Articles | Volume 21, issue 6
https://doi.org/10.5194/acp-21-4521-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-21-4521-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal variations in the highly time-resolved aerosol composition, sources and chemical processes of background submicron particles in the North China Plain
Jiayun Li
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Liming Cao
Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
Wenkang Gao
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Lingyan He
CORRESPONDING AUTHOR
Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
Yingchao Yan
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Yuexin He
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Yuepeng Pan
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Dongsheng Ji
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Yuesi Wang
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Related authors
Zirui Zhang, Wenfei Zhu, Min Hu, Kefan Liu, Hui Wang, Rongzhi Tang, Ruizhe Shen, Ying Yu, Rui Tan, Kai Song, Yuanju Li, Wenbin Zhang, Zhou Zhang, Hongming Xu, Shijin Shuai, Shuangde Li, Yunfa Chen, Jiayun Li, Yuesi Wang, and Song Guo
Atmos. Chem. Phys., 21, 15221–15237, https://doi.org/10.5194/acp-21-15221-2021, https://doi.org/10.5194/acp-21-15221-2021, 2021
Short summary
Short summary
We comprehensively investigated the mass growth potential, oxidation degree, formation pathway, and mass spectra features of typical urban-lifestyle secondary organic aerosols (SOAs) including vehicle SOAs and cooking SOAs. The mass spectra we acquired could provide necessary references to estimate the mass fractions of vehicle and cooking SOAs in the atmosphere, which would greatly decrease the uncertainty in air quality evaluation and health risk assessment in urban areas.
Chunshui Lin, Ru-Jin Huang, Jing Duan, Jing Qu, Jiahua Liu, Yi Liu, Yan Luo, Wei Huang, Wei Xu, Yanan Zhan, Zhitao Liu, Sihan Liu, Qingshuang Zhang, Quan Liu, Zirui Liu, Shengrong Lou, Huinan Yang, Dan Dan Huang, Cheng Huang, and Hongli Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2521, https://doi.org/10.5194/egusphere-2025-2521, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Since China's 2013 Clean Air Act cut PM2.5 by over half, winter haze in the North China Plain persists due to secondary organic aerosols now dominating primary pollutants, requiring urgent regional cooperation to address model-underestimated chemical transformations and cross-border pollution.
Kun Qu, Xuesong Wang, Yu Yan, Xipeng Jin, Ling-Yan He, Xiao-Feng Huang, Xuhui Cai, Jin Shen, Zimu Peng, Teng Xiao, Mihalis Vrekoussis, Maria Kanakidou, Guy P. Brasseur, Nikos Daskalakis, Limin Zeng, and Yuanhang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2404, https://doi.org/10.5194/egusphere-2025-2404, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Persistent cold-season PM2.5 pollution in a South China region during 2015–2017 was studied to assess the roles of drastic meteorological and emission changes. We found that meteorological variations, induced by a transition from El Niño to La Niña, were the main cause of persistent pollution, as stronger northerly winds enhanced pollutant transport into the region. In contrast, the effect of rapid emission reductions was limited. Recommendations for air quality improvement were also proposed.
Qianqian Zhang, K. Folkert Boersma, Chiel van der Laan, Alba Mols, Bin Zhao, Shengyue Li, and Yuepeng Pan
Atmos. Chem. Phys., 25, 3313–3326, https://doi.org/10.5194/acp-25-3313-2025, https://doi.org/10.5194/acp-25-3313-2025, 2025
Short summary
Short summary
Accurate NOx emission estimates are required to better understand air pollution. This study investigates and demonstrates the ability of the superposition column model in combination with TROPOMI tropospheric NO2 column data to estimate city-scale NOx emissions and lifetimes and their variabilities. The results of this work nevertheless confirm the strength of the superposition column model in estimating urban NOx emissions with reasonable accuracy.
Tian Feng, Guohui Li, Shuyu Zhao, Naifang Bei, Xin Long, Yuepeng Pan, Yu Song, Ruonan Wang, Xuexi Tie, and Luisa Molina
EGUsphere, https://doi.org/10.5194/egusphere-2025-243, https://doi.org/10.5194/egusphere-2025-243, 2025
Short summary
Short summary
Impacts of agricultural fertilization on nitrogen oxide and air quality are becoming more pronounced with continuous reductions in fossil fuel sources in China. We report that atmospheric nitrogen dioxide pulses driven by agricultural fertilizations largely complicate air pollution in North China, highlighting the necessity of agricultural emission control.
Lei Kong, Xiao Tang, Zifa Wang, Jiang Zhu, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng Chen, Lili Zhu, Wei Wang, Bing Liu, Qian Wang, Duohong Chen, Yuepeng Pan, Jie Li, Lin Wu, and Gregory R. Carmichael
Earth Syst. Sci. Data, 16, 4351–4387, https://doi.org/10.5194/essd-16-4351-2024, https://doi.org/10.5194/essd-16-4351-2024, 2024
Short summary
Short summary
A new long-term inversed emission inventory for Chinese air quality (CAQIEI) is developed in this study, which contains constrained monthly emissions of NOx, SO2, CO, PM2.5, PM10, and NMVOCs in China from 2013 to 2020 with a horizontal resolution of 15 km. Emissions of different air pollutants and their changes during 2013–2020 were investigated and compared with previous emission inventories, which sheds new light on the complex variations of air pollutant emissions in China.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Xinping Yang, Keding Lu, Xuefei Ma, Yue Gao, Zhaofeng Tan, Haichao Wang, Xiaorui Chen, Xin Li, Xiaofeng Huang, Lingyan He, Mengxue Tang, Bo Zhu, Shiyi Chen, Huabin Dong, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 22, 12525–12542, https://doi.org/10.5194/acp-22-12525-2022, https://doi.org/10.5194/acp-22-12525-2022, 2022
Short summary
Short summary
We present the OH and HO2 radical observations at the Shenzhen site (Pearl River Delta, China) in the autumn of 2018. The diurnal maxima were 4.5 × 106 cm−3 for OH and 4.2 × 108 cm−3 for HO2 (including an estimated interference of 23 %–28 % from RO2 radicals during the daytime). The OH underestimation was identified again, and it was attributable to the missing OH sources. HO2 heterogeneous uptake, ROx sources and sinks, and the atmospheric oxidation capacity were evaluated as well.
Mengying Li, Shaocai Yu, Xue Chen, Zhen Li, Yibo Zhang, Zhe Song, Weiping Liu, Pengfei Li, Xiaoye Zhang, Meigen Zhang, Yele Sun, Zirui Liu, Caiping Sun, Jingkun Jiang, Shuxiao Wang, Benjamin N. Murphy, Kiran Alapaty, Rohit Mathur, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 22, 11845–11866, https://doi.org/10.5194/acp-22-11845-2022, https://doi.org/10.5194/acp-22-11845-2022, 2022
Short summary
Short summary
This study constructed an emission inventory of condensable particulate matter (CPM) in China with a focus on organic aerosols (OAs), based on collected CPM emission information. The results show that OA emissions are enhanced twofold for the years 2014 and 2017 after the inclusion of CPM in the new inventory. Sensitivity cases demonstrated the significant contributions of CPM emissions from stationary combustion and mobile sources to primary, secondary, and total OA concentrations.
Zirui Zhang, Wenfei Zhu, Min Hu, Kefan Liu, Hui Wang, Rongzhi Tang, Ruizhe Shen, Ying Yu, Rui Tan, Kai Song, Yuanju Li, Wenbin Zhang, Zhou Zhang, Hongming Xu, Shijin Shuai, Shuangde Li, Yunfa Chen, Jiayun Li, Yuesi Wang, and Song Guo
Atmos. Chem. Phys., 21, 15221–15237, https://doi.org/10.5194/acp-21-15221-2021, https://doi.org/10.5194/acp-21-15221-2021, 2021
Short summary
Short summary
We comprehensively investigated the mass growth potential, oxidation degree, formation pathway, and mass spectra features of typical urban-lifestyle secondary organic aerosols (SOAs) including vehicle SOAs and cooking SOAs. The mass spectra we acquired could provide necessary references to estimate the mass fractions of vehicle and cooking SOAs in the atmosphere, which would greatly decrease the uncertainty in air quality evaluation and health risk assessment in urban areas.
Quan Liu, Dantong Liu, Yangzhou Wu, Kai Bi, Wenkang Gao, Ping Tian, Delong Zhao, Siyuan Li, Chenjie Yu, Guiqian Tang, Yunfei Wu, Kang Hu, Shuo Ding, Qian Gao, Fei Wang, Shaofei Kong, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 14749–14760, https://doi.org/10.5194/acp-21-14749-2021, https://doi.org/10.5194/acp-21-14749-2021, 2021
Short summary
Short summary
Through simultaneous online measurements of detailed aerosol compositions at both surface and surface-influenced mountain sites, the evolution of aerosol composition during daytime vertical transport was investigated. The results show that, from surface to the top of the planetary boundary layer, the oxidation state of organic aerosol had been significantly enhanced due to evaporation and further oxidation of these evaporated gases.
Dandan Zhao, Jinyuan Xin, Chongshui Gong, Jiannong Quan, Yuesi Wang, Guiqian Tang, Yongxiang Ma, Lindong Dai, Xiaoyan Wu, Guangjing Liu, and Yongjing Ma
Atmos. Chem. Phys., 21, 5739–5753, https://doi.org/10.5194/acp-21-5739-2021, https://doi.org/10.5194/acp-21-5739-2021, 2021
Short summary
Short summary
The influence of aerosol radiative forcing (ARF) on the boundary layer structure is nonlinear. The threshold of the modification effects of ARF on the boundary layer structure was determined for the first time, highlighting that once ARF exceeded a certain value, the boundary layer would quickly stabilize and aggravate air pollution. This could provide useful information for relevant atmospheric-environment improvement measures and policies.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng Chen, Lili Zhu, Wei Wang, Bing Liu, Qian Wang, Duohong Chen, Yuepeng Pan, Tao Song, Fei Li, Haitao Zheng, Guanglin Jia, Miaomiao Lu, Lin Wu, and Gregory R. Carmichael
Earth Syst. Sci. Data, 13, 529–570, https://doi.org/10.5194/essd-13-529-2021, https://doi.org/10.5194/essd-13-529-2021, 2021
Short summary
Short summary
China's air pollution has changed substantially since 2013. Here we have developed a 6-year-long high-resolution air quality reanalysis dataset over China from 2013 to 2018 to illustrate such changes and to provide a basic dataset for relevant studies. Surface fields of PM2.5, PM10, SO2, NO2, CO, and O3 concentrations are provided, and the evaluation results indicate that the reanalysis dataset has excellent performance in reproducing the magnitude and variation of air pollution in China.
Yujue Wang, Min Hu, Nan Xu, Yanhong Qin, Zhijun Wu, Liwu Zeng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 20, 13721–13734, https://doi.org/10.5194/acp-20-13721-2020, https://doi.org/10.5194/acp-20-13721-2020, 2020
Short summary
Short summary
Field straw residue burning is a widespread type of biomass burning in Asia, while its emissions are poorly understood. In this study, we designed lab-controlled experiments to comprehensively investigate the emission factors, chemical compositions and light absorption properties of both water-soluble and water-insoluble carbonaceous aerosols emitted from straw burning. The results clearly highlight the significant influences of burning conditions and combustion efficiency on the emissions.
Cui-Ping Su, Xing Peng, Xiao-Feng Huang, Li-Wu Zeng, Li-Ming Cao, Meng-Xue Tang, Yao Chen, Bo Zhu, Yishi Wang, and Ling-Yan He
Atmos. Meas. Tech., 13, 5407–5422, https://doi.org/10.5194/amt-13-5407-2020, https://doi.org/10.5194/amt-13-5407-2020, 2020
Short summary
Short summary
Online instruments have been widely applied for the measurement of PM2.5 and its chemical components; however, these instruments have a major shortcoming in terms of the limited number (or lack) of species in field measurements. To this end, a new mass closure PM2.5 online-integrated system was developed and applied in this work to achieve more comprehensive information on chemical species in PM2.5, thus providing a powerful tool for PM2.5 long-term daily measurement and source apportionment.
Baozhu Ge, Syuichi Itahashi, Keiichi Sato, Danhui Xu, Junhua Wang, Fan Fan, Qixin Tan, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Jung-Hun Woo, Junichi Kurokawa, Yuepeng Pan, Qizhong Wu, Xuejun Liu, and Zifa Wang
Atmos. Chem. Phys., 20, 10587–10610, https://doi.org/10.5194/acp-20-10587-2020, https://doi.org/10.5194/acp-20-10587-2020, 2020
Short summary
Short summary
Performances of the simulated deposition for different reduced N (Nr) species in China were conducted with the Model Inter-Comparison Study for Asia. Results showed that simulated wet deposition of oxidized N was overestimated in northeastern China and underestimated in south China, but Nr was underpredicted in all regions by all models. Oxidized N has larger uncertainties than Nr, indicating that the chemical reaction process is one of the most importance factors affecting model performance.
Yuan Yang, Yonghong Wang, Putian Zhou, Dan Yao, Dongsheng Ji, Jie Sun, Yinghong Wang, Shuman Zhao, Wei Huang, Shuanghong Yang, Dean Chen, Wenkang Gao, Zirui Liu, Bo Hu, Renjian Zhang, Limin Zeng, Maofa Ge, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Yuesi Wang
Atmos. Chem. Phys., 20, 8181–8200, https://doi.org/10.5194/acp-20-8181-2020, https://doi.org/10.5194/acp-20-8181-2020, 2020
Lu Qi, Alexander L. Vogel, Sepideh Esmaeilirad, Liming Cao, Jing Zheng, Jean-Luc Jaffrezo, Paola Fermo, Anne Kasper-Giebl, Kaspar R. Daellenbach, Mindong Chen, Xinlei Ge, Urs Baltensperger, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 20, 7875–7893, https://doi.org/10.5194/acp-20-7875-2020, https://doi.org/10.5194/acp-20-7875-2020, 2020
Short summary
Short summary
We present the first application of this online and offline strategy using the new extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF), which achieves increased chemical specificity relative to other online techniques. Measurement and source apportionment of 1 year of filter samples collected in Zurich, Switzerland, show seasonal contributions from fresh and aged wood combustion in winter and biogenic emission-derived SOA in summer, as well as other sources.
Yuning Xie, Gehui Wang, Xinpei Wang, Jianmin Chen, Yubao Chen, Guiqian Tang, Lili Wang, Shuangshuang Ge, Guoyan Xue, Yuesi Wang, and Jian Gao
Atmos. Chem. Phys., 20, 5019–5033, https://doi.org/10.5194/acp-20-5019-2020, https://doi.org/10.5194/acp-20-5019-2020, 2020
Short summary
Short summary
As a result of strict emission control, nitrate-dominated PM2.5 in pollution episodes was observed in urban Beijing during the winter of 2017–2018. With the help of sufficient ammonia, particle pH could increase to near neutral (5.4) as particulate nitrate fraction increases. Further tests imply that airborne particle hygroscopicity would be enhanced at moderate RH in nitrate-dominated particles, and pH elevation will be accelerated when ammonia and particulate nitrate both increase.
Dandan Zhao, Guangjing Liu, Jinyuan Xin, Jiannong Quan, Yuesi Wang, Xin Wang, Lindong Dai, Wenkang Gao, Guiqian Tang, Bo Hu, Yongxiang Ma, Xiaoyan Wu, Lili Wang, Zirui Liu, and Fangkun Wu
Atmos. Chem. Phys., 20, 4575–4592, https://doi.org/10.5194/acp-20-4575-2020, https://doi.org/10.5194/acp-20-4575-2020, 2020
Short summary
Short summary
Under strong atmospheric oxidization capacity, haze pollution in the summer in Beijing was the result of the synergistic effect of the physicochemical process in the atmospheric boundary layer (ABL). With the premise of an extremely stable ABL structure, the formation of secondary aerosols dominated by nitrate was quite intense, driving the outbreak of haze pollution.
Khalid Mehmood, Yujie Wu, Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Weiping Liu, Yuesi Wang, Zirui Liu, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 2419–2443, https://doi.org/10.5194/acp-20-2419-2020, https://doi.org/10.5194/acp-20-2419-2020, 2020
Short summary
Short summary
We selected June 2014 as our study period, which exhibited a complete evolution process of open biomass burning (OBB) dominated by open crop straw burning (OCSB) over central and eastern China (CEC). We established a constraining method that integrates ground-based PM2.5 measurements with the two-way coupled WRF-CMAQ model to derive optimal OBB emissions. It was found that these emissions could allow the model to reproduce meteorological and chemical fields over CEC during the study period.
Zhining Tao, Mian Chin, Meng Gao, Tom Kucsera, Dongchul Kim, Huisheng Bian, Jun-ichi Kurokawa, Yuesi Wang, Zirui Liu, Gregory R. Carmichael, Zifa Wang, and Hajime Akimoto
Atmos. Chem. Phys., 20, 2319–2339, https://doi.org/10.5194/acp-20-2319-2020, https://doi.org/10.5194/acp-20-2319-2020, 2020
Short summary
Short summary
One goal of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III is to identify strengths and weaknesses of current air quality models to provide insights into reducing uncertainties. This study identified that a 15 km grid would be the optimal horizontal resolution in terms of performance and resource usage to capture average and extreme air quality over East Asia and is thus suggested for use in future MICS-Asia modeling activities if the investigation domain remains the same.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Joshua S. Fu, Xuemei Wang, Syuichi Itahashi, Kazuyo Yamaji, Tatsuya Nagashima, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Lei Chen, Meigen Zhang, Zhining Tao, Jie Li, Mizuo Kajino, Hong Liao, Zhe Wang, Kengo Sudo, Yuesi Wang, Yuepeng Pan, Guiqian Tang, Meng Li, Qizhong Wu, Baozhu Ge, and Gregory R. Carmichael
Atmos. Chem. Phys., 20, 181–202, https://doi.org/10.5194/acp-20-181-2020, https://doi.org/10.5194/acp-20-181-2020, 2020
Short summary
Short summary
Evaluation and uncertainty investigation of NO2, CO and NH3 modeling over China were conducted in this study using 14 chemical transport model results from MICS-Asia III. All models largely underestimated CO concentrations and showed very poor performance in reproducing the observed monthly variations of NH3 concentrations. Potential factors related to such deficiencies are investigated and discussed in this paper.
Yonghong Wang, Miao Yu, Yuesi Wang, Guiqian Tang, Tao Song, Putian Zhou, Zirui Liu, Bo Hu, Dongsheng Ji, Lili Wang, Xiaowan Zhu, Chao Yan, Mikael Ehn, Wenkang Gao, Yuepeng Pan, Jinyuan Xin, Yang Sun, Veli-Matti Kerminen, Markku Kulmala, and Tuukka Petäjä
Atmos. Chem. Phys., 20, 45–53, https://doi.org/10.5194/acp-20-45-2020, https://doi.org/10.5194/acp-20-45-2020, 2020
Short summary
Short summary
We found a positive particle matter-mixing layer height feedback at three observation platforms at the 325 m Beijing meteorology tower, which is characterized by a shallower mixing layer height and a higher particle matter concentration. Measurements of solar radiation, aerosol chemical composition, meteorology parameters, trace gases and turbulent kinetic energy (TKE) could explain the feedback mechanism to some extent.
Danhui Xu, Baozhu Ge, Xueshun Chen, Yele Sun, Nianliang Cheng, Mei Li, Xiaole Pan, Zhiqiang Ma, Yuepeng Pan, and Zifa Wang
Atmos. Chem. Phys., 19, 15569–15581, https://doi.org/10.5194/acp-19-15569-2019, https://doi.org/10.5194/acp-19-15569-2019, 2019
Short summary
Short summary
Wet deposition is one of the most important and efficient removal mechanisms in the evolution of the air pollution. Due to the lack of a localized parameterization scheme and some mechanisms being neglected in theoretical estimations and modeling calculations, below-cloud wet scavenging coefficients (BWSC) have large uncertainties. We compare the BWSCs under the same conditions to perform a multi-method evaluation in order to describe their characteristics.
Jingda Liu, Lili Wang, Mingge Li, Zhiheng Liao, Yang Sun, Tao Song, Wenkang Gao, Yonghong Wang, Yan Li, Dongsheng Ji, Bo Hu, Veli-Matti Kerminen, Yuesi Wang, and Markku Kulmala
Atmos. Chem. Phys., 19, 14477–14492, https://doi.org/10.5194/acp-19-14477-2019, https://doi.org/10.5194/acp-19-14477-2019, 2019
Short summary
Short summary
We analyzed the surface ozone variation characteristics and quantified the impact of synoptic and local meteorological factors on northern China during the warm season based on multi-city, in situ ozone and meteorological data, as well as meteorological reanalysis. The results of quantitative exploration on synoptic and local meteorological factors influencing both interannual and day-to-day ozone variations will provide the scientific basis for evaluating emission reduction measures.
Lei Chen, Jia Zhu, Hong Liao, Yi Gao, Yulu Qiu, Meigen Zhang, Zirui Liu, Nan Li, and Yuesi Wang
Atmos. Chem. Phys., 19, 10845–10864, https://doi.org/10.5194/acp-19-10845-2019, https://doi.org/10.5194/acp-19-10845-2019, 2019
Short summary
Short summary
The formation mechanism of a severe haze episode that occurred over North China in December 2015, the aerosol radiative impacts on the haze event and the influence mechanism were examined. The PM2.5 increase during the aerosol accumulation stage was mainly attributed to strong production by the aerosol chemistry process and weak removal by advection and vertical mixing. Restrained vertical mixing was the main reason for near-surface PM2.5 increase when aerosol radiative feedback was considered.
Yusi Liu, Guiqian Tang, Libo Zhou, Bo Hu, Baoxian Liu, Yunting Li, Shu Liu, and Yuesi Wang
Atmos. Chem. Phys., 19, 9531–9540, https://doi.org/10.5194/acp-19-9531-2019, https://doi.org/10.5194/acp-19-9531-2019, 2019
Short summary
Short summary
Weak atmospheric dilution capability is a key factor leading to the frequent occurrence of serious air pollution. This study aims to analyze the mixing layer dilution capability of the atmosphere and to quantify the mixing layer PM2.5 transport flux. Our results showed the main controlling factors during the transition and heavy polluted period in Beijing. The results help in understanding the causes of air pollution and making decisions on prevention and control of air pollution.
Dongsheng Ji, Wenkang Gao, Willy Maenhaut, Jun He, Zhe Wang, Jiwei Li, Wupeng Du, Lili Wang, Yang Sun, Jinyuan Xin, Bo Hu, and Yuesi Wang
Atmos. Chem. Phys., 19, 8569–8590, https://doi.org/10.5194/acp-19-8569-2019, https://doi.org/10.5194/acp-19-8569-2019, 2019
Short summary
Short summary
This study reveals an obvious decreasing trend in OC and EC concentrations in urban Beijing. Higher concentrations were related to air masses originating from the northeast sector at wind speeds of approximately 5 km h−1. The potential source regions of the carbonaceous aerosols stretched to broader areas in the northwestern and western regions where coal mining and coal-fired power generation activities are intensive, which is fairly consistent with the MEIC inventory for China.
Yonghong Wang, Yuesi Wang, Lili Wang, Tuukka Petäjä, Qiaozhi Zha, Chongshui Gong, Sixuan Li, Yuepeng Pan, Bo Hu, Jinyuan Xin, and Markku Kulmala
Atmos. Chem. Phys., 19, 5881–5888, https://doi.org/10.5194/acp-19-5881-2019, https://doi.org/10.5194/acp-19-5881-2019, 2019
Short summary
Short summary
Satellite observations combined with in situ measurements demonstrate that increased inorganic aerosol fractions of NO2 and SO2 contribute to air pollution and frequently occurring haze in China from 1980 to 2010. Currently, the reduction of nitrate, sulfate and their precursor gases would contribute towards better visibility in China.
Zhenying Xu, Mingxu Liu, Minsi Zhang, Yu Song, Shuxiao Wang, Lin Zhang, Tingting Xu, Tiantian Wang, Caiqing Yan, Tian Zhou, Yele Sun, Yuepeng Pan, Min Hu, Mei Zheng, and Tong Zhu
Atmos. Chem. Phys., 19, 5605–5613, https://doi.org/10.5194/acp-19-5605-2019, https://doi.org/10.5194/acp-19-5605-2019, 2019
Mingxu Liu, Xin Huang, Yu Song, Tingting Xu, Shuxiao Wang, Zhijun Wu, Min Hu, Lin Zhang, Qiang Zhang, Yuepeng Pan, Xuejun Liu, and Tong Zhu
Atmos. Chem. Phys., 18, 17933–17943, https://doi.org/10.5194/acp-18-17933-2018, https://doi.org/10.5194/acp-18-17933-2018, 2018
Daocheng Gong, Hao Wang, Shenyang Zhang, Yu Wang, Shaw Chen Liu, Hai Guo, Min Shao, Congrong He, Duohong Chen, Lingyan He, Lei Zhou, Lidia Morawska, Yuanhang Zhang, and Boguang Wang
Atmos. Chem. Phys., 18, 14417–14432, https://doi.org/10.5194/acp-18-14417-2018, https://doi.org/10.5194/acp-18-14417-2018, 2018
Short summary
Short summary
The complex air pollution in the air-polluted Pearl River Delta (PRD) region in southern China has significantly elevated the background atmospheric oxidative capacity of the adjacent forests and subsequently lowered the levels of important biogenic volatile organic compounds, such as isoprene, which probably affect the regional air quality and ecological environment in the long term.
Wen Xu, Lei Liu, Miaomiao Cheng, Yuanhong Zhao, Lin Zhang, Yuepeng Pan, Xiuming Zhang, Baojing Gu, Yi Li, Xiuying Zhang, Jianlin Shen, Li Lu, Xiaosheng Luo, Yu Zhao, Zhaozhong Feng, Jeffrey L. Collett Jr., Fusuo Zhang, and Xuejun Liu
Atmos. Chem. Phys., 18, 10931–10954, https://doi.org/10.5194/acp-18-10931-2018, https://doi.org/10.5194/acp-18-10931-2018, 2018
Short summary
Short summary
Our main results demonstrate that atmospheric Nr pollution in eastern China is more serious in the northern region than in the southern region. Any effects of current emission controls are not yet apparent in Nr pollution. NH3 emissions from fertilizer use were the largest contributor (36 %) to total inorganic Nr deposition. Our results provide useful information for policy-makers that mitigation of NH3 emissions should be a priority to tackle serious N deposition.
Zirui Liu, Wenkang Gao, Yangchun Yu, Bo Hu, Jinyuan Xin, Yang Sun, Lili Wang, Gehui Wang, Xinhui Bi, Guohua Zhang, Honghui Xu, Zhiyuan Cong, Jun He, Jingsha Xu, and Yuesi Wang
Atmos. Chem. Phys., 18, 8849–8871, https://doi.org/10.5194/acp-18-8849-2018, https://doi.org/10.5194/acp-18-8849-2018, 2018
Short summary
Short summary
We have established a national-level network (CARE-China) that conducted continuous monitoring of PM2.5 and its chemical compositions in China. Our analysis reveals the spatial and seasonal variabilities of the urban and background aerosol species and their contributions to the PM2.5 budget. The integration of data provided an extensive spatial coverage of fine-particle concentrations and could be used to validate model results and implement effective air pollution control strategies.
Xiaowan Zhu, Guiqian Tang, Jianping Guo, Bo Hu, Tao Song, Lili Wang, Jinyuan Xin, Wenkang Gao, Christoph Münkel, Klaus Schäfer, Xin Li, and Yuesi Wang
Atmos. Chem. Phys., 18, 4897–4910, https://doi.org/10.5194/acp-18-4897-2018, https://doi.org/10.5194/acp-18-4897-2018, 2018
Short summary
Short summary
Our study first conducted a long-term observation of mixing layer height (MLH) with high resolution on the North China Plain (NCP), analyzed the spatiotemporal variations of regional MLH, investigated the reasons for MLH differences in the NCP and revealed the meteorological reasons for heavy haze pollution in southern Hebei. The study results provide scientific suggestions for regional industrial structure readjustment and have great importance for achieving the integrated development goals.
Jie Chen, Zhijun Wu, Stefanie Augustin-Bauditz, Sarah Grawe, Markus Hartmann, Xiangyu Pei, Zirui Liu, Dongsheng Ji, and Heike Wex
Atmos. Chem. Phys., 18, 3523–3539, https://doi.org/10.5194/acp-18-3523-2018, https://doi.org/10.5194/acp-18-3523-2018, 2018
Short summary
Short summary
The ice nucleation activity of urban aerosols in the atmosphere of Beijing was detected in this study. Results showed that ice-nucleating particle (INP) concentrations were not influenced by the highly variable numbers of atmospheric particles, both in mass and particle number concentrations, implying that INP concentrations might not be influenced directly by anthropogenic activities, at least not down to roughly −25 °C and maybe even below.
Syuichi Itahashi, Keiya Yumimoto, Itsushi Uno, Hiroshi Hayami, Shin-ichi Fujita, Yuepeng Pan, and Yuesi Wang
Atmos. Chem. Phys., 18, 2835–2852, https://doi.org/10.5194/acp-18-2835-2018, https://doi.org/10.5194/acp-18-2835-2018, 2018
Short summary
Short summary
Ground-based observations of precipitation chemistry over China, Korea, and Japan from 2001 to 2015 were compiled, and the ratio of nitrate to non-sea-salt sulfate concentration in precipitation was analyzed to identify the long-term record of acidifying species. The variations in the ratio in East Asia corresponded to the NOx / SO2 emission ratio and the NO2 / SO2 column ratio in China. The results indicated that the acidity of precipitation shifted from sulfur to nitrogen.
Lin Zhang, Youfan Chen, Yuanhong Zhao, Daven K. Henze, Liye Zhu, Yu Song, Fabien Paulot, Xuejun Liu, Yuepeng Pan, Yi Lin, and Binxiang Huang
Atmos. Chem. Phys., 18, 339–355, https://doi.org/10.5194/acp-18-339-2018, https://doi.org/10.5194/acp-18-339-2018, 2018
Short summary
Short summary
Substantial differences exist in current estimates of agricultural ammonia emissions in China, hindering understanding of their environmental consequences. This study applies both bottom-up and top-down methods to better quantify agricultural ammonia sources in China using observations from satellite and surface networks interpreted by a chemical transport model. Our estimate of annual Chinese anthropogenic ammonia emission is 11.7 tg (teragram) for 2008 with a strong seasonality peak in summer.
Xiaojuan Huang, Zirui Liu, Jingyun Liu, Bo Hu, Tianxue Wen, Guiqian Tang, Junke Zhang, Fangkun Wu, Dongsheng Ji, Lili Wang, and Yuesi Wang
Atmos. Chem. Phys., 17, 12941–12962, https://doi.org/10.5194/acp-17-12941-2017, https://doi.org/10.5194/acp-17-12941-2017, 2017
Short summary
Short summary
Recently, haze pollution has frequently occurred in North China. Therefore, we conducted synchronous measurements of PM2.5 for 1 year to investigate the haze formation mechanism, sources, and influences of regional transport. The results revealed that secondary aerosols, coal combustion, and motor vehicle exhaust exerted significant impacts on urban haze formation. The mitigation strategy of reducing gaseous precursors emitted from fossil fuel combustion was suggested.
Yuanhong Zhao, Lin Zhang, Amos P. K. Tai, Youfan Chen, and Yuepeng Pan
Atmos. Chem. Phys., 17, 9781–9796, https://doi.org/10.5194/acp-17-9781-2017, https://doi.org/10.5194/acp-17-9781-2017, 2017
Short summary
Short summary
Human activities have substantially enhanced atmospheric deposition of reactive nitrogen, inducing complex environmental consequences. This study presents a first quantitative investigation of how anthropogenic nitrogen deposition could impact surface ozone air quality through surface–atmosphere exchange processes. We find important surface ozone changes driven by nitrogen deposition, which can be comparable with those due to historical climate and land use changes.
Dongwei Liu, Weixing Zhu, Xiaobo Wang, Yuepeng Pan, Chao Wang, Dan Xi, Edith Bai, Yuesi Wang, Xingguo Han, and Yunting Fang
Biogeosciences, 14, 989–1001, https://doi.org/10.5194/bg-14-989-2017, https://doi.org/10.5194/bg-14-989-2017, 2017
Short summary
Short summary
The use of 15N natural abundance of soil ammonium and nitrate demonstrates a clear shifting contribution from abiotic to biotic controls on N cycling along a 3200 km dryland transect in northern China, with a threshold at mean annual precipitation of 100 mm. Abiotic factors were the main driver below threshold, shown by the accumulation of atmospheric N and NH3 losses. In the area above threshold, soil N cycling was controlled mainly by biological factors, e.g., plant uptake and denitrification.
Zhaofeng Tan, Hendrik Fuchs, Keding Lu, Andreas Hofzumahaus, Birger Bohn, Sebastian Broch, Huabin Dong, Sebastian Gomm, Rolf Häseler, Lingyan He, Frank Holland, Xin Li, Ying Liu, Sihua Lu, Franz Rohrer, Min Shao, Baolin Wang, Ming Wang, Yusheng Wu, Limin Zeng, Yinsong Zhang, Andreas Wahner, and Yuanhang Zhang
Atmos. Chem. Phys., 17, 663–690, https://doi.org/10.5194/acp-17-663-2017, https://doi.org/10.5194/acp-17-663-2017, 2017
Short summary
Short summary
In this study, we performed accurate OH measurements as well as selective HO2 and RO2 measurements at a rural site in North China Plain with state-of-the-art instruments newly developed. We confirmed the previous discovery on the enhancement of the OH in low NOx with which little O3 production was associated, and we found a missing RO2 source in high NOx which promoted higher O3 production. Our results are of vital importance for ozone abatement strategies currently under discussion for China.
Hendrik Fuchs, Zhaofeng Tan, Keding Lu, Birger Bohn, Sebastian Broch, Steven S. Brown, Huabin Dong, Sebastian Gomm, Rolf Häseler, Lingyan He, Andreas Hofzumahaus, Frank Holland, Xin Li, Ying Liu, Sihua Lu, Kyung-Eun Min, Franz Rohrer, Min Shao, Baolin Wang, Ming Wang, Yusheng Wu, Limin Zeng, Yinson Zhang, Andreas Wahner, and Yuanhang Zhang
Atmos. Chem. Phys., 17, 645–661, https://doi.org/10.5194/acp-17-645-2017, https://doi.org/10.5194/acp-17-645-2017, 2017
Short summary
Short summary
OH reactivity was measured during a 1-month long campaign at a rural site in the North China Plain in 2014. OH reactivity measurements are compared to calculations using OH reactant measurements. Good agreement is found indicating that all important OH reactants were measured. In addition, the chemical OH budget is analyzed. In contrast to previous campaigns in China in 2006, no significant imbalance between OH production and destruction is found.
Bin Liu, Zhiyuan Cong, Yuesi Wang, Jinyuan Xin, Xin Wan, Yuepeng Pan, Zirui Liu, Yonghong Wang, Guoshuai Zhang, Zhongyan Wang, Yongjie Wang, and Shichang Kang
Atmos. Chem. Phys., 17, 449–463, https://doi.org/10.5194/acp-17-449-2017, https://doi.org/10.5194/acp-17-449-2017, 2017
Short summary
Short summary
The first observation net of background atmospheric aerosols of the Himalayas and Tibetan Plateau were conducted in 2011–2013, and the aerosol mass loadings were especially illustrated in this paper. Consequently, these terrestrial aerosol masses were strongly ecosystem-dependent, with various seasonality and diurnal cycles at these sites. These findings implicate that regional characteristics and fine-particle emissions need to be treated sensitively when assessing their climatic effects.
Wen Xu, Wei Song, Yangyang Zhang, Xuejun Liu, Lin Zhang, Yuanhong Zhao, Duanyang Liu, Aohan Tang, Daowei Yang, Dandan Wang, Zhang Wen, Yuepeng Pan, David Fowler, Jeffrey L. Collett Jr., Jan Willem Erisman, Keith Goulding, Yi Li, and Fusuo Zhang
Atmos. Chem. Phys., 17, 31–46, https://doi.org/10.5194/acp-17-31-2017, https://doi.org/10.5194/acp-17-31-2017, 2017
Short summary
Short summary
This paper evaluates the effectiveness of emission control measures implemented in Beijing during the Parade Blue period by integrating our own results, official-released data and modeling data. We demonstrate that emission control measures make a major contribution to air quality improvement in Beijing and surrounding regions. We conclude a joint local and regional control of secondary aerosol precursors to be key to curbing air pollution in Beijing.
S. L. Tian, Y. P. Pan, and Y. S. Wang
Atmos. Chem. Phys., 16, 1–19, https://doi.org/10.5194/acp-16-1-2016, https://doi.org/10.5194/acp-16-1-2016, 2016
Short summary
Short summary
Size-resolved chemical information of particulate matter remains unclear in China due to a paucity of measurement data. One-year observation of water-soluble ions, carbonaceous species and trace elements in size-resolved particles with cutoff points as 0.43, 0.65, 1.1, 2.1, 3.3, 4.7, 5.8 and 9.0 μm were conducted in mega city Beijing. This unique dataset provided multidimensional insights into the sources among different size fractions, seasons or wind flows and between non-haze and haze days.
W. Xu, X. S. Luo, Y. P. Pan, L. Zhang, A. H. Tang, J. L. Shen, Y. Zhang, K. H. Li, Q. H. Wu, D. W. Yang, Y. Y. Zhang, J. Xue, W. Q. Li, Q. Q. Li, L. Tang, S. H. Lu, T. Liang, Y. A. Tong, P. Liu, Q. Zhang, Z. Q. Xiong, X. J. Shi, L. H. Wu, W. Q. Shi, K. Tian, X. H. Zhong, K. Shi, Q. Y. Tang, L. J. Zhang, J. L. Huang, C. E. He, F. H. Kuang, B. Zhu, H. Liu, X. Jin, Y. J. Xin, X. K. Shi, E. Z. Du, A. J. Dore, S. Tang, J. L. Collett Jr., K. Goulding, Y. X. Sun, J. Ren, F. S. Zhang, and X. J. Liu
Atmos. Chem. Phys., 15, 12345–12360, https://doi.org/10.5194/acp-15-12345-2015, https://doi.org/10.5194/acp-15-12345-2015, 2015
Short summary
Short summary
The annual average concentrations (1.3-47.0µg N m-3) and dry plus wet/bulk deposition fluxes (2.9-83.3kg N ha-1 yr-1) of inorganic Nr species ranked by land use as urban > rural > background sites and by regions as north China > southeast China > southwest China > northeast China > northwest China > Tibetan Plateau, reflecting the impact of anthropogenic Nr emission. Average dry and wet/bulk N deposition fluxes were 20.6 ± 11.2 and 19.3 ± 9.2kg kg N ha-1 yr-1 across China, respectively.
Y. Zhao, L. Zhang, Y. Pan, Y. Wang, F. Paulot, and D. K. Henze
Atmos. Chem. Phys., 15, 10905–10924, https://doi.org/10.5194/acp-15-10905-2015, https://doi.org/10.5194/acp-15-10905-2015, 2015
Short summary
Short summary
Rapid Asian industrialization has led to increased atmospheric nitrogen deposition downwind. This work analyzes the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific. Both nitrogen emissions and meteorology, largely controlled by the East Asian Monsoon, determine the seasonality of nitrogen deposition. Ascribing deposition over the marginal seas to nitrogen sources from different regions and sectors shows important contribution from fertilizer use.
Y. Liu, B. Yuan, X. Li, M. Shao, S. Lu, Y. Li, C.-C. Chang, Z. Wang, W. Hu, X. Huang, L. He, L. Zeng, M. Hu, and T. Zhu
Atmos. Chem. Phys., 15, 3045–3062, https://doi.org/10.5194/acp-15-3045-2015, https://doi.org/10.5194/acp-15-3045-2015, 2015
Y. P. Pan and Y. S. Wang
Atmos. Chem. Phys., 15, 951–972, https://doi.org/10.5194/acp-15-951-2015, https://doi.org/10.5194/acp-15-951-2015, 2015
Short summary
Short summary
This paper presents the first concurrent measurements of wet and dry deposition of various trace elements in Northern China, covering an extensive area over 3 years in a global hotspot of air pollution. The unique field data can serve as a sound basis for the validation of regional emission inventories and biogeochemical or atmospheric chemistry models. The findings are very important for policy makers to create legislation to reduce the emissions and protect soil and water from air pollution.
J. F. Peng, M. Hu, Z. B. Wang, X. F. Huang, P. Kumar, Z. J. Wu, S. Guo, D. L. Yue, D. J. Shang, Z. Zheng, and L. Y. He
Atmos. Chem. Phys., 14, 10249–10265, https://doi.org/10.5194/acp-14-10249-2014, https://doi.org/10.5194/acp-14-10249-2014, 2014
W. W. Hu, M. Hu, B. Yuan, J. L. Jimenez, Q. Tang, J. F. Peng, W. Hu, M. Shao, M. Wang, L. M. Zeng, Y. S. Wu, Z. H. Gong, X. F. Huang, and L. Y. He
Atmos. Chem. Phys., 13, 10095–10112, https://doi.org/10.5194/acp-13-10095-2013, https://doi.org/10.5194/acp-13-10095-2013, 2013
Y. P. Pan, Y. S. Wang, G. Q. Tang, and D. Wu
Atmos. Chem. Phys., 13, 1675–1688, https://doi.org/10.5194/acp-13-1675-2013, https://doi.org/10.5194/acp-13-1675-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Molecular composition, sources, and evolution of atmospheric organic aerosols in a basin city in China
Characterizing lead-rich particles in Beijing's atmosphere following coal-to-gas conversion: insights from single-particle aerosol mass spectrometry
Climatology of aerosol pH and its controlling factors at the Melpitz continental background site in Central Europe
Technical note: Towards a stronger observational support for haze pollution control by interpreting carbonaceous aerosol results derived from different measurement approaches
Particle flux–gradient relationships in the high Arctic: emission and deposition patterns across three surface types
Advances in characterization of black carbon particles and their associated coatings using the soot-particle aerosol mass spectrometer in Singapore, a complex city environment
Iron isotopes suggest significant aerosol dissolution over the Pacific Ocean
Enrichment of organic nitrogen in fog residuals observed in the Italian Po Valley
Asian dust transport of proteinaceous matter from the Gobi Desert to northern China
Machine-learning-assisted chemical characterization and optical properties of atmospheric brown carbon in Nanjing, China
Technical note: Reconstructing missing surface aerosol elemental carbon data in long-term series with ensemble learning
Enhanced emission of intermediate-volatility/semi-volatile organic matter in gas and particle phases from ship exhausts with low-sulfur fuels
Measurement report: Crustal materials play an increasing role in elevating particle pH – insights from 12-year records in a typical inland city of China
Significant contributions of biomass burning to PM2.5-bound aromatic compounds: insights from field observations and quantum chemical calculations
Measurement report: In-depth characterization of ship emissions during operations in a Mediterranean port
Direct measurement of N2O5 heterogeneous uptake coefficients on atmospheric aerosols in southwestern China and evaluation of current parameterizations
Measurement report: Per- and polyfluoroalkyl substances (PFAS) in particulate matter (PM10) from activated sludge aeration
African dust transported to Barbados in the wintertime lacks indicators of chemical aging
A 60-year atmospheric nitrate isotope record from a southeastern Greenland ice core with minimal postdepositional alteration
Measurement report: Characterization of aerosol hygroscopicity over Southeast Asia during the NASA CAMP2Ex campaign
Long–term Trends in PM2.5 Chemical Composition and Its Impact on Aerosol Properties: Field Observations from 2007 to 2020 in Pearl River Delta, South China
Atmospheric Organosulfate Formation Regulated by Continental Outflows and Marine Emissions over East Asian Marginal Seas
Individual particle compositions and aerosol mixing states at different altitudes over the ocean in East Asia
Molecular characterization of organic aerosols in urban and forested areas of Paris using high-resolution mass spectrometry
Measurement report: Wintertime aerosol characterization at an urban traffic site in Helsinki, Finland
Source apportionment and ecotoxicity of PM2.5 pollution events in a major Southern Hemisphere megacity: influence of a biofuel-impacted fleet and biomass burning
The impacts of pollution sources and temperature on the light absorption of HULIS were revealed by UHPLC-HRMS/MS at the molecular structure level
Effects of Anthropogenic Pollutants on Biogenic Secondary Organic Aerosol Formation in the Atmosphere of Mt. Hua, China
Marine organic aerosol at Mace Head: effects from phytoplankton and source region variability
Elemental composition, iron mineralogy and solubility of anthropogenic and natural mineral dust aerosols in Namibia: a case study analysis from the AEROCLO-sA campaign
Fossil-Dominated SOA Formation in Coastal China: Size-Divergent Pathways of Aqueous Fenton Reactions versus Gas-phase VOC Autoxidation
Measurement report: Sources and meteorology influencing highly time-resolved PM2.5 trace elements at three urban sites in the extremely polluted Indo-Gangetic Plain in India
Measurement report: Year-long chemical composition, optical properties, and sources of atmospheric aerosols in the northeastern Tibetan Plateau
Formation of highly absorptive secondary brown carbon through nighttime multiphase chemistry of biomass burning emissions
Hydroxymethanesulfonate (HMS) Formation under Urban and Marine Atmosphere: role of aerosol ionic strength
The sources and diurnal variations of submicron aerosols in a coastal-rural environment near Houston, US
Measurement report: Vertically resolved atmospheric properties observed over the Southern Great Plains with the ArcticShark uncrewed aerial system
Measurement report: Simultaneous measurement on atmospheric gas- and aerosol-phase water-soluble organics in Shanghai: Remarkable increase in light absorbing of Asian dust aerosols during long-range transport
Unraveling Arctic submicron organic aerosol sources: a year-long study by H-NMR and AMS in Ny-Ålesund, Svalbard
Non-biogenic sources are an important but overlooked contributor to aerosol isoprene-derived organosulfates during winter in northern China
Unveiling single-particle composition, size, shape, and mixing state of freshly emitted Icelandic dust via electron microscopy analysis
The Critical Role of Volatile Organic Compounds Emission in Nitrate Formation in Lhasa, Tibetan Plateau: Insights from Oxygen Isotope Anomaly Measurements
The critical role of aqueous-phase processes in aromatic-derived nitrogen-containing organic aerosol formation in cities with different energy consumption patterns
Characterization of atmospheric water-soluble brown carbon in the Athabasca oil sands region, Canada
Sensitivity of aerosol and cloud properties to coupling strength of marine boundary layer clouds over the northwest Atlantic
Burning conditions and transportation pathways determine biomass-burning aerosol properties in the Ascension Island marine boundary layer
Observations of high-time-resolution and size-resolved aerosol chemical composition and microphysics in the central Arctic: implications for climate-relevant particle properties
A critical review of the use of iron isotopes in atmospheric aerosol research
Measurement report: Brown carbon aerosol in rural Germany – sources, chemistry, and diurnal variations
Atmospheric chemistry in East Asia determines the iron solubility of aerosol particles supplied to the North Pacific Ocean
Junke Zhang, Xinyi Fu, Chunying Chen, Yunfei Su, Siyu Liu, Luyao Chen, Yubao Chen, Gehui Wang, and Andre S. H. Prevot
Atmos. Chem. Phys., 25, 8983–9004, https://doi.org/10.5194/acp-25-8983-2025, https://doi.org/10.5194/acp-25-8983-2025, 2025
Short summary
Short summary
We measured (at the molecular level) the 125 organic aerosol (OA) compounds present in Chengdu in winter. OA was dominated by fatty acids, phthalate esters, and anhydrosugars, and it was deeply influenced by anthropogenic sources. As pollution worsened, secondary inorganic species and secondary organic carbon (OC) dominated the increase in PM2.5, fatty acids and anhydrosugars dominated the increase in OA, and the contributions of secondary formation and biomass burning to OC increased markedly.
Xiufeng Lian, Yongjiang Xu, Fengxian Liu, Long Peng, Xiaodong Hu, Guigang Tang, Xu Dao, Hui Guo, Liwei Wang, Bo Huang, Chunlei Cheng, Lei Li, Guohua Zhang, Xinhui Bi, Xiaofei Wang, Zhen Zhou, and Mei Li
Atmos. Chem. Phys., 25, 8891–8905, https://doi.org/10.5194/acp-25-8891-2025, https://doi.org/10.5194/acp-25-8891-2025, 2025
Short summary
Short summary
In this study, we analyzed the mixing state and atmospheric chemical processes of Pb-rich single particles in Beijing. We focused on analyzing the differences in Pb-rich particles between the heating period and non-heating period, as well as the formation mechanism of lead nitrate after coal-to-gas conversion. Our results highlighted the improvement of Pb levels in the particulate as a result of coal-to-gas conversion.
Vikram Pratap, Christopher J. Hennigan, Bastian Stieger, Andreas Tilgner, Laurent Poulain, Dominik van Pinxteren, Gerald Spindler, and Hartmut Herrmann
Atmos. Chem. Phys., 25, 8871–8889, https://doi.org/10.5194/acp-25-8871-2025, https://doi.org/10.5194/acp-25-8871-2025, 2025
Short summary
Short summary
In this work, we characterize trends in aerosol pH and its controlling factors during the period 2010–2019 at the Melpitz research station in eastern Germany. We find strong trends in aerosol pH and major inorganic species in response to changing emissions. We conduct a detailed thermodynamic analysis of the aerosol system and discuss implications for controlling particulate matter in the region.
Yuan Cheng, Ying-jie Zhong, Zhi-qing Zhang, Xu-bing Cao, and Jiu-meng Liu
Atmos. Chem. Phys., 25, 8493–8505, https://doi.org/10.5194/acp-25-8493-2025, https://doi.org/10.5194/acp-25-8493-2025, 2025
Short summary
Short summary
As an emerging hotspot of atmospheric sciences, northeastern China is distinct due to the frigid winter and the strong emissions from agricultural fires. Based on field campaigns conducted in Harbin, we successively identified the analytical method that could lead to proper results of organic and elemental carbon. Our results are believed to be a support for future efforts in the exploration of PM2.5 sources in northeastern China, which are essential for further improving the regional air quality.
Theresa Mathes, Heather Guy, John Prytherch, Julia Kojoj, Ian Brooks, Sonja Murto, Paul Zieger, Birgit Wehner, Michael Tjernström, and Andreas Held
Atmos. Chem. Phys., 25, 8455–8474, https://doi.org/10.5194/acp-25-8455-2025, https://doi.org/10.5194/acp-25-8455-2025, 2025
Short summary
Short summary
The Arctic is warming faster than the global average and an investigation of aerosol–cloud–sea ice interactions is crucial for studying its climate system. During the ARTofMELT Expedition 2023, particle and sensible heat fluxes were measured over different surfaces. Wide lead surfaces acted as particle sources, with the strongest sensible heat fluxes, while closed ice surfaces acted as particle sinks. In this study, methods to measure these interactions are improved, enhancing our understanding of Arctic climate processes.
Mutian Ma, Laura-Hélèna Rivellini, Yichen Zong, Markus Kraft, Liya E. Yu, and Alex King Yin Lee
Atmos. Chem. Phys., 25, 8185–8211, https://doi.org/10.5194/acp-25-8185-2025, https://doi.org/10.5194/acp-25-8185-2025, 2025
Short summary
Short summary
This work advances our understanding of the emission and atmospheric evolution of black carbon (BC) particles in Singapore, a complex urban environment impacted by multiple local and regional combustion sources, based on the improved source apportionment analysis of real-time aerosol mass spectrometry measurement.
Capucine Camin, François Lacan, Catherine Pradoux, Marie Labatut, Anne Johansen, and James W. Murray
Atmos. Chem. Phys., 25, 8213–8228, https://doi.org/10.5194/acp-25-8213-2025, https://doi.org/10.5194/acp-25-8213-2025, 2025
Short summary
Short summary
This paper presents the chemical and iron isotopic composition of aerosols (> 1 µm) over the equatorial and tropical Pacific Ocean in previously undocumented areas. Analysis of our data suggests that a significant proportion of aerosol iron (∼ 13 %) is not only dissolved but also removed during atmospheric transport. Such removal had not previously been evidenced to our knowledge. This highlights the unique and strong constraints brought by iron isotopes on atmospheric process studies.
Fredrik Mattsson, Almuth Neuberger, Liine Heikkinen, Yvette Gramlich, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Paul Zieger, Ilona Riipinen, and Claudia Mohr
Atmos. Chem. Phys., 25, 7973–7989, https://doi.org/10.5194/acp-25-7973-2025, https://doi.org/10.5194/acp-25-7973-2025, 2025
Short summary
Short summary
This study investigated aerosol–cloud interactions, focusing on organic nitrogen (ON) formation in the aqueous phase. Measurements were conducted in wintertime in the Po Valley, Italy, using aerosol mass spectrometry. The fog was enriched in more hygroscopic inorganic compounds and ON, containing, e.g., imidazoles. The formation of imidazole by aerosol–fog interactions could be confirmed for the first time in atmospheric observations. Findings highlight the role of fog in nitrogen aerosol formation.
Ren-Guo Zhu, Hua-Yun Xiao, Meiju Yin, Hao Xiao, Zhongkui Zhou, Yuanyuan Pan, Guo Wei, and Cheng Liu
Atmos. Chem. Phys., 25, 7699–7718, https://doi.org/10.5194/acp-25-7699-2025, https://doi.org/10.5194/acp-25-7699-2025, 2025
Short summary
Short summary
The concentrations and δ15N isotopic values of CAAs (combined amino acids) in surface soil and plants from the Gobi Desert, as well as in PM2.5 samples from four cities in Northern China, were measured. CAAs transported by Gobi dust were rich in alanine, glycine and glutamic acid. Glycine and leucine in Gobi Desert sources exhibited δ15N depletion by more than 6 ‰ compared to their values in urban PM2.5. Substantial protein-N deposition can be transported by the Gobi Desert to northern China over brief periods.
Yu Huang, Xingru Li, Dan Dan Huang, Ruoyuan Lei, Binhuang Zhou, Yunjiang Zhang, and Xinlei Ge
Atmos. Chem. Phys., 25, 7619–7645, https://doi.org/10.5194/acp-25-7619-2025, https://doi.org/10.5194/acp-25-7619-2025, 2025
Short summary
Short summary
This work comprises a comprehensive investigation into the chemical and optical properties of brown carbon (BrC) in PM2.5 samples collected in Nanjing, China. In particular, we used a machine learning approach to identify a list of key BrC species, which can be a good reference for future studies. Our findings extend understanding of BrC properties and are valuable to the assessment of BrC's impact on air quality and radiative forcing.
Qingxiao Meng, Yunjiang Zhang, Sheng Zhong, Jie Fang, Lili Tang, Yongcai Rao, Minfeng Zhou, Jian Qiu, Xiaofeng Xu, Jean-Eudes Petit, Olivier Favez, and Xinlei Ge
Atmos. Chem. Phys., 25, 7485–7498, https://doi.org/10.5194/acp-25-7485-2025, https://doi.org/10.5194/acp-25-7485-2025, 2025
Short summary
Short summary
We developed a machine-learning-based method to reconstruct missing elemental carbon (EC) data in four Chinese cities from 2013 to 2023. Using machine learning, we filled data gaps and introduced a new approach to analyze EC trends. Our findings reveal a significant decline in EC due to stricter pollution controls, though this slowed after 2020. This study provides a versatile framework for addressing data gaps and supports strategies to reduce urban air pollution and its climate impacts.
Binyu Xiao, Fan Zhang, Zeyu Liu, Yan Zhang, Rui Li, Can Wu, Xinyi Wan, Yi Wang, Yubao Chen, Yong Han, Min Cui, Libo Zhang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 25, 7053–7069, https://doi.org/10.5194/acp-25-7053-2025, https://doi.org/10.5194/acp-25-7053-2025, 2025
Short summary
Short summary
Intermediate-volatility/semi-volatile organic compounds in gas and particle phases from ship exhausts are enhanced due to the switch of fuels from low sulfur to ultra-low sulfur. The findings indicate that optimization is necessary for the forthcoming global implementation of an ultra-low-sulfur oil policy. Besides, we find that organic diagnostic markers of hopanes in conjunction with the ratio of octadecanoic to tetradecanoic could be considered potential tracers for heavy fuel oil exhausts.
Hongyu Zhang, Shenbo Wang, Zhangsen Dong, Xiao Li, and Ruiqin Zhang
Atmos. Chem. Phys., 25, 6943–6955, https://doi.org/10.5194/acp-25-6943-2025, https://doi.org/10.5194/acp-25-6943-2025, 2025
Short summary
Short summary
Analyzing 12-year Zhengzhou data revealed post-2019 crustal material rebound caused by soil dust resuspension, elevating particle pH. Similar coarse particle increases are observed across cities of the North China Plain. Long-term particle acidity evolution in this region requires an integrated assessment of interactions among acidic precursors, ammonia, and crustal components.
Yanqin Ren, Zhenhai Wu, Fang Bi, Hong Li, Haijie Zhang, Junling Li, Rui Gao, Fangyun Long, Zhengyang Liu, Yuanyuan Ji, and Gehui Wang
Atmos. Chem. Phys., 25, 6975–6990, https://doi.org/10.5194/acp-25-6975-2025, https://doi.org/10.5194/acp-25-6975-2025, 2025
Short summary
Short summary
The daily concentrations of Polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and nitrated phenols (NPs) in PM2.5 were all increased during the heating season. Biomass burning was identified to be the primary source of these aromatic compounds, particularly for PAHs. Phenol and nitrobenzene are two main primary precursors for 4NP, with phenol showing lower reaction barriers. P-Cresol was identified as the primary precursor for the formation of 4-methyl-5-nitrocatechol.
Lise Le Berre, Brice Temime-Roussel, Grazia Maria Lanzafame, Barbara D'Anna, Nicolas Marchand, Stéphane Sauvage, Marvin Dufresne, Liselotte Tinel, Thierry Leonardis, Joel Ferreira de Brito, Alexandre Armengaud, Grégory Gille, Ludovic Lanzi, Romain Bourjot, and Henri Wortham
Atmos. Chem. Phys., 25, 6575–6605, https://doi.org/10.5194/acp-25-6575-2025, https://doi.org/10.5194/acp-25-6575-2025, 2025
Short summary
Short summary
A summer campaign in a Mediterranean port examined pollution caused by ships. Two stations in the port measured pollution levels and captured over 350 ship plumes to study their chemical composition. Results showed that pollution levels, such as ultra-fine particles, were higher in the port than in the city and offer strong support to improve emission inventories. These findings may also serve as reference to assess the benefits of a sulfur Emission Control Area in the Mediterranean in 2025.
Jiayin Li, Tianyu Zhai, Xiaorui Chen, Haichao Wang, Shuyang Xie, Shiyi Chen, Chunmeng Li, Yuanjun Gong, Huabin Dong, and Keding Lu
Atmos. Chem. Phys., 25, 6395–6406, https://doi.org/10.5194/acp-25-6395-2025, https://doi.org/10.5194/acp-25-6395-2025, 2025
Short summary
Short summary
We directly measured the dinitrogen pentoxide (N2O5) uptake coefficient using an aerosol flow tube, which critically impacts the NOx fate and particulate nitrate formation in a typical highland city, Kunming, in China. We found that the performance of current γ (N2O5) parameterizations showed deviations with the varying aerosol liquid water content (ALWC). Such differences would lead to biased estimation of particulate nitrate production potential. We give suggestions for future research directions.
Jishnu Pandamkulangara Kizhakkethil, Zongbo Shi, Anna Bogush, and Ivan Kourtchev
Atmos. Chem. Phys., 25, 5947–5958, https://doi.org/10.5194/acp-25-5947-2025, https://doi.org/10.5194/acp-25-5947-2025, 2025
Short summary
Short summary
Pollution with per- and polyfluoroalkyl substances (PFAS) has received attention due to their environmental persistence and bioaccumulation, but their sources remain poorly understood. PM10 (particulate matter) collected above a scaled-down activated sludge tank treating domestic sewage in the UK was analysed for a range of short-, medium-, and long-chain PFAS. Eight PFAS were detected in the PM10. Our results suggest that wastewater treatment processes, i.e. activated sludge aeration, could aerosolise PFAS into airborne PM.
Haley M. Royer, Michael T. Sheridan, Hope E. Elliott, Edmund Blades, Nurun Nahar Lata, Zezhen Cheng, Swarup China, Zihua Zhu, Andrew P. Ault, and Cassandra J. Gaston
Atmos. Chem. Phys., 25, 5743–5759, https://doi.org/10.5194/acp-25-5743-2025, https://doi.org/10.5194/acp-25-5743-2025, 2025
Short summary
Short summary
Saharan dust transported across the Atlantic to the Caribbean, South America, and North America is hypothesized to undergo chemical processing by acids that enhances cloud droplet formation and nutrient availability. In this study, chemical analysis performed on African dust deposited over Barbados shows that acid tracers are found mostly on sea salt and smoke particles, rather than dust, indicating that dust particles undergo minimal chemical processing.
Zhao Wei, Shohei Hattori, Asuka Tsuruta, Zhuang Jiang, Sakiko Ishino, Koji Fujita, Sumito Matoba, Lei Geng, Alexis Lamothe, Ryu Uemura, Naohiro Yoshida, Joel Savarino, and Yoshinori Iizuka
Atmos. Chem. Phys., 25, 5727–5742, https://doi.org/10.5194/acp-25-5727-2025, https://doi.org/10.5194/acp-25-5727-2025, 2025
Short summary
Short summary
Nitrate isotope records in ice cores reveal changes in NOₓ emissions and atmospheric oxidation chemistry driven by human activity. However, UV-driven postdepositional processes can alter nitrate in snow, making snow accumulation rates critical for preserving these records. This study examines nitrate isotopes in a southeastern Greenland ice core, where high snow accumulation minimizes these effects, providing a reliable archive of atmospheric nitrogen cycling.
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian
Atmos. Chem. Phys., 25, 5469–5495, https://doi.org/10.5194/acp-25-5469-2025, https://doi.org/10.5194/acp-25-5469-2025, 2025
Short summary
Short summary
Novel aerosol hygroscopicity analyses of CAMP2Ex (Cloud, Aerosol, and Monsoon Processes Philippines Experiment) field campaign data show low aerosol hygroscopicity values in Southeast Asia. Organic carbon from smoke decreases hygroscopicity to levels more like those in continental than in polluted marine regions. Hygroscopicity changes at cloud level demonstrate how surface particles impact clouds in the region, affecting model representation of aerosol and cloud interactions in similar polluted marine regions with high organic carbon emissions.
Yunfeng He, Xiang Ding, Quanfu He, Yuqing Zhang, Duohong Chen, Tao Zhang, Kong Yang, Junqi Wang, Qian Cheng, Hao Jiang, Zirui Wang, Ping Liu, Xinming Wang, and Michael Boy
EGUsphere, https://doi.org/10.5194/egusphere-2025-2204, https://doi.org/10.5194/egusphere-2025-2204, 2025
Short summary
Short summary
The long-term field measurements in the Pearl River Delta revealed a significant decline in PM2.5 main components. As air quality improved, secondary species became more dominant. In addition, the proportion of nitrate had doubled. The changes in chemical composition led to the reductions in aerosol acidity, liquid water content and light extinction coefficient. Our results help to improve understanding of the secondary species formation under decreasing anthropogenic emissions.
Shubin Li, Yujue Wang, Yiwen Zhang, Yizhe Yi, Yuchen Wang, Yuqi Guo, Chao Yu, Yue Jiang, Jinhui Shi, Chao Zhang, Jialei Zhu, Wei Hu, Jianzhen Yu, Xiaohong Yao, Huiwang Gao, and Min Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2154, https://doi.org/10.5194/egusphere-2025-2154, 2025
Short summary
Short summary
Organosulfates (OSs) are an unrecognized and potentially important component in marine organic aerosols. In this study, we quantified and characterized the OSs over East Asian marginal seas. The chemical nature and spatiotemporal distribution of OSs were modified by the joint influence of marine emissions and transported terrestrial pollutants. The results highlight the vital roles of OSs in shaping organic aerosol formation and sulfur cycle during summer in marine boundary layer.
Kouji Adachi, Atsushi Yoshida, Tatsuhiro Mori, Nobuhiro Moteki, Sho Ohata, Kazuyuki Kita, Yoshimi Kawai, and Makoto Koike
EGUsphere, https://doi.org/10.5194/egusphere-2025-2230, https://doi.org/10.5194/egusphere-2025-2230, 2025
Short summary
Short summary
This study measured the compositions and mixing states of individual aerosol particles collected at different altitudes over the western North Pacific by simultaneous sampling from an aircraft and a research vessel. The results showed that they were strongly influenced by Siberian Forest biomass burning and mixed with sea spray, and identified various aerosol compositions at different altitudes, sizes, and aerosol sources, highlighting a wide range of individual particle compositions.
Diana L. Pereira, Chiara Giorio, Aline Gratien, Alexander Zherebker, Gael Noyalet, Servanne Chevaillier, Stéphanie Alage, Elie Almarj, Antonin Bergé, Thomas Bertin, Mathieu Cazaunau, Patrice Coll, Ludovico Di Antonio, Sergio Harb, Johannes Heuser, Cécile Gaimoz, Oscar Guillemant, Brigitte Language, Olivier Lauret, Camilo Macias, Franck Maisonneuve, Bénédicte Picquet-Varrault, Raquel Torres, Sylvain Triquet, Pascal Zapf, Lelia Hawkins, Drew Pronovost, Sydney Riley, Pierre-Marie Flaud, Emilie Perraudin, Pauline Pouyes, Eric Villenave, Alexandre Albinet, Olivier Favez, Robin Aujay-Plouzeau, Vincent Michoud, Christopher Cantrell, Manuela Cirtog, Claudia Di Biagio, Jean-François Doussin, and Paola Formenti
Atmos. Chem. Phys., 25, 4885–4905, https://doi.org/10.5194/acp-25-4885-2025, https://doi.org/10.5194/acp-25-4885-2025, 2025
Short summary
Short summary
In order to study aerosols in environments influenced by anthropogenic and biogenic emissions, we performed analyses of samples collected during the ACROSS (Atmospheric Chemistry Of the Suburban Forest) campaign in summer 2022 in the greater Paris area. After analysis of the chemical composition by means of total carbon determination and high-resolution mass spectrometry, this work highlights the influence of anthropogenic inputs on the chemical composition of both urban and forested areas.
Kimmo Teinilä, Sanna Saarikoski, Henna Lintusaari, Teemu Lepistö, Petteri Marjanen, Minna Aurela, Heidi Hellén, Toni Tykkä, Markus Lampimäki, Janne Lampilahti, Luis Barreira, Timo Mäkelä, Leena Kangas, Juha Hatakka, Sami Harni, Joel Kuula, Jarkko V. Niemi, Harri Portin, Jaakko Yli-Ojanperä, Ville Niemelä, Milja Jäppi, Katrianne Lehtipalo, Joonas Vanhanen, Liisa Pirjola, Hanna E. Manninen, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 25, 4907–4928, https://doi.org/10.5194/acp-25-4907-2025, https://doi.org/10.5194/acp-25-4907-2025, 2025
Short summary
Short summary
Physical and chemical properties of particulate matter and concentrations of trace gases were measured in a street canyon in Helsinki, Finland, and an urban background site in January–February 2022 to investigate the effect of wintertime conditions on pollutants. State-of-the-art instruments and a mobile laboratory were used, and the measurement data were analysed further with modelling tools like positive matrix factorization and the Pollution Detection Algorithm.
Guilherme Martins Pereira, Leonardo Yoshiaki Kamigauti, Rubens Fabio Pereira, Djacinto Monteiro dos Santos, Thayná da Silva Santos, José Vinicius Martins, Célia Alves, Cátia Gonçalves, Ismael Casotti Rienda, Nora Kováts, Thiago Nogueira, Luciana Rizzo, Paulo Artaxo, Regina Maura de Miranda, Marcia Akemi Yamasoe, Edmilson Dias de Freitas, Pérola de Castro Vasconcellos, and Maria de Fatima Andrade
Atmos. Chem. Phys., 25, 4587–4616, https://doi.org/10.5194/acp-25-4587-2025, https://doi.org/10.5194/acp-25-4587-2025, 2025
Short summary
Short summary
The chemical composition of fine particulate matter was studied in the megacity of São Paulo (Brazil) during a polluted period. Vehicular-related sources remain relevant; however, a high contribution of biomass burning was observed and correlated with sample ecotoxicity. Emerging biomass burning sources, such as forest fires and sugarcane-bagasse-based power plants, highlight the need for additional control measures alongside stricter rules concerning vehicular emissions.
Tao Qiu, Yanting Qiu, Yongyi Yuan, Rui Su, Xiangxinyue Meng, Jialiang Ma, Xiaofan Wang, Yu Gu, Zhijun Wu, Yang Ning, Xiuyi Hua, Dapeng Liang, and Deming Dong
EGUsphere, https://doi.org/10.5194/egusphere-2025-1808, https://doi.org/10.5194/egusphere-2025-1808, 2025
Short summary
Short summary
Our research reveals that some species from biomass burning and coal combustion dominate the light absorption of organic aerosols during winter. Cold weather helps these species accumulate in aerosols by slowing their degradation and altering atmospheric chemical processes. This means colder regions might experience stronger and more persistent climate impacts. Our findings highlight the importance of local temperatures and pollution sources when tackling climate challenges.
Can Wu, Yubao Chen, Yuwei Sun, Huijun Zhang, Si Zhang, Cong Cao, Jianjun Li, and Gehui Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1668, https://doi.org/10.5194/egusphere-2025-1668, 2025
Short summary
Short summary
Biogenic secondary organic aerosol (BSOA), as an important atmospheric component, is prevalent within the boundary layer and can influence air quality and human health. Our observations demonstrate that anthropogenic NOx and the enhanced aerosol water driven by sulfate inhibit BSOA formation in lifting air masses, leading to a moderate reduction in the SOA burden in the upper boundary layer.
Emmanuel Chevassus, Kirsten N. Fossum, Darius Ceburnis, Lu Lei, Chunshui Lin, Wei Xu, Colin O'Dowd, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 25, 4107–4129, https://doi.org/10.5194/acp-25-4107-2025, https://doi.org/10.5194/acp-25-4107-2025, 2025
Short summary
Short summary
This study presents the first source apportionment of organic aerosol at Mace Head via high-resolution mass spectrometry. Introducing transfer entropy as a novel method reveals that aged organic aerosol originates from both open-ocean ozonolysis and local peat-burning oxidation. Methanesulfonic acid and organic sea spray both mirror phytoplankton activity, with the former closely tied to coccolithophore blooms and the latter linked to diatoms, chlorophytes, and cyanobacteria.
Paola Formenti, Chiara Giorio, Karine Desboeufs, Alexander Zherebker, Marco Gaetani, Clarissa Baldo, Gautier Landrot, Simona Montebello, Servanne Chevaillier, Sylvain Triquet, Guillaume Siour, Claudia Di Biagio, Francesco Battaglia, Jean-François Doussin, Anais Feron, Andreas Namwoonde, and Stuart John Piketh
EGUsphere, https://doi.org/10.5194/egusphere-2025-446, https://doi.org/10.5194/egusphere-2025-446, 2025
Short summary
Short summary
The elemental composition and solubility of several metals, including iron, at a coastal site in Namibia in August–September 2017, indicate that natural and anthropogenic dust had different solubility depending on mineralogy but mostly to the processing by fluoride ions from marine emissions, pointing out to the complexity of atmospheric/oceanic interactions in this region of the world influenced by the Benguela current and significant aerosol load.
Jia-Yuan Wang, Meng-Xue Tang, Shan Lu, Ke-Jin Tang, Xing Peng, Ling-Yan He, and Xiao-Feng Huang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1034, https://doi.org/10.5194/egusphere-2025-1034, 2025
Short summary
Short summary
Our study explores how secondary organic aerosols (SOA), a major component of air pollution, form in different particle sizes in a coastal city in China. We found that SOA in fine particles is mainly produced through aqueous chemical reactions, especially those involving iron. In contrast, coarse particles form SOA through reactions with ozone and gases from both fossil fuels and natural sources. These findings highlight the need for size-specific air pollution models.
Ashutosh K. Shukla, Sachchida N. Tripathi, Shamitaksha Talukdar, Vishnu Murari, Sreenivas Gaddamidi, Manousos-Ioannis Manousakas, Vipul Lalchandani, Kuldeep Dixit, Vinayak M. Ruge, Peeyush Khare, Mayank Kumar, Vikram Singh, Neeraj Rastogi, Suresh Tiwari, Atul K. Srivastava, Dilip Ganguly, Kaspar Rudolf Daellenbach, and André S. H. Prévôt
Atmos. Chem. Phys., 25, 3765–3784, https://doi.org/10.5194/acp-25-3765-2025, https://doi.org/10.5194/acp-25-3765-2025, 2025
Short summary
Short summary
Our study delves into the elemental composition of aerosols at three sites across the Indo-Gangetic Plain (IGP), revealing distinct patterns during pollution episodes. We found significant increases in chlorine (Cl)-rich and solid fuel combustion (SFC) sources, indicating dynamic emission sources, agricultural burning impacts, and meteorological influences. Surges in Cl-rich particles during cold periods highlight their role in particle growth under high-relative-humidity conditions.
Kemei Li, Yanqing An, Jianzhong Xu, Miao Zhong, Wenhui Zhao, and Xiang Qin
EGUsphere, https://doi.org/10.5194/egusphere-2025-41, https://doi.org/10.5194/egusphere-2025-41, 2025
Short summary
Short summary
This study presents a year-long PM2.5 study at Waliguan Baseline Observatory in the northeast of the Tibet Plateau to investigate the optical properties of water-soluble brown carbon and its source. Our findings highlight that organic matter, sulfate, and nitrate are the dominant contributors to PM2.5 mass concentrations. Notable seasonal variations in the light absorption capacity of water-soluble brown carbon, accompanied by a high degree of photochemical oxidation are also observed.
Ye Kuang, Biao Luo, Shan Huang, Junwen Liu, Weiwei Hu, Yuwen Peng, Duohong Chen, Dingli Yue, Wanyun Xu, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 25, 3737–3752, https://doi.org/10.5194/acp-25-3737-2025, https://doi.org/10.5194/acp-25-3737-2025, 2025
Short summary
Short summary
This research reveals the potential importance of nighttime NO3 radical chemistry and aerosol water in the rapid formation of secondary brown carbon from diluted biomass burning emissions. The findings enhance our understanding of nighttime biomass burning evolution and its implications for climate and regional air quality, especially regarding interactions with background aerosol water and water-rich fogs and clouds.
Rongshuang Xu, Yu-Chi Lin, Siyu Bian, Feng Xie, and Yan-Lin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-683, https://doi.org/10.5194/egusphere-2025-683, 2025
Short summary
Short summary
This work reported the hydroxymethanesulfonate (HMS) level in a continental city and, for the first time, in marine atmosphere. The enhancement by aerosol ionic strength (IS) on HMS formation was quantified which first rise with increasing IS, peaking at 4 mol kg–1 before declining. Given the IS range of marine (2–6) and urban aerosol (6–20 mol kg–1) and the clearly negative correlation between humidity and IS, the moderate IS level under humid condition may notably boost ambient HMS formation.
Jing Li, Jiaoshi Zhang, Xianda Gong, Steven Spielman, Chongai Kuang, Ashish Singh, Maria A. Zawadowicz, Lu Xu, and Jian Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-726, https://doi.org/10.5194/egusphere-2025-726, 2025
Short summary
Short summary
Using measurements at a rural coastal site, we quantified aerosols in representative air masses and identified major source of organics in Houston area. Our results show cooking aerosol is likely overestimated by earlier studies. Additionally, diurnal variation of highly oxidized organics is mostly driven by air mass changes instead of photochemistry. This study highlights the impacts of emissions, atmospheric chemistry, and meteorology on aerosol properties in the coastal-rural environment.
Fan Mei, Qi Zhang, Damao Zhang, Jerome D. Fast, Gourihar Kulkarni, Mikhail S. Pekour, Christopher R. Niedek, Susanne Glienke, Israel Silber, Beat Schmid, Jason M. Tomlinson, Hardeep S. Mehta, Xena Mansoura, Zezhen Cheng, Gregory W. Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
Atmos. Chem. Phys., 25, 3425–3444, https://doi.org/10.5194/acp-25-3425-2025, https://doi.org/10.5194/acp-25-3425-2025, 2025
Short summary
Short summary
This study highlights the unique capability of the ArcticShark, an uncrewed aerial system, in measuring vertically resolved atmospheric properties. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures.
Zheng Li, Gehui Wang, Binyu Xiao, Rongjie Li, Can Wu, Shaojun Lv, Feng Wu, Qingyan Fu, and Yusen Duan
EGUsphere, https://doi.org/10.5194/egusphere-2025-654, https://doi.org/10.5194/egusphere-2025-654, 2025
Short summary
Short summary
Gas-to-aerosol partitioning of organics were investigated in Shanghai during 2023 dust storm period. We found the partitioning coefficients (Fp) of WSOCs in DS were comparable to those during a haze episode (HE), and aerosol liquid water content primarily drove Fp variation in HE, while pH was the dominant factor in DS. Moreover, an enhanced light absorption of Asian dust by brown carbon, mainly in coarse mode, formation was revealed.
Marco Paglione, Yufang Hao, Stefano Decesari, Mara Russo, Karam Mansour, Mauro Mazzola, Diego Fellin, Andrea Mazzanti, Emilio Tagliavini, Manousos Ioannis Manousakas, Evangelia Diapouli, Elena Barbaro, Matteo Feltracco, Kaspar Rudolf Daellenbach, and Matteo Rinaldi
EGUsphere, https://doi.org/10.5194/egusphere-2025-760, https://doi.org/10.5194/egusphere-2025-760, 2025
Short summary
Short summary
A year-long set of PM1 samples from Ny-Ålesund, Svalbard, was analyzed by H-NMR and HR-TOF-AMS for the chemical characterization of the organic fraction. Positive Matrix Factorization allowed to identify five organic aerosol sources with specific seasonality. Winter-spring aerosol is dominated by Eurasian pollution, while summer is characterized by biogenic aerosols from marine sources; occasional summertime high OA loadings are associated with wildfire aerosols.
Ting Yang, Yu Xu, Yu-Chen Wang, Yi-Jia Ma, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 25, 2967–2978, https://doi.org/10.5194/acp-25-2967-2025, https://doi.org/10.5194/acp-25-2967-2025, 2025
Short summary
Short summary
Previous measurement–model comparisons of atmospheric isoprene levels showed a significant unidentified source of isoprene in some northern Chinese cities during winter. Here, the first combination of large-scale observations and field combustion experiments provides novel insights into biomass burning emissions as a significant source of isoprene-derived organosulfates during winter in northern cities of China.
Agnesh Panta, Konrad Kandler, Kerstin Schepanski, Andres Alastuey, Pavla Dagsson Waldhauserova, Sylvain Dupont, Melanie Eknayan, Cristina González-Flórez, Adolfo González-Romero, Martina Klose, Mara Montag, Xavier Querol, Jesús Yus-Díez, and Carlos Pérez García-Pando
EGUsphere, https://doi.org/10.5194/egusphere-2025-494, https://doi.org/10.5194/egusphere-2025-494, 2025
Short summary
Short summary
Iceland is among the most active dust source areas in the world. Dust properties are influenced by particle size, mineralogy, shape, and mixing state. This work characterizes freshly emitted individual aerosol particles of Icelandic dust using electron microscopy. Our study provides insights into critical particle-specific information will contribute to better constraining climate models that consider mineralogical variations in their representation of the dust cycle.
Xueqin Zheng, Junwen Liu, Nima Chuduo, Bian Ba, Pengfei Yu, Phu Drolgar, Fang Cao, and Yanlin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-164, https://doi.org/10.5194/egusphere-2025-164, 2025
Short summary
Short summary
In this study, we present the first report on the annual variation of stable oxygen isotope anomalies (∆17O = δ17O - 0.52 × δ18O) in NO3- collected from the urban area of Lhasa , on the Tibetan Plateau, China. Using a Bayesian isotope mixture model, we found that the relative contribution of the NO3+VOC pathway to NO3- formation in spring in Lhasa was several times higher than in urban cities, highlighting the significant influence of VOC transported from outside the Tibetan Plateau.
Yi-Jia Ma, Yu Xu, Ting Yang, Lin Gui, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 25, 2763–2780, https://doi.org/10.5194/acp-25-2763-2025, https://doi.org/10.5194/acp-25-2763-2025, 2025
Short summary
Short summary
The abundance, potential precursors, and main formation mechanisms of nitrogen-containing organic compounds (NOCs) in PM2.5 during winter were compared among cities with different energy consumption patterns. The aerosol NOC pollution during winter in China is closely associated with the intensity of precursor emissions and the aqueous-phase processes. Our results highlight the importance of emission reduction strategies in controlling aerosol NOCs pollution during winter in China.
Dane Blanchard, Mark Gordon, Duc Huy Dang, Paul Andrew Makar, and Julian Aherne
Atmos. Chem. Phys., 25, 2423–2442, https://doi.org/10.5194/acp-25-2423-2025, https://doi.org/10.5194/acp-25-2423-2025, 2025
Short summary
Short summary
This study offers the first known evaluation of water-soluble brown carbon aerosols in the Athabasca oil sands region (AOSR), Canada. Fluorescence spectroscopy analysis of aerosol samples from five regional sites (collected during the summer of 2021) identified oil sands operations as a measurable brown carbon source. Industrial aerosol emissions were unlikely to impact regional radiative forcing. These findings show that fluorescence spectroscopy can be used to monitor brown carbon in the AOSR.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 25, 2407–2422, https://doi.org/10.5194/acp-25-2407-2025, https://doi.org/10.5194/acp-25-2407-2025, 2025
Short summary
Short summary
In situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below-cloud-base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Amie Dobracki, Ernie R. Lewis, Arthur J. Sedlacek III, Tyler Tatro, Maria A. Zawadowicz, and Paquita Zuidema
Atmos. Chem. Phys., 25, 2333–2363, https://doi.org/10.5194/acp-25-2333-2025, https://doi.org/10.5194/acp-25-2333-2025, 2025
Short summary
Short summary
Biomass-burning aerosol is commonly present in the marine boundary layer over the southeast Atlantic Ocean between June and October. Our research indicates that burning conditions, aerosol transport pathways, and prolonged oxidation processes (heterogeneous and aqueous phases) determine the chemical, microphysical, and optical properties of the boundary layer aerosol. Notably, we find that the aerosol optical properties can be estimated from the chemical properties alone.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiia Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
Atmos. Chem. Phys., 25, 2207–2241, https://doi.org/10.5194/acp-25-2207-2025, https://doi.org/10.5194/acp-25-2207-2025, 2025
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol–climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Local wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Yifan Zhang, Rui Li, Zachary B. Bunnell, Yizhu Chen, Guanhong Zhu, Jinlong Ma, Guohua Zhang, Tim M. Conway, and Mingjin Tang
EGUsphere, https://doi.org/10.5194/egusphere-2025-474, https://doi.org/10.5194/egusphere-2025-474, 2025
Short summary
Short summary
The sources of aerosol Fe, especially soluble aerosol Fe, remain to be constrained. The stable isotope ratio of Fe (δ56Fe) has emerged as a potential tracer for discriminating and quantifying sources of aerosol Fe. In this review, we examine the state of the field for using δ56Fe as an aerosol source tracer, and constraints on endmember signatures.
Feng Jiang, Harald Saathoff, Uzoamaka Ezenobi, Junwei Song, Hengheng Zhang, Linyu Gao, and Thomas Leisner
Atmos. Chem. Phys., 25, 1917–1930, https://doi.org/10.5194/acp-25-1917-2025, https://doi.org/10.5194/acp-25-1917-2025, 2025
Short summary
Short summary
The chemical composition of brown carbon in the particle and gas phase was determined by mass spectrometry. BrC in the gas phase was mainly controlled by secondary formation and particle-to-gas partitioning. BrC in the particle phase was mainly from secondary formation. This work helps to get a better understanding of diurnal variations and the sources of brown carbon aerosol at a rural location in central Europe.
Kohei Sakata, Shotaro Takano, Atsushi Matsuki, Yasuo Takeichi, Hiroshi Tanimoto, Aya Sakaguchi, Minako Kurisu, and Yoshio Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2025-161, https://doi.org/10.5194/egusphere-2025-161, 2025
Short summary
Short summary
Deposition of aerosol iron (Fe) into the ocean stimulates primary production and influences the global carbon cycle, although the factors governing the aerosol Fe solubility remain uncertain. Our observations in Japan revealed that both mineral dust and anthropogenic aerosols are significant sources of dissolved Fe, and that atmospheric chemical weathering enhances their solubility. This finding is expected to play a crucial role in estimating the supply of dissolved iron to the ocean.
Cited articles
Aiken, A. C., Salcedo, D., Cubison, M. J., Huffman, J. A., DeCarlo, P. F., Ulbrich, I. M., Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R., Trimborn, A., Northway, M., Stone, E. A., Schauer, J. J., Volkamer, R. M., Fortner, E., de Foy, B., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J., Zhang, R., Gaffney, J., Marley, N. A., Paredes-Miranda, G., Arnott, W. P., Molina, L. T., Sosa, G., and Jimenez, J. L.: Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 1: Fine particle composition and organic source apportionment, Atmos. Chem. Phys., 9, 6633–6653, https://doi.org/10.5194/acp-9-6633-2009, 2009.
Bougiatioti, A., Nikolaou, P., Stavroulas, I., Kouvarakis, G., Weber, R., Nenes, A., Kanakidou, M., and Mihalopoulos, N.: Particle water and pH in the eastern Mediterranean: source variability and implications for nutrient availability, Atmos. Chem. Phys., 16, 4579–4591, https://doi.org/10.5194/acp-16-4579-2016, 2016.
Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications, Atmos. Chem. Phys., 15, 253–272, https://doi.org/10.5194/acp-15-253-2015, 2015.
Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data, Atmos. Meas. Tech., 6, 3649–3661, https://doi.org/10.5194/amt-6-3649-2013, 2013.
Ding, J., Zhao, P., Su, J., Dong, Q., Du, X., and Zhang, Y.: Aerosol pH and its driving factors in Beijing, Atmos. Chem. Phys., 19, 7939–7954, https://doi.org/10.5194/acp-19-7939-2019, 2019.
Du, W., Sun, Y. L., Xu, Y. S., Jiang, Q., Wang, Q. Q., Yang, W., Wang, F., Bai, Z. P., Zhao, X. D., and Yang, Y. C.: Chemical characterization of submicron aerosol and particle growth events at a national background site (3295 m a.s.l.) on the Tibetan Plateau, Atmos. Chem. Phys., 15, 10811–10824, https://doi.org/10.5194/acp-15-10811-2015, 2015.
Duan, J., Huang, R.-J., Lin, C., Dai, W., Wang, M., Gu, Y., Wang, Y., Zhong, H., Zheng, Y., Ni, H., Dusek, U., Chen, Y., Li, Y., Chen, Q., Worsnop, D. R., O'Dowd, C. D., and Cao, J.: Distinctions in source regions and formation mechanisms of secondary aerosol in Beijing from summer to winter, Atmos. Chem. Phys., 19, 10319–10334, https://doi.org/10.5194/acp-19-10319-2019, 2019.
Duan, J., Huang, R.-J., Li, Y., Chen, Q., Zheng, Y., Chen, Y., Lin, C., Ni, H., Wang, M., Ovadnevaite, J., Ceburnis, D., Chen, C., Worsnop, D. R., Hoffmann, T., O'Dowd, C., and Cao, J.: Summertime and wintertime atmospheric processes of secondary aerosol in Beijing, Atmos. Chem. Phys., 20, 3793–3807, https://doi.org/10.5194/acp-20-3793-2020, 2020.
Elser, M., Huang, R.-J., Wolf, R., Slowik, J. G., Wang, Q., Canonaco, F., Li, G., Bozzetti, C., Daellenbach, K. R., Huang, Y., Zhang, R., Li, Z., Cao, J., Baltensperger, U., El-Haddad, I., and Prévôt, A. S. H.: New insights into PM2.5 chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry, Atmos. Chem. Phys., 16, 3207–3225, https://doi.org/10.5194/acp-16-3207-2016, 2016.
Ge, X., Setyan, A., Sun, Y., and Zhang, Q.: Primary and secondary organic
aerosols in Fresno, California during wintertime: Results from high
resolution aerosol mass spectrometry, J. Geophys. Res.-Atmos., 117, D19301, https://doi.org/10.1029/2012JD018026, 2012.
Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite Jr., J. R., Carlton, A. G., Lee, S.-H., Bergin, M. H., Ng, N. L., Nenes, A., and Weber, R. J.: Fine-particle water and pH in the southeastern United States, Atmos. Chem. Phys., 15, 5211–5228, https://doi.org/10.5194/acp-15-5211-2015, 2015.
Guo, H., Weber, R. J., and Nenes, A.: High levels of ammonia do not raise
fine particle pH sufficiently to yield nitrogen oxide-dominated sulfate
production, Sci. Rep.-UK, 7, 12109, https://doi.org/10.1038/s41598-017-11704-0, 2017.
Hu, W., Hu, M., Hu, W.-W., Zheng, J., Chen, C., Wu, Y., and Guo, S.: Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing, Atmos. Chem. Phys., 17, 9979–10000, https://doi.org/10.5194/acp-17-9979-2017, 2017.
Hu, X.-M., Ma, Z., Lin, W., Zhang, H., Hu, J., Wang, Y., Xu, X., Fuentes, J.
D., and Xue, M.: Impact of the Loess Plateau on the atmospheric boundary
layer structure and air quality in the North China Plain: A case study,
Sci. Total Environ., 499, 228–237,
https://doi.org/10.1016/j.scitotenv.2014.08.053, 2014.
Huang, R.-J., Wang, Y., Cao, J., Lin, C., Duan, J., Chen, Q., Li, Y., Gu, Y., Yan, J., Xu, W., Fröhlich, R., Canonaco, F., Bozzetti, C., Ovadnevaite, J., Ceburnis, D., Canagaratna, M. R., Jayne, J., Worsnop, D. R., El-Haddad, I., Prévôt, A. S. H., and O'Dowd, C. D.: Primary emissions versus secondary formation of fine particulate matter in the most polluted city (Shijiazhuang) in North China, Atmos. Chem. Phys., 19, 2283–2298, https://doi.org/10.5194/acp-19-2283-2019, 2019.
Huang, X., Liu, Z., Liu, J., Hu, B., Wen, T., Tang, G., Zhang, J., Wu, F., Ji, D., Wang, L., and Wang, Y.: Chemical characterization and source identification of PM2.5 at multiple sites in the Beijing–Tianjin–Hebei region, China, Atmos. Chem. Phys., 17, 12941–12962, https://doi.org/10.5194/acp-17-12941-2017, 2017.
Huang, X.-F., He, L.-Y., Hu, M., Canagaratna, M. R., Kroll, J. H., Ng, N. L., Zhang, Y.-H., Lin, Y., Xue, L., Sun, T.-L., Liu, X.-G., Shao, M., Jayne, J. T., and Worsnop, D. R.: Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an Aerodyne High-Resolution Aerosol Mass Spectrometer, Atmos. Chem. Phys., 11, 1865–1877, https://doi.org/10.5194/acp-11-1865-2011, 2011.
Huang, X.-F., Xue, L., Tian, X.-D., Shao, W.-W., Sun, T.-L., Gong, Z.-H.,
Ju, W.-W., Jiang, B., Hu, M., and He, L.-Y.: Highly time-resolved
carbonaceous aerosol characterization in Yangtze River Delta of China:
Composition, mixing state and secondary formation, Atmos. Environ.,
64, 200–207, 2013.
Jimenez, J. L., Jayne, J. T., Shi, Q., Kolb, C. E., Worsnop, D. R., Yourshaw, I., Seinfeld, J. H., Flagan, R. C., Zhang, X., Smith, K. A., Morris, J. W., and Davidovits, P.: Ambient aerosol sampling using the Aerodyne Aerosol Mass
Spectrometer, J. Geophys. Res., 108, 8425, https://doi.org/10.1029/2001jd001213, 2003.
Li, H., Zhang, Q., Zhang, Q., Chen, C., Wang, L., Wei, Z., Zhou, S., Parworth, C., Zheng, B., Canonaco, F., Prévôt, A. S. H., Chen, P., Zhang, H., Wallington, T. J., and He, K.: Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: significant contribution from coal and biomass combustion, Atmos. Chem. Phys., 17, 4751–4768, https://doi.org/10.5194/acp-17-4751-2017, 2017.
Li, H., Cheng, J., Zhang, Q., Zheng, B., Zhang, Y., Zheng, G., and He, K.: Rapid transition in winter aerosol composition in Beijing from 2014 to 2017: response to clean air actions, Atmos. Chem. Phys., 19, 11485–11499, https://doi.org/10.5194/acp-19-11485-2019, 2019a.
Li, J., Liu, Z., Cao, L., Gao, W., Yan, Y., Mao, J., Zhang, X., He, L., Xin,
J., Tang, G., Ji, D., Hu, B., Wang, L., Wang, Y., Dai, L., Zhao, D., Du, W.,
and Wang, Y.: Highly time-resolved chemical characterization and
implications of regional transport for submicron aerosols in the North China
Plain, Sci. Total Environ., 705, 135803, https://doi.org/10.1016/j.scitotenv.2019.135803, 2019b.
Li, J., Liu, Z., Gao, W., Tang, G., Hu, B., Ma, Z., and Wang, Y.: Insight
into the formation and evolution of secondary organic aerosol in the
megacity of Beijing, China, Atmos. Environ., 220, 117070,
https://doi.org/10.1016/j.atmosenv.2019.117070, 2020.
Li, Y. J., Lee, B. Y. L., Yu, J. Z., Ng, N. L., and Chan, C. K.: Evaluating the degree of oxygenation of organic aerosol during foggy and hazy days in Hong Kong using high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS), Atmos. Chem. Phys., 13, 8739–8753, https://doi.org/10.5194/acp-13-8739-2013, 2013.
Li, Y. J., Lee, B. P., Su, L., Fung, J. C. H., and Chan, C. K.: Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong, Atmos. Chem. Phys., 15, 37–53, https://doi.org/10.5194/acp-15-37-2015, 2015.
Liu, M., Song, Y., Zhou, T., Xu, Z., Yan, C., Zheng, M., Wu, Z., Hu, M., Wu,
Y., and Zhu, T.: Fine particle pH during severe haze episodes in northern
China, Geophys. Res. Lett., 44, 5213–5221, https://doi.org/10.1002/2017gl073210,
2017.
Liu, Z., Hu, B., Zhang, J., Yu, Y., and Wang, Y.: Characteristics of aerosol
size distributions and chemical compositions during wintertime pollution
episodes in Beijing, Atmos. Res., 168, 1–12,
https://doi.org/10.1016/j.atmosres.2015.08.013, 2016.
Liu, Z., Gao, W., Yu, Y., Hu, B., Xin, J., Sun, Y., Wang, L., Wang, G., Bi, X., Zhang, G., Xu, H., Cong, Z., He, J., Xu, J., and Wang, Y.: Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network, Atmos. Chem. Phys., 18, 8849–8871, https://doi.org/10.5194/acp-18-8849-2018, 2018.
Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R.:
Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne
Aerosol Mass Spectrometer using Field Data, Aerosol Sci. Technol.,
46, 258–271, https://doi.org/10.1080/02786826.2011.620041, 2012.
Nah, T., Guo, H., Sullivan, A. P., Chen, Y., Tanner, D. J., Nenes, A., Russell, A., Ng, N. L., Huey, L. G., and Weber, R. J.: Characterization of aerosol composition, aerosol acidity, and organic acid partitioning at an agriculturally intensive rural southeastern US site, Atmos. Chem. Phys., 18, 11471–11491, https://doi.org/10.5194/acp-18-11471-2018, 2018.
Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H., Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H., Hildebrandt, L., Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prévôt, A. S. H., Dinar, E., Rudich, Y., and Worsnop, D. R.: Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry, Atmos. Chem. Phys., 10, 4625–4641, https://doi.org/10.5194/acp-10-4625-2010, 2010.
Pan, Y., Wang, Y., Sun, Y., Tian, S., and Cheng, M.: Size-resolved aerosol
trace elements at a rural mountainous site in Northern China: importance of
regional transport, Sci. Total Environ., 461, 761–771, 2013.
Poulain, L., Spindler, G., Birmili, W., Plass-Dülmer, C., Wiedensohler, A., and Herrmann, H.: Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz, Atmos. Chem. Phys., 11, 12579–12599, https://doi.org/10.5194/acp-11-12579-2011, 2011.
Qin, Y. M., Li, Y. J., Wang, H., Lee, B. P. Y. L., Huang, D. D., and Chan, C. K.: Particulate matter (PM) episodes at a suburban site in Hong Kong: evolution of PM characteristics and role of photochemistry in secondary aerosol formation, Atmos. Chem. Phys., 16, 14131–14145, https://doi.org/10.5194/acp-16-14131-2016, 2016.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from
air pollution to climate change, Wiley, NewYork, USA, 2016.
Song, S., Nenes, A., Gao, M., Zhang, Y., Liu, P., Shao, J., Ye, D., Xu, W.,
Lei, L., Sun, Y., Liu, B., Wang, S., and McElroy, M. B.: Thermodynamic
Modeling Suggests Declines in Water Uptake and Acidity of Inorganic Aerosols
in Beijing Winter Haze Events during 2014/2015–2018/2019, Environ.
Sci. Tech. Lett., 6, 752–760, https://doi.org/10.1021/acs.estlett.9b00621,
2019.
Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T., Li, J., and Ge, X.: The
impact of relative humidity on aerosol composition and evolution processes
during wintertime in Beijing, China, Atmos. Environ., 77, 927–934,
2013a.
Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren, L., Xu, W., Zhao, J., Han, T., Worsnop, D. R., and Wang, Z.: Primary and secondary aerosols in Beijing in winter: sources, variations and processes, Atmos. Chem. Phys., 16, 8309–8329, https://doi.org/10.5194/acp-16-8309-2016, 2016.
Sun, Y., Xu, W., Zhang, Q., Jiang, Q., Canonaco, F., Prévôt, A. S. H., Fu, P., Li, J., Jayne, J., Worsnop, D. R., and Wang, Z.: Source apportionment of organic aerosol from 2-year highly time-resolved measurements by an aerosol chemical speciation monitor in Beijing, China, Atmos. Chem. Phys., 18, 8469–8489, https://doi.org/10.5194/acp-18-8469-2018, 2018.
Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B., Li, J., and Jia, J. J.: Aerosol composition, sources and processes during wintertime in Beijing, China, Atmos. Chem. Phys., 13, 4577–4592, https://doi.org/10.5194/acp-13-4577-2013, 2013b.
Tan, T., Hu, M., Li, M., Guo, Q., Wu, Y., Fang, X., Gu, F., Wang, Y., and
Wu, Z.: New insight into PM2.5 pollution patterns in Beijing based on
one-year measurement of chemical compositions, Sci. Total Environ., 621,
734-743, https://doi.org/10.1016/j.scitotenv.2017.11.208, 2018.
Tao, M., Chen, L., Su, L., and Tao, J.: Satellite observation of regional
haze pollution over the North China Plain, J. Geophys. Res.-Atmos., 117, D12203, https://doi.org/10.1029/2012JD017915, 2012.
Tian, S., Pan, Y., and Wang, Y.: Ion balance and acidity of size-segregated
particles during haze episodes in urban Beijing, Atmos. Res., 201,
159–167, 2018.
Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.: Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891–2918, https://doi.org/10.5194/acp-9-2891-2009, 2009.
Wang, Q., Zhao, J., Du, W., Ana, G., Wang, Z., Sun, L., Wang, Y., Zhang, F.,
Li, Z., and Ye, X.: Characterization of submicron aerosols at a suburban
site in central China, Atmos. Environ., 131, 115–123, 2016.
Wang, S., Wang, L., Li, Y., Wang, C., Wang, W., Yin, S., and Zhang, R.: Effect of ammonia on fine-particle pH in agricultural regions of China: comparison between urban and rural sites, Atmos. Chem. Phys., 20, 2719–2734, https://doi.org/10.5194/acp-20-2719-2020, 2020.
Wang, Y., Hu, B., Tang, G., Ji, D., Zhang, H., Bai, J., Wang, X., and Wang,
Y.: Characteristics of ozone and its precursors in Northern China: A
comparative study of three sites, Atmos. Res., 132, 450–459, 2013.
Weber, R. J., Guo, H., Russell, A. G., and Nenes, A.: High aerosol acidity
despite declining atmospheric sulfate concentrations over the past 15 years,
Nat. Geosci., 9, 282–285, https://doi.org/10.1038/ngeo2665, 2016.
Xu, J., Zhang, Q., Chen, M., Ge, X., Ren, J., and Qin, D.: Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: insights from high-resolution aerosol mass spectrometry, Atmos. Chem. Phys., 14, 12593–12611, https://doi.org/10.5194/acp-14-12593-2014, 2014.
Xu, W., Han, T., Du, W., Wang, Q., Chen, C., Zhao, J., Zhang, Y., Li, J.,
Fu, P., Wang, Z., Worsnop, D. R., and Sun, Y.: Effects of Aqueous-Phase and
Photochemical Processing on Secondary Organic Aerosol Formation and
Evolution in Beijing, China, Environ. Sci. Technol., 51, 762–770,
https://doi.org/10.1021/acs.est.6b04498, 2017.
Xu, W., Sun, Y., Wang, Q., Zhao, J., Wang, J., Ge, X., Xie, C., Zhou, W.,
Du, W., Li, J., Fu, P., Wang, Z., Worsnop, D. R., and Coe, H.: Changes in
Aerosol Chemistry From 2014 to 2016 in Winter in Beijing: Insights From
High-Resolution Aerosol Mass Spectrometry, J. Geophys. Res.-Atmos., 124, 1132–1147, https://doi.org/10.1029/2018jd029245, 2019.
Yuan, Q., Li, W., Zhou, S., Yang, L., Chi, J., Sui, X., and Wang, W.:
Integrated evaluation of aerosols during haze-fog episodes at one regional
background site in North China Plain, Atmospheric Research, 156, 102-110,
10.1016/j.atmosres.2015.01.002, 2015.
Zhang, J., Wang, Y., Huang, X., Liu, Z., Ji, D., and Sun, Y.:
Characterization of organic aerosols in Beijing using an aerodyne
high-resolution aerosol mass spectrometer, Adv. Atmos. Sci.,
32, 877–888, 2015.
Zhang, J. K., Sun, Y., Liu, Z. R., Ji, D. S., Hu, B., Liu, Q., and Wang, Y. S.: Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013, Atmos. Chem. Phys., 14, 2887–2903, https://doi.org/10.5194/acp-14-2887-2014, 2014a.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L.,
Worsnop, D. R., and Sun, Y.: Understanding atmospheric organic aerosols via
factor analysis of aerosol mass spectrometry: a review, Anal. Bioanal. Chem.,
401, 3045–3067, https://doi.org/10.1007/s00216-011-5355-y, 2011.
Zhang, X., Xu, J., Kang, S., Zhang, Q., and Sun, J.: Chemical characterization and sources of submicron aerosols in the northeastern Qinghai–Tibet Plateau: insights from high-resolution mass spectrometry, Atmos. Chem. Phys., 19, 7897–7911, https://doi.org/10.5194/acp-19-7897-2019, 2019.
Zhang, Y.: Characterization of sub-micron aerosol and its change processes
in BIV (Beijing and its vicinity) region, PhD thesis, Meteorology, Chinese Academy
of Meteorological Sciences, China Meteorological Administration, Beijing,
2011.
Zhang, Y. M., Zhang, X. Y., Sun, J. Y., Hu, G. Y., Shen, X. J., Wang, Y. Q., Wang, T. T., Wang, D. Z., and Zhao, Y.: Chemical composition and mass size distribution of PM1 at an elevated site in central east China, Atmos. Chem. Phys., 14, 12237–12249, https://doi.org/10.5194/acp-14-12237-2014, 2014b.
Zhang, Z., Zhang, Y., Zhang, X., Wang, Y., Shen, X., Sun, J., and Zhou, H.: Sources and characteristics of regional background PM1 in North China during the autumn and winter polluted period, Environ. Sci., 38, 2647–2655, 2017 (in Chinese).
Zhao, D., Xin, J., Gong, C., Quan, J., Liu, G., Zhao, W., Wang, Y., Liu, Z.,
and Song, T.: The formation mechanism of air pollution episodes in Beijing
city: Insights into the measured feedback between aerosol radiative forcing
and the atmospheric boundary layer stability, Sci. Total
Environ., 692, 371–381, 2019.
Zhu, Q., He, L.-Y., Huang, X.-F., Cao, L.-M., Gong, Z.-H., Wang, C., Zhuang, X., and Hu, M.: Atmospheric aerosol compositions and sources at two national background sites in northern and southern China, Atmos. Chem. Phys., 16, 10283–10297, https://doi.org/10.5194/acp-16-10283-2016, 2016.
Short summary
For the first time, we investigated the highly time-resolved chemical characterization, sources and evolution of atmospheric submicron aerosols at a regional background site in the North China Plain (NCP) using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer and evaluated the seasonal differentials of photochemical and aqueous-phase processing on SOA composition and oxidation degree of OA. The results will help to understand air pollution in the NCP on a regional scale.
For the first time, we investigated the highly time-resolved chemical characterization, sources...
Altmetrics
Final-revised paper
Preprint