–217,
https://doi.org/10.1088/0022-3735/22/4/002, 1989.
Nesdoly, R. G.: 2017 Forest Management Plan – Volume 1: Background
Information Document, MISTIK Management Ltd., ISBN 978-0-9699737-2-0, 313
pp.,
available at: https://www.mistik.ca/wp-content/uploads/2019-Documents/FMP_Volume_I.pdf (last access: 1 April 2021), 2017.
Obrist, D.: Mercury distribution across 14 US forests. Part II: Patterns of
methyl mercury concentrations and areal mass of total and methyl
mercury, Environ. Sci. Technol., 46, 5921–5930,
https://doi.org/10.1021/es2045579, 2012.
Obrist, D., Moosmüller, H., Schürmann, R., Chen, L. W. A., and
Kreidenweis, S. M.: Particulate-phase and gaseous elemental mercury
emissions during biomass combustion: controlling factors and correlation
with particulate matter emissions, Environ. Sci. Technol., 42, 721–727,
https://doi.org/10.1021/es071279n, 2008.
Randerson, J. T., van der Werf, G. R., Giglio, L., Collatz, G. J., and
Kasibhatla, P. S.: Global Fire Emissions Database, Version 4.1 (GFEDv4).
ORNL DAAC, Oak Ridge, Tennessee, USA.
https://doi.org/10.3334/ORNLDAAC/1293, 2018.
Rea, A. W., Lindberg, S. E., and Keeler, G. J.: Assessment of dry deposition
and foliar leaching of mercury and selected trace elements based on washed
foliar and surrogate surfaces, Environ. Sci. Technol., 34, 2418–2425,
https://doi.org/10.1021/es991305k, 2000.
Rea, A. W., Lindberg, S. E., and Keeler, G. J.: Dry deposition and foliar
leaching of mercury and selected trace elements in deciduous forest
throughfall, Atmos. Environ., 35, 3453–3462,
https://doi.org/10.1016/S1352-2310(01)00133-9, 2001.
Reed, B. C.: Linear least-squares fits with errors in both coordinates, Am.
J. Phys., 57, 642–646, https://doi.org/10.1119/1.15963, 1989.
Saiz-Lopez, A., Sitkiewicz, S. P., Roca-Sanjuán, D., Oliva-Enrich, J.
M., Dávalos, J. Z., Notario, R., Jiskra, M., Xu, Y., Wang, F., Thackray,
C. P., Sunderland, E. M., Jacob, D. J., Travnikov, O., Cuenvas, C. A.,
Acuña, U., Rivero, D., Plane, J. M. C., Kinnison, D. E., and Sonke, J.
E.: Photoreduction of gaseous oxidized mercury changes global atmospheric
mercury speciation, transport and deposition, Nat. Commun., 9, 1–9,
https://doi.org/10.1038/s41467-018-07075-3, 2018.
Schwesig, D. and Matzner, E.: Pools and fluxes of mercury and methylmercury
in two forested catchments in Germany, Sci. Total Environ., 260, 213–223,
https://doi.org/10.1016/S0048-9697(00)00565-9, 2000.
Shi, Y. and Matsunaga, T.: Temporal comparison of global inventories of CO
2 emissions from biomass burning during 2002–2011 derived from remotely
sensed data. Environ, Sci. Poll. Res., 24, 16905–16916,
https://doi.org/10.1007/s11356-017-9141-z, 2017.
Sigler, J. M., Lee, X., and Munger, W.: Emission and long-range transport of
gaseous mercury from a large-scale Canadian boreal forest fire, Environ.
Sci. Technol., 37, 4343–4347,
https://doi.org/10.1021/es026401r, 2003.
Simpson, I. J., Akagi, S. K., Barletta, B., Blake, N. J., Choi, Y., Diskin, G. S., Fried, A., Fuelberg, H. E., Meinardi, S., Rowland, F. S., Vay, S. A., Weinheimer, A. J., Wennberg, P. O., Wiebring, P., Wisthaler, A., Yang, M., Yokelson, R. J., and Blake, D. R.: Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN, Atmos. Chem. Phys., 11, 6445–6463, https://doi.org/10.5194/acp-11-6445-2011, 2011.
Slemr, F., Weigelt, A., Ebinghaus, R., Bieser, J., Brenninkmeijer, C. A. M., Rauthe-Schöch, A., Hermann, M., Martinsson, B. G., van Velthoven, P., Bönisch, H., Neumaier, M., Zahn, A., and Ziereis, H.: Mercury distribution in the upper troposphere and lowermost stratosphere according to measurements by the IAGOS-CARIBIC observatory: 2014–2016, Atmos. Chem. Phys., 18, 12329–12343, https://doi.org/10.5194/acp-18-12329-2018, 2018.
Steffen, A., Schroeder, W., Bottenheim, J., Narayan, J., and Fuentes, J. D.:
Atmospheric mercury concentrations: measurements and profiles near snow and
ice surfaces in the Canadian Arctic during Alert 2000, Atmos. Environ., 36,
2653–2661, https://doi.org/10.1016/S1352-2310(02)00112-7, 2002.
St. Louis, V. L., Rudd, J. W., Kelly, C. A., Hall, B. D., Rolfhus, K. R.,
Scott, K. J., Lindberg, S. E., and Dong, W.: Importance of the forest canopy
to fluxes of methyl mercury and total mercury to boreal ecosystems, Environ.
Sci. Technol., 35, 3089–3098,
https://doi.org/10.1021/es001924p, 2001.
Stockwell, C. E., Kupc, A., Witkowski, B., Talukdar, R. K., Liu, Y., Selimovic, V., Zarzana, K. J., Sekimoto, K., Warneke, C., Washenfelder, R. A., Yokelson, R. J., Middlebrook, A. M., and Roberts, J. M.: Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument, Atmos. Meas. Tech., 11, 2749–2768, https://doi.org/10.5194/amt-11-2749-2018, 2018.
Thurner, M., Beer, C., Santoro, M., Carvalhais, N., Wutzler, T., Schepaschenko, D., Shvidenko, A., Kompter, E., Ahrens, B., Levick, S. R., and Schmullius, C.: Carbon stock and density of northern boreal and temperate forests, Glob. Ecol. Biogeogr., 23, 297–310, https://doi.org/10.1111/geb.12125, 2013.
Turnbull, J. C., Miller, J. B., Lehman, S. J., Tans, P. P., Sparks, R. J.,
and Southon, J.: Comparison of 14CO2, CO, and SF6 as tracers for recently
added fossil fuel CO2 in the atmosphere and implications for biological CO2
exchange, Geophys. Res. Lett., 33, L01817,
https://doi.org/10.1029/2005GL024213, 2006.
Urbanski, S. P.: Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US, Atmos. Chem. Phys., 13, 7241–7262, https://doi.org/10.5194/acp-13-7241-2013, 2013.
Wang, X., Zhang, H., Lin, C. J., Fu, X., Zhang, Y., and Feng, X.:
Transboundary transport and deposition of Hg emission from springtime
biomass burning in the Indo-China Peninsula, J. Geophys. Res.-Atmos., 120,
9758–9771, https://doi.org/10.1002/2015JD023525, 2015.
Weiss-Penzias, P., Jaffe, D., Swartzendruber, P., Hafner, W., Chand, D., and
Prestbo, E.: Quantifying Asian and biomass burning sources of mercury using
the Hg/CO ratio in pollution plumes observed at the Mount Bachelor
Observatory, Atmos. Environ., 41, 4366–4379,
https://doi.org/10.1016/j.atmosenv.2007.01.058, 2007.
Worden, J. R., Bloom, A. A., Pandey, S., Jiang, Z., Worden, H. M., Walker,
T. W., Houweling, S., and Röckmann, T.: Reduced biomass burning emissions
reconcile conflicting estimates of the post-2006 atmospheric methane
budget, Nat. Commun., 8, 1–11,
https://doi.org/10.1038/s41467-017-02246-0, 2017.
Yokelson, R. J., Andreae, M. O., and Akagi, S. K.: Pitfalls with the use of enhancement ratios or normalized excess mixing ratios measured in plumes to characterize pollution sources and aging, Atmos. Meas. Tech., 6, 2155–2158, https://doi.org/10.5194/amt-6-2155-2013, 2013.
Yuan, W., Sommar, J., Lin, C. J., Wang, X., Li, K., Liu, Y., Zhang, H., Lu,
Z., Wu, C., and Feng, X.: Stable isotope evidence shows re-emission of
elemental mercury vapor occurring after reductive loss from
foliage, Environ. Sci. Technol., 53, 651–660,
https://doi.org/10.1021/acs.est.8b04865, 2018.
Yurganov, L. N., Blumenstock, T., Grechko, E. I., Hase, F., Hyer, E. J., Kasischke, E. S., Koike, M., Kondo, Y., Kramer, I., Leung, F.-Y., Mahieu, E., Mellqvist, J., Notholt, J., Novelli, P. C., Rinsland, C. P., Scheel, H. E., Schulz, A., Strandberg, A., Sussmann, R., Tanimoto, H., Velazco, V., Zander, R., and Zhao, Y.: A quantitative assessment of the 1998 carbon monoxide emission anomaly in the Northern Hemisphere based on total column and surface concentration measurements, J. Geophys. Res.-Atmos., 109, D15305, https://doi.org/10.1029/2004JD004559, 2004
Yurganov, L. N., Duchatelet, P., Dzhola, A. V., Edwards, D. P., Hase, F., Kramer, I., Mahieu, E., Mellqvist, J., Notholt, J., Novelli, P. C., Rockmann, A., Scheel, H. E., Schneider, M., Schulz, A., Strandberg, A., Sussmann, R., Tanimoto, H., Velazco, V., Drummond, J. R., and Gille, J. C.: Increased Northern Hemispheric carbon monoxide burden in the troposphere in 2002 and 2003 detected from the ground and from space, Atmos. Chem. Phys., 5, 563–573, https://doi.org/10.5194/acp-5-563-2005, 2005.
Short summary
An assessment of mercury emissions from a burning boreal forest was made by flying an aircraft through its plume to collect in situ gas and particulate measurements. Direct data show that in-plume gaseous elemental mercury concentrations reach up to 2.4× background for this fire and up to 5.6× when using a correlation with CO data. These unique data are applied to a series of known empirical emissions estimates and used to highlight current uncertainties in the literature.
An assessment of mercury emissions from a burning boreal forest was made by flying an aircraft...
Altmetrics
Final-revised paper
Preprint