Articles | Volume 21, issue 4
https://doi.org/10.5194/acp-21-2469-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-2469-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivity of stratospheric water vapour to variability in tropical tropopause temperatures and large-scale transport
Department of Plant Sciences, University of Cambridge, Cambridge, UK
Peter H. Haynes
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
Amanda C. Maycock
School of Earth and Environment, University of Leeds, Leeds, UK
Neal Butchart
Met Office Hadley Centre, Exeter, UK
Andrew C. Bushell
Met Office, Exeter, UK
Related authors
No articles found.
Yvonne Anderson, Jacob Perez, and Amanda C. Maycock
Weather Clim. Dynam., 6, 595–608, https://doi.org/10.5194/wcd-6-595-2025, https://doi.org/10.5194/wcd-6-595-2025, 2025
Short summary
Short summary
The impact of Arctic sea ice loss on the North Atlantic jet stream is debated, with some linking changes to ice loss and others to natural variability. This study uses a new method to explore how future sea ice loss will affect the jet stream. In half of the models, the jet shifts equatorward, but its speed and tilt are unchanged. Some models also exhibit more jet splitting. The results suggest that future sea ice loss is unlikely to significantly weaken the jet stream or make it more variable.
Martin Richard Willett, Melissa Brooks, Andrew Bushell, Paul Earnshaw, Samantha Smith, Lorenzo Tomassini, Martin Best, Ian Boutle, Jennifer Brooke, John M. Edwards, Kalli Furtado, Catherine Hardacre, Andrew J. Hartley, Alan Hewitt, Ben Johnson, Adrian Lock, Andy Malcolm, Jane Mulcahy, Eike Müller, Heather Rumbold, Gabriel G. Rooney, Alistair Sellar, Masashi Ujiie, Annelize van Niekerk, Andy Wiltshire, and Michael Whitall
EGUsphere, https://doi.org/10.5194/egusphere-2025-1829, https://doi.org/10.5194/egusphere-2025-1829, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application. We describe a recent iteration of these configurations, GA8GL9, which includes improvements to the represenation of convection and other physical processes. GA8GL9 is used for operational weather prediction in the UK and forms the basis for the next GA and GL configuration.
Hiroaki Naoe, Jorge L. Garcia-Franco, Chang-Hyun Park, Mario Rodrigo, Froila M. Palmeiro, Federico Serva, Masakazu Taguchi, Kohei Yoshida, James A. Anstey, Javier Garcia-Serrano, Seok-Woo Son, Yoshio Kawatani, Neal Butchart, Kevin Hamilton, Chih-Chieh Chen, Anne Glanville, Tobias Kerzenmacher, Francois Lott, Clara Orbe, Scott Osprey, Mijeong Park, Jadwiga H. Richter, Stefan Versick, and Shingo Watanabe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1148, https://doi.org/10.5194/egusphere-2025-1148, 2025
Short summary
Short summary
This study examines links between the stratospheric Quasi-Biennial Oscillation (QBO) and large-scale atmospheric circulations in the tropics, subtropics, and polar regions. The QBO teleconnections and their modulation by the El Niño-Southern Oscillation (ENSO) are investigated through a series of climate model experiments. While QBO teleconnections are qualitatively reproduced by the multi-model ensemble, they are not consistent due to modelled QBO bias and other systematic model biases.
Amanda C. Maycock, Christine M. McKenna, Matthew D. K. Priestley, Jacob Perez, and Julia F. Lockwood
EGUsphere, https://doi.org/10.5194/egusphere-2025-1131, https://doi.org/10.5194/egusphere-2025-1131, 2025
Short summary
Short summary
Winter North Atlantic storms cause significant financial losses and damage in Europe. This study shows that modes of seasonal large-scale climate variability called the North Atlantic Oscillation and East Atlantic Pattern modulate the exposure to cyclone related extreme wind, precipitation and storm surge hazards across many parts of Europe. The results have the potential to be combined with skilful seasonal climate forecasts of climate modes to inform the insurance sector.
Weronika Osmolska, Charles Chemel, Amanda Maycock, and Paul Field
EGUsphere, https://doi.org/10.5194/egusphere-2025-1014, https://doi.org/10.5194/egusphere-2025-1014, 2025
Short summary
Short summary
Extreme cold temperatures have widespread impacts on health, agriculture, infrastructures and the economy. We develop for the first time a methodology to build a catalogue of cold spell events, tracked in space and time. This catalogue is used to examine the behaviour of cold spells and its climatology. The results reveal specific pathways through which cold air affect midlatitudes.
Dillon Elsbury, Federico Serva, Julie M. Caron, Seung-Yoon Back, Clara Orbe, Jadwiga H. Richter, James A. Anstey, Neal Butchart, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Yoshio Kawatani, Tobias Kerzenmacher, Francois Lott, Hiroaki Naoe, Scott Osprey, Froila M. Palmeiro, Seok-Woo Son, Masakazu Taguchi, Stefan Versick, Shingo Watanabe, and Kohei Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-3950, https://doi.org/10.5194/egusphere-2024-3950, 2025
Short summary
Short summary
This study examines how the Madden-Julian Oscillation (MJO), a major tropical weather pattern, is influenced by persistent El Niño or La Niña sea surface temperature conditions during winter. Using a coordinated set of climate model experiments, we find that El Niño strengthens Kelvin waves, speeding up MJO propagation, while La Niña strengthens Rossby waves, slowing it down. Better understanding these interactions between the MJO and ocean helps us better understand natural climate variability.
Yoshio Kawatani, Kevin Hamilton, Shingo Watanabe, James A. Anstey, Jadwiga H. Richter, Neal Butchart, Clara Orbe, Scott M. Osprey, Hiroaki Naoe, Dillon Elsbury, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Tobias Kerzenmacher, François Lott, Froila M. Palmerio, Mijeong Park, Federico Serva, Masakazu Taguchi, Stefan Versick, and Kohei Yoshioda
EGUsphere, https://doi.org/10.5194/egusphere-2024-3270, https://doi.org/10.5194/egusphere-2024-3270, 2024
Short summary
Short summary
The Quasi-Biennial Oscillation (QBO) of the tropical stratospheric mean winds has been relatively steady over the 7 decades it has been observed, but there are always cycle-to-cycle variations. This study used several global atmospheric models to investigate systematic modulation of the QBO by the El Niño/La Niña cycle. All models simulated shorter periods during El Niño, in agreement with observations. By contrast, the models disagreed even on the sign of the El Niño effect on QBO amplitude.
Jacob Perez, Amanda C. Maycock, Stephen D. Griffiths, Steven C. Hardiman, and Christine M. McKenna
Weather Clim. Dynam., 5, 1061–1078, https://doi.org/10.5194/wcd-5-1061-2024, https://doi.org/10.5194/wcd-5-1061-2024, 2024
Short summary
Short summary
This study assesses existing methods for identifying the position and tilt of the North Atlantic eddy-driven jet, proposing a new feature-based approach. The new method overcomes limitations of other methods, offering a more robust characterisation. Contrary to prior findings, the distribution of daily latitudes shows no distinct multi-modal structure, challenging the notion of preferred jet stream latitudes or regimes. This research enhances our understanding of North Atlantic dynamics.
Rémy Bonnet, Christine M. McKenna, and Amanda C. Maycock
Weather Clim. Dynam., 5, 913–926, https://doi.org/10.5194/wcd-5-913-2024, https://doi.org/10.5194/wcd-5-913-2024, 2024
Short summary
Short summary
Climate models underestimate multidecadal winter North Atlantic Oscillation (NAO) variability. Understanding the origin of this weak variability is important for making reliable climate projections. We use multi-model climate simulations to explore statistical relationships with drivers that may contribute to NAO variability. We find a relationship between modelled stratosphere–troposphere coupling and multidecadal NAO variability, offering an avenue to improve the simulation of NAO variability.
William J. Dow, Christine M. McKenna, Manoj M. Joshi, Adam T. Blaker, Richard Rigby, and Amanda C. Maycock
Weather Clim. Dynam., 5, 357–367, https://doi.org/10.5194/wcd-5-357-2024, https://doi.org/10.5194/wcd-5-357-2024, 2024
Short summary
Short summary
Changes to sea surface temperatures in the extratropical North Pacific are driven partly by patterns of local atmospheric circulation, such as the Aleutian Low. We show that an intensification of the Aleutian Low could contribute to small changes in temperatures across the equatorial Pacific via the initiation of two mechanisms. The effect, although significant, is unlikely to explain fully the recently observed multi-year shift of a pattern of climate variability across the wider Pacific.
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
Christopher D. Wells, Lawrence S. Jackson, Amanda C. Maycock, and Piers M. Forster
Earth Syst. Dynam., 14, 817–834, https://doi.org/10.5194/esd-14-817-2023, https://doi.org/10.5194/esd-14-817-2023, 2023
Short summary
Short summary
There are many possibilities for future emissions, with different impacts in different places. Complex models can study these impacts but take a long time to run, even on powerful computers. Simple methods can be used to reduce this time by estimating the complex model output, but these are not perfect. This study looks at the accuracy of one of these techniques, showing that there are limitations to its use, especially for low-emission future scenarios.
Neal Butchart
Weather Clim. Dynam., 3, 1237–1272, https://doi.org/10.5194/wcd-3-1237-2022, https://doi.org/10.5194/wcd-3-1237-2022, 2022
Short summary
Short summary
In recent years, it has emerged that there is an affinity between stratospheric variability and surface events. Waves from the troposphere interacting with the mean flow drive much of the variability in the polar vortex, sudden stratospheric warmings and tropical quasi-biennial oscillation. Here we review the historical evolution of established knowledge of the stratosphere's global structure and dynamical variability, along with recent advances and theories, and identify outstanding challenges.
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021, https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Short summary
Water vapor is the dominant greenhouse gas in the atmosphere, and El Niño is the dominant mode of variability in the ocean–atmosphere system. The connection between El Niño and water vapor above ~ 17 km is unclear, with single-model studies reaching a range of conclusions. This study examines this connection in 12 different models. While there are substantial differences among the models, all models appear to capture the fundamental physical processes correctly.
Cited articles
Abalos, M., Randel, W. J., and Serrano, E.: Variability in upwelling across the tropical tropopause and correlations with tracers in the lower stratosphere, Atmos. Chem. Phys., 12, 11505–11517, https://doi.org/10.5194/acp-12-11505-2012, 2012. a
Bannister, R., O'Neill, A., Gregory, A., and Nissen, K.: The role of the
south-east Asian monsoon and other seasonal features in creating the
`tape-recorder' signal in the Unified Model, Q. J. Roy. Meteor. Soc., 130, 1531–1554, https://doi.org/10.1256/qj.03.106,
2004. a
Bonazzola, M. and Haynes, P. H.: A trajectory-based study of the tropical
tropopause region, J. Geophys. Res., 109, D20112,
https://doi.org/10.1029/2003JD004356, 2004. a, b, c
Brewer, A. W.: Evidence for a world circulation provided by the measurements
of helium and water vapour distribution in the stratosphere, Q. J. Roy. Meteor. Soc., 75, 351–363,
https://doi.org/10.1002/qj.49707532603, 1949. a
Brinkop, S., Dameris, M., Jöckel, P., Garny, H., Lossow, S., and Stiller, G.: The millennium water vapour drop in chemistry–climate model simulations, Atmos. Chem. Phys., 16, 8125–8140, https://doi.org/10.5194/acp-16-8125-2016, 2016. a
Butchart, N.: The Brewer-Dobson circulation, Rev. Geophys., 52,
157–184, https://doi.org/10.1002/2013RG000448, 2014. a
Cusack, S., Edwards, J. M., and Crowther, J. M.: Investigating k distribution
methods for parameterizing gaseous absorption in the Hadley Centre Climate
Model, J. Geophys. Res.-Atmos., 104, 2051–2057,
https://doi.org/10.1029/1998JD200063, 1999. a
Davis, S. M., Rosenlof, K. H., Hassler, B., Hurst, D. F., Read, W. G., Vömel, H., Selkirk, H., Fujiwara, M., and Damadeo, R.: The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: a long-term database for climate studies, Earth Syst. Sci. Data, 8, 461–490, https://doi.org/10.5194/essd-8-461-2016, 2016. a, b
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N.,
and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Dessler, A., Ye, H., Wang, T., Schoeberl, M., Oman, L., Douglass, A., Butler,
A., Rosenlof, K., Davis, S., and Portmann, R.: Transport of ice into the
stratosphere and the humidification of the stratosphere over the 21st
century, Geophys. Res. Lett., 43, 2323–2329,
https://doi.org/10.1002/2016GL067991, 2016. a
Edwards, J. M. and Slingo, A.: Studies with a flexible new radiation code. I:
Choosing a configuration for a large-scale model, Q. J.
Roy. Meteor. Soc., 122, 689–719, https://doi.org/10.1002/qj.49712253107,
1996. a
European Centre for Medium-range Weather Forecast (ECMWF): The ERA-Interim reanalysis dataset, Copernicus Climate Change Service (C3S), available from https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim (last access: 16 February 2021), 2011. a
Evan, S., Rosenlof, K. H., Thornberry, T., Rollins, A., and Khaykin, S.: TTL
cooling and drying during the January 2013 stratospheric sudden warming,
Q. J. Roy. Meteor. Soc., 141, 3030–3039, https://doi.org/10.1002/qj.2587, 2015. a
Forster, P. M. and Shine, K. P.: Stratospheric water vapour changes as a
possible contributor to observed stratospheric cooling, Geophys. Res. Lett., 26, 3309–3312, https://doi.org/10.1029/1999GL010487, 1999. a, b
Forster, P. M. and Shine, K. P.: Assessing the climate impact of trends in
stratospheric water vapor, Geophys. Res. Lett., 29, 3309–3312,
https://doi.org/10.1029/2001GL013909, 2002. a
Fueglistaler, S. and Haynes, P. H.: Control of interannual and longer-term
variability of stratospheric water vapor, J. Geophys. Res.,
110, D24108, https://doi.org/10.1029/2005JD006019, 2005. a, b
Fueglistaler, S., Wernli, H., and Peter, T.: Tropical
troposphere-to-stratosphere transport inferred from trajectory calculations,
J. Geophys. Res.-Atmos., 109, D03108, https://doi.org/10.1029/2003JD004069, 2004. a
Fueglistaler, S., Bonazzola, M., Haynes, P. H., and Peter, T.: Stratospheric
water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics, J. Geophys. Res., 110,
D08107, https://doi.org/10.1029/2004JD005516, 2005. a
Fueglistaler, S., Dessler, A. E., Dunkerton, T. J., Folkins, I., Fu, Q., and
Mote, P. W.: Tropical tropopause layer, Rev. Geophys., 47, RG1004,
https://doi.org/10.1029/2008RG000267, 2009. a
Fueglistaler, S., Liu, Y., Flannaghan, T., Haynes, P., Dee, D., Read, W.,
Remsberg, E., Thomason, L., Hurst, D., Lanzante, J., and Bernath, P.: The
relation between atmospheric humidity and temperature trends for
stratospheric water, J. Geophys. Res.-Atmos., 118,
1052–1074, https://doi.org/10.1002/jgrd.50157, 2013. a, b, c, d, e, f, g, h, i, j
Fujiwara, M., Hasebe, F., Shiotani, M., Nishi, N., Vomel, H., and Oltmans,
S. J.: Water vapor control at the tropopause by equatorial Kelvin waves
observed over the Galápagos, Geophys. Res. Lett., 28,
3143–3146, https://doi.org/10.1029/2001GL013310, 2001. a
Garfinkel, C. I., Waugh, D. W., Oman, L. D., Wang, L., and Hurwitz, M. M.:
Temperature trends in the tropical upper troposphere and lower stratosphere:
Connections with sea surface temperatures and implications for water vapor
and ozone, J. Geophys. Res.-Atmos., 118, 9658–9672,
https://doi.org/10.1002/jgrd.50772, 2013. a
Gettelman, A., Randel, W., Massie, S., Wu, F., Read, W., and Russell, J.: El
Niño as a natural experiment for studying the tropical tropopause
region, J. Climate, 14, 3375–3392,
https://doi.org/10.1175/1520-0442(2001)014<3375:ENOAAN>2.0.CO;2, 2001. a
Gettelman, A., Hegglin, M. I., Son, S.-W., Kim, J., Fujiwara, M., Birner, T.,
Kremser, S., Rex, M., Añel, J. a., Akiyoshi, H., Austin, J., Bekki, S.,
Braesike, P., Brühl, C., Butchart, N., Chipperfield, M., Dameris, M.,
Dhomse, S., Garny, H., Hardiman, S. C., Jöckel, P., Kinnison, D. E.,
Lamarque, J. F., Mancini, E., Marchand, M., Michou, M., Morgenstern, O.,
Pawson, S., Pitari, G., Plummer, D., Pyle, J. A., Rozanov, E., Scinocca, J.,
Shepherd, T. G., Shibata, K., Smale, D., Teyssèdre, H., and Tian, W.:
Multimodel assessment of the upper troposphere and lower stratosphere:
Tropics and global trends, J. Geophys. Res., 115, D00M08,
https://doi.org/10.1029/2009JD013638, 2010. a
Hardiman, S. C., Boutle, I. A., Bushell, A. C., Butchart, N., Cullen, M. J. P.,
Field, P. R., Furtado, K., Manners, J. C., Milton, S. F., Morcrette, C.,
O'Connor, F. M., Shipway, B. J., Smith, C., Walters, D. N., Willett, M. R.,
Williams, K. D., Wood, N., Abraham, N. L., Keeble, J., Maycock, A. C.,
Thuburn, J., and Woodhouse, M. T.: Processes Controlling Tropical Tropopause
Temperature and Stratospheric Water Vapor in Climate Models, J.
Climate, 28, 6516–6535, https://doi.org/10.1175/JCLI-D-15-0075.1, 2015. a, b, c
Hasebe, F. and Noguchi, T.: A Lagrangian description on the troposphere-to-stratosphere transport changes associated with the stratospheric water drop around the year 2000, Atmos. Chem. Phys., 16, 4235–4249, https://doi.org/10.5194/acp-16-4235-2016, 2016. a, b, c, d
Hatsushika, H. and Yamazaki, K.: Stratospheric drain over Indonesia and
dehydration within the tropical tropopause layer diagnosed by air parcel
trajectories, J. Geophys. Res.-Atmos., 108, 4610,
https://doi.org/10.1029/2002JD002986, 2003. a
Hewitt, H. T., Copsey, D., Culverwell, I. D., Harris, C. M., Hill, R. S. R., Keen, A. B., McLaren, A. J., and Hunke, E. C.: Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system, Geosci. Model Dev., 4, 223–253, https://doi.org/10.5194/gmd-4-223-2011, 2011. a
Holton, J. R. and Gettelman, A.: Horizontal transport and the dehydration of
the stratosphere, Geophys. Res. Lett., 28, 2799–2802,
https://doi.org/10.1029/2001GL013148, 2001. a
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B.,
and Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys.,
33, 403, https://doi.org/10.1029/95RG02097, 1995. a
James, R., Bonazzola, M., Legras, B., Surbled, K., and Fueglistaler, S.: Water vapor transport and dehydration above convective outflow during Asian
monsoon, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL035441,
2008. a
Jensen, E. and Pfister, L.: Transport and freeze-drying in the tropical
tropopause layer, J. Geophys. Res., 109, D02207,
https://doi.org/10.1029/2003JD004022, 2004. a
Johnston, B. R., Xie, F., and Liu, C.: The Effects of Deep Convection on
Regional Temperature Structure in the Tropical Upper Troposphere and Lower
Stratosphere, J. Geophys. Res.-Atmos., 123, 1585–1603,
https://doi.org/10.1002/2017JD027120, 2018. a
Keeble, J., Hassler, B., Banerjee, A., Checa-Garcia, R., Chiodo, G., Davis, S., Eyring, V., Griffiths, P. T., Morgenstern, O., Nowack, P., Zeng, G., Zhang, J., Bodeker, G., Cugnet, D., Danabasoglu, G., Deushi, M., Horowitz, L. W., Li, L., Michou, M., Mills, M. J., Nabat, P., Park, S., and Wu, T.: Evaluating stratospheric ozone and water vapor changes in CMIP6 models from 1850–2100, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2019-1202, in review, 2020. a
Kim, J. and Son, S.-W.: Tropical Cold-Point Tropopause: Climatology, Seasonal Cycle, and Intraseasonal Variability Derived from COSMIC GPS Radio
Occultation Measurements, J. Climate, 25, 5343–5360,
https://doi.org/10.1175/JCLI-D-11-00554.1, 2012. a
Kim, J., Grise, K. M., and Son, S.-W.: Thermal characteristics of the
cold-point tropopause region in CMIP5 models, J. Geophys.
Res.-Atmos., 118, 8827–8841, https://doi.org/10.1002/jgrd.50649, 2013. a, b
Kim, Y.-H., Kiladis, G. N., Albers, J. R., Dias, J., Fujiwara, M., Anstey, J. A., Song, I.-S., Wright, C. J., Kawatani, Y., Lott, F., and Yoo, C.: Comparison of equatorial wave activity in the tropical tropopause layer and stratosphere represented in reanalyses, Atmos. Chem. Phys., 19, 10027–10050, https://doi.org/10.5194/acp-19-10027-2019, 2019. a
Kirk-Davidoff, D. B., Hintsa, E. J., Anderson, J. G., and Keith, D. W.: The
effect of climate change on ozone depletion through changes in stratospheric water vapour, Nature, 402, 399–401, https://doi.org/10.1038/46521, 1999. a
Ko, M., Newman, P., Reiman, S., and Strahan, S., (Eds.): SPARC Report on the
Lifetimes of Stratospheric Ozone-Depleting Substances, Their Replacements,
and Related Species, WCRP-15/2013, available at: https://www.sparc-climate.org/publications/sparc-reports/sparc-report-no-6/ (last access: 13 February 2021),
SPARC Report No. 6, 2013. a, b
Liu, Y.: Lagrangian Studies of Troposphere-to-Stratosphere Transport, PhD
thesis, Cambridge University, Cambridge, UK, 2009. a
Madden, R. A. and Julian, P. R.: Observations of the 40–50-day tropical
oscillation – a review, Mon. Weather Rev., 122, 814–837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2, 1994. a
Maycock, A. C., Joshi, M. M., Shine, K. P., and Scaife, A. A.: The Circulation Response to Idealized Changes in Stratospheric Water Vapor, J. Climate, 26, 545–561, https://doi.org/10.1175/JCLI-D-12-00155.1, 2013. a
Maycock, A. C., Joshi, M. M., Shine, K. P., Davis, S. M., and Rosenlof, K. H.: The potential impact of changes in lower stratospheric water vapour on stratospheric temperatures over the past 30 years, Q. J.
Roy. Meteor. Soc., 140, 2176–2185, https://doi.org/10.1002/qj.2287,
2014. a
Methven, J.: Offline trajectories: Calculation and accuracy, Tech. Rep., 44, U.K. Univ. Global Atmos. Modelling Programme,
Dept. of Meteorol., Univ. of Reading, Reading, UK, 18 pp., 1997. a
Morgenstern, O., Braesicke, P., O'Connor, F. M., Bushell, A. C., Johnson, C. E., Osprey, S. M., and Pyle, J. A.: Evaluation of the new UKCA climate-composition model – Part 1: The stratosphere, Geosci. Model Dev., 2, 43–57, https://doi.org/10.5194/gmd-2-43-2009, 2009. a
Oman, L., Waugh, D. W., Pawson, S., Stolarski, R. S., and Nielsen, J. E.:
Understanding the Changes of Stratospheric Water Vapor in Coupled
Chemistry–Climate Model Simulations, J. Atmos. Sci.,
65, 3278–3291, https://doi.org/10.1175/2008JAS2696.1, 2008. a
Ploeger, F. and Birner, T.: Seasonal and inter-annual variability of lower stratospheric age of air spectra, Atmos. Chem. Phys., 16, 10195–10213, https://doi.org/10.5194/acp-16-10195-2016, 2016. a
Ploeger, F., Günther, G., Konopka, P., Fueglistaler, S., Müller, R.,
Hoppe, C., Kunz, A., Spang, R., Grooß, J. U., and Riese, M.: Horizontal water vapor transport in the lower stratosphere from subtropics to high latitudes during boreal summer, J. Geophys. Res.-Atmos., 118, 8111–8127, https://doi.org/10.1002/jgrd.50636, 2013. a
Randel, W., Wu, F., Oltmans, S., Rosenlof, K., and Nedoluha, G.: Interannual
changes of stratospheric water vapor and correlations with tropical
tropopause temperatures, J. Atmos. Sci., 61,
2133–2148, https://doi.org/10.1175/1520-0469(2004)061<2133:ICOSWV>2.0.CO;2,
2004. a
Randel, W. J., Wu, F., and Ríos, W. R.: Thermal variability of the
tropical tropopause region derived from GPS/MET observations, J.
Geophys. Res., 108, 4024, https://doi.org/10.1029/2002JD002595, 2003. a
Randel, W. J., Wu, F., Vömel, H., Nedoluha, G. E., and Forster, P.:
Decreases in stratospheric water vapor after 2001: Links to changes in the
tropical tropopause and the Brewer-Dobson circulation, J.
Geophys. Res., 111, D12312, https://doi.org/10.1029/2005JD006744, 2006. a, b, c
Rosenlof, K. H. and Reid, G. C.: Trends in the temperature and water vapor
content of the tropical lower stratosphere: Sea surface connection, J. Geophys. Res.-Atmos., 113, D06107, https://doi.org/10.1029/2007JD009109,
2008. a, b
Scaife, A. A., Butchart, N., Warner, C. D., and Swinbank, R.: Impact of a
Spectral Gravity Wave Parameterization on the Stratosphere in the Met Office Unified Model, J. Atmos. Sci., 59, 1473–1489,
https://doi.org/10.1175/1520-0469(2002)059<1473:IOASGW>2.0.CO;2, 2002. a
Schoeberl, M. R. and Dessler, A. E.: Dehydration of the stratosphere, Atmos. Chem. Phys., 11, 8433–8446, https://doi.org/10.5194/acp-11-8433-2011, 2011. a
Smith, J., Haynes, P., and Maycock, A.: Lagrangian Dry Point data regarding the sensitivity of stratospheric water vapour to variability in tropical tropopause temperatures and large-scale transport, CEDA Archive, https://doi.org/10.5285/c6b2f1ca5f8e4c5285fb4f69d1514a03, 2020. a
Smith, J. W.: Timescales of processes controlling stratospheric water vapour
entry to the stratosphere, PhD thesis, University of Cambridge, Cambridge,
https://doi.org/10.17863/CAM.50382, 2020. a, b
Stenke, A. and Grewe, V.: Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry, Atmos. Chem. Phys., 5, 1257–1272, https://doi.org/10.5194/acp-5-1257-2005, 2005. a
Takashima, H., Eguchi, N., and Read, W.: A short-duration cooling event around the tropical tropopause and its effect on water vapor, Geophys. Res. Lett., 37, L20804, https://doi.org/10.1029/2010GL044505, 2010.
a
Tao, M., Konopka, P., Ploeger, F., Riese, M., Müller, R., and Volk, C. M.: Impact of stratospheric major warmings and the quasi-biennial oscillation on the variability of stratospheric water vapor, Geophys. Res.
Lett., 42, 4599–4607, https://doi.org/10.1002/2015GL064443, 2015. a
Tao, M., Konopka, P., Ploeger, F., Yan, X., Wright, J. S., Diallo, M., Fueglistaler, S., and Riese, M.: Multitimescale variations in modeled stratospheric water vapor derived from three modern reanalysis products, Atmos. Chem. Phys., 19, 6509–6534, https://doi.org/10.5194/acp-19-6509-2019, 2019. a
Tegtmeier, S., Anstey, J., Davis, S., Dragani, R., Harada, Y., Ivanciu, I., Pilch Kedzierski, R., Krüger, K., Legras, B., Long, C., Wang, J. S., Wargan, K., and Wright, J. S.: Temperature and tropopause characteristics from reanalyses data in the tropical tropopause layer, Atmos. Chem. Phys., 20, 753–770, https://doi.org/10.5194/acp-20-753-2020, 2020. a
Telford, P. J., Abraham, N. L., Archibald, A. T., Braesicke, P., Dalvi, M., Morgenstern, O., O'Connor, F. M., Richards, N. A. D., and Pyle, J. A.: Implementation of the Fast-JX Photolysis scheme (v6.4) into the UKCA component of the MetUM chemistry-climate model (v7.3), Geosci. Model Dev., 6, 161–177, https://doi.org/10.5194/gmd-6-161-2013, 2013. a
Virts, K. S. and Wallace, J. M.: Observations of Temperature, Wind, Cirrus,
and Trace Gases in the Tropical Tropopause Transition Layer during the MJO, J. Atmos. Sci., 71, 1143–1157,
https://doi.org/10.1175/JAS-D-13-0178.1, 2014. a, b
Short summary
This paper informs realistic simulation of stratospheric water vapour by clearly attributing each of the two key influences on water vapour entry to the stratosphere. Presenting modified trajectory models, the results of this paper show temperatures dominate on annual and inter-annual variations; however, transport has a significant effect in reducing the annual cycle maximum. Furthermore, sub-seasonal variations in temperature have an important overall influence.
This paper informs realistic simulation of stratospheric water vapour by clearly attributing...
Altmetrics
Final-revised paper
Preprint