Articles | Volume 21, issue 23
https://doi.org/10.5194/acp-21-17665-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-21-17665-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Is the Atlantic Ocean driving the recent variability in South Asian dust?
Priyanka Banerjee
CORRESPONDING AUTHOR
Divecha Centre for Climate Change, Indian Institute of Science,
Bangalore, India
Sreedharan Krishnakumari Satheesh
Divecha Centre for Climate Change, Indian Institute of Science,
Bangalore, India
Centre for Atmospheric and Oceanic Sciences, Indian Institute of
Science, Bangalore, India
Krishnaswamy Krishna Moorthy
Centre for Atmospheric and Oceanic Sciences, Indian Institute of
Science, Bangalore, India
Related authors
No articles found.
Archana Devi, Sreedharan K Satheesh, and Jayaraman Srinivasan
EGUsphere, https://doi.org/10.5194/egusphere-2025-4146, https://doi.org/10.5194/egusphere-2025-4146, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This study compares aerosol single scattering albedo data from two algorithms, CERES-MODIS and OMI, across different regions like forests, oceans, land, and deserts. It finds that CERES-MODIS tracks aerosol absorption more accurately, especially in areas with smoke and pollution. In clean regions, both algorithms perform similarly. The study helps scientists understand which satellite gives better data in different conditions, supporting improved climate and air quality research.
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024, https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary
Short summary
The South Asian Pollution Experiment 2018 used access to three strategically located receptor observatories. Observational constraints revealed opposing trends in the mass absorption cross sections of black carbon (BC MAC) and brown carbon (BrC MAC) during long-range transport. Models estimating the climate effects of BC aerosols may have underestimated the ambient BC MAC over distant receptor areas, leading to discrepancies in aerosol absorption predicted by observation-constrained models.
Nair Krishnan Kala, Narayana Sarma Anand, Mohanan R. Manoj, Srinivasan Prasanth, Harshavardhana S. Pathak, Thara Prabhakaran, Pramod D. Safai, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 23, 12801–12819, https://doi.org/10.5194/acp-23-12801-2023, https://doi.org/10.5194/acp-23-12801-2023, 2023
Short summary
Short summary
We present a 3D data set of aerosol black carbon over the Indian mainland by assimilating data from surface, aircraft, and balloon measurements, along with multi-satellite observations. Radiative transfer computations using height-resolved aerosol absorption show higher warming in the free troposphere and will have large implications for atmospheric stability. This data set will help reduce the uncertainty in aerosol radiative effects in climate model simulations over the Indian region.
Nair K. Kala, Narayana Sarma Anand, Mohanan R. Manoj, Harshavardhana S. Pathak, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 6067–6085, https://doi.org/10.5194/acp-22-6067-2022, https://doi.org/10.5194/acp-22-6067-2022, 2022
Short summary
Short summary
We present the 3-D distribution of atmospheric aerosols and highlight its variation with respect to longitudes over the Indian mainland and the surrounding oceans using long-term satellite observations and realistic synthesised data. The atmospheric heating due to the 3-D distribution of aerosols is estimated using radiative transfer calculations. We believe that our findings will have strong implications for aerosol–radiation interactions in regional climate simulations.
Archana Devi and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 5365–5376, https://doi.org/10.5194/acp-22-5365-2022, https://doi.org/10.5194/acp-22-5365-2022, 2022
Short summary
Short summary
Global maps of aerosol absorption were generated using a multi-satellite retrieval algorithm. The retrieved values were validated with available aircraft-based measurements and compared with other global datasets. Seasonal and spatial distributions of aerosol absorption over various regions are also presented. The global maps of single scattering albedo with improved accuracy provide important input to climate models for assessing the climatic impact of aerosols on regional and global scales.
S. Arora, A. V. Kulkarni, P. Ghosh, and S. K. Satheesh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 431–436, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-431-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-431-2021, 2021
Mohanan R. Manoj, Sreedharan K. Satheesh, Krishnaswamy K. Moorthy, Jamie Trembath, and Hugh Coe
Atmos. Chem. Phys., 21, 8979–8997, https://doi.org/10.5194/acp-21-8979-2021, https://doi.org/10.5194/acp-21-8979-2021, 2021
Short summary
Short summary
Vertical distributions of atmospheric aerosols across the Indo-Gangetic Plain (IGP) and their ability to form clouds have been studied based on airborne measurements during the SWAAMI field campaign. The ability of the aerosols to act as cloud-forming nuclei exhibited large spatial variation across the IGP and strong seasonality with increase in this ability with increase in altitude prior to the onset of monsoon and decrease with increase in altitude during the active phase of the monsoon.
Harshavardhana Sunil Pathak, Sreedharan Krishnakumari Satheesh, Krishnaswamy Krishna Moorthy, and Ravi Shankar Nanjundiah
Atmos. Chem. Phys., 20, 14237–14252, https://doi.org/10.5194/acp-20-14237-2020, https://doi.org/10.5194/acp-20-14237-2020, 2020
Short summary
Short summary
We have estimated the aerosol radiative forcing (ARF) by employing the assimilated, gridded aerosol datasets over the Indian region. The present ARF estimates are more accurate and certain than those estimated using the currently available, latest satellite-retrieved aerosol products. Therefore, the present ARF estimates and corresponding assimilated aerosol products emerge as potential candidates for improving the aerosol climate impact assessment at regional, subregional and seasonal scales.
Cited articles
Abish, B. and Mohanakumar, K.: Absorbing aerosol variability over the Indian
subcontinent and its increasing dependence on ENSO, Glob. Planet. Change,
106, 13–19, https://doi.org/10.1016/j.gloplacha.2013.02.007, 2013.
AERONET: Aerosol Robotic network [dataset], available at: https://aeronet.gsfc.nasa.gov/, last access: 31 August 2020.
Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Heavens, N. G.,
Zender, C. S., Maggi, V., Kok, J. F., and Otto-Bliesner, B. L.: Improved
dust representation in the Community Atmosphere Model. J. Adv. Model. Earth
Syst., 6, 541–570, https://doi.org/10.1002/2013MS000279, 2014.
Annamalai, H., Taguchi, B., McCreary, J. P., Nagura, M., and Miyama, T.:
Systematic errors in South Asian monsoon simulation: Importance of
equatorial Indian Ocean processes, J. Clim., 30, 8159–8178,
https://doi.org/10.1175/JCLI-D-16-0573.1, 2017.
Ashok, K., Guan, Z., and Yamagata, T.: Impact of the Indian Ocean dipole on
the relationship between the Indian monsoon rainfall and ENSO, Geophys. Res.
Lett., 28, 4499–4502, https://doi.org/10.1029/2001GL013294, 2001.
Ashok, K., Guan, Z., Saji, N. H., and Yamagata, T.: Individual and combined
influences of ENSO and the Indian Ocean Dipole on the Indian Summer Monsoon,
J. Climate, 17, 3141–3155,
https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2, 2004.
Ashok, K., Behera, S. K., Rao, S. A., Weng, H. Y., and Yamagata, T.: El
Niño Modoki and its possible teleconnection, J. Geophys. Res.-Ocean.,
112, C11007, https://doi.org/10.1029/2006JC003798, 2007.
Ashouri, H., Hsu, K., Sorooshian, S., Braithwaite, D. K., Knapp, K. R.,
Cecil, L. D., Nelson, B. R., and Pratt, O. P.: PERSIANN-CDR: daily
precipitation climate data record from multisatellite observations for
hydrological and climate studies, B. Am. Meteorol. Soc., 96, 69–83,
https://doi.org/10.1175/BAMS-D-13-00068.1, 2015.
Barlow, M., Heidi, C., and Bradfield, L.: Drought in Central and Southwest
Asia: La Ninã, the Warm Pool, and Indian Ocean Precipitation, J.
Climate, 15, 697–700, 2002.
Banerjee, P. and Kumar, S. P.: ENSO Modulation of Interannual Variability
of Dust Aerosols over the Northwest Indian Ocean, J. Clim., 29,
1287–1303, https://doi.org/10.1175/JCLI-D-15-0039.1, 2016.
Banerjee, P., Satheesh, S. K., Krishnamoorthy, K., Nanjundiah, R. S., and
Nair, V. S.: Long-Range Transport of Mineral Dust to the Northeast Indian
Ocean: Regional versus Remote Sources and the Implications, J. Clim., 32,
1525–1549, https://doi.org/10.1175/JCLI-D-18-0403.1, 2019.
Bjerknes, J.: Atlantic air-sea interaction, Adv. Geophys., 10, 1–82
https://doi.org/10.1016/S0065-2687(08)60005-9, 1964.
Bollasina, M. A., Ming, Y., and Ramaswamy, V.: Anthropogenic aerosols and
the weakening of the South Asian summer monsoon, Science, 334, 502–505,
https://doi.org/10.1126/science.1204994, 2011.
Boos, W. R. and Hurley, J. V.: Thermodynamic Bias in the Multimodel Mean
Boreal Summer Monsoon, J. Clim., 26, 2279–2287,
https://doi.org/10.1175/jcli-d-12-00493.1, 2013.
Borah, P. J., Venugopal, V., Sukhatme, J., Muddevihal, P., and Goswami, B.
N.: Indian monsoon derailed by
a North Atlantic wavetrain, Science, 370, 1335–1338, https://doi.org/10.1126/science.aay6043, 2020.
Capelle, V., Chédin, A., Pondrom, M., Crevoisier, C., Armante, R.,
Crepeau, L., and Scott, N.: Infrared dust aerosol optical depth retrieved
daily from IASI and comparison with AERONET over the period 2007–2016,
Remote Sens. Environ., 206, 15–32,
https://doi.org/10.1016/j.rse.2017.12.008, 2018.
Chang, C., Harr, P., and Ju, J.: Possible Roles of Atlantic Circulations on
the Weakening Indian Monsoon Rainfall–ENSO Relationship, J. Clim., 14,
2376–2380, https://doi.org/10.1175/1520-0442(2001)014<2376:PROACO>2.0.CO;2, 2001.
Chattopadhyay, R., Phani, R., Sabeerali, C. T., Dhakate, A. R., Salunke, K.
D., Mahapatra, S., Suryachandra Rao, A., and Goswami, B. N.: Influence of
extratropical sea-surface temperature on the Indian summer monsoon: An
unexplored source of seasonal predictability, Q. J. Roy. Meteor. Soc.,
141, 2760–2775, https://doi.org/10.1002/qj.2562, 2015.
Delworth, T. L., Zeng, F., Vecchi, G. A., Yang, X., Zhang, L., and Zhang,
R.: The North Atlantic Oscillation as a driver of rapid climate change in
the Northern Hemisphere, Nat. Geosci., 9, 509–513,
https://doi.org/10.1038/ngeo2738, 2016.
Deser, C., Guo, R., and Lehner, F.: The relative contributions of tropical
Pacific sea surface temperatures and atmospheric internal variability to the
recent global warming hiatus, Geophys. Res. Lett., 44, 7945–7954,
https://doi.org/10.1002/2017GL074273, 2017a.
Deser, C., Hurrell, J. W., and Phillips, A.S.: The role of the North
Atlantic Oscillation in European climate projections, Clim. Dynam., 49,
3141–3157, https://doi.org/10.1007/s00382-016-3502-z, 2017b.
Deepshikha, S., Satheesh, S. K., and Srinivasan, J.: Dust aerosols over India and adjacent continents retrieved using METEOSAT infrared radiance
Part II: quantification of wind dependence and estimation of radiative forcing, Ann. Geophys., 24, 63–79, https://doi.org/10.5194/angeo-24-63-2006, 2006.
England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai,
W., Gupta, A. S., McPhaden, M. J., Purich, A., and Santoso, A.: Recent
intensification of wind-driven circulation in the Pacific and the on-going
warming hiatus, Nat. Clim. Change, 4, 222–227,
https://doi.org/10.1038/nclimate2106, 2014.
Feng, S. and Hu, Q.: How the North Atlantic Multidecadal Oscillation may
have influenced the Indian summer monsoon during the past two millennia?,
Geophys. Res. Lett., 35, L01707, https://doi.org/10.1029/2007GL032484, 2008.
Folland, C. K., Knight, J., Linderholm, H. W., Fereday, D., Ineson, S., and
Hurrell, J. W.: The summer North Atlantic Oscillation: past, present, and
future, J. Clim., 22, 1082–1103, 2009.
Gao, M., Sherman, P., Song, S., Yu, Y., Wu, Z., and McElroy, M. B.: Seasonal
prediction of Indian wintertime aerosol pollution using the ocean memory
effect, Sci. Adv., 5, eaav4157, https://doi.org/10.1126/sciadv.aav4157,
2019.
Gao, Y., Wang, H. J., and Chen, D.: Interdecadal variations of the South
Asian summer monsoon circulation variability and the associated sea surface
temperatures on interannual scales, Adv. Atmos. Sci., 34, 816–832,
https://doi.org/10.1007/s00376-017-6246-8, 2017.
Gastineau, G. and Frankignoul, C.: Influence of the North Atlantic SST
Variability on the Atmospheric Circulation during the Twentieth Century, J.
Clim., 28, 1396–1416, https://doi.org/10.1175/JCLI-D-14-00424.1, 2015.
Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M.:
Global-scale attribution of anthropogenic and natural dust sources and their
emission rates based on MODIS Deep Blue aerosol products, Rev. Geophys., 50,
RG3005, https://doi.org/10.1029/2012RG000388, 2012.
Goswami, B. N., Madhusoodanan, M., Neema, C., and Sengupta, D.: A physical
mechanism for North Atlantic SST influence on the Indian summer monsoon,
Geophys. Res. Lett., 33, L02706, https://doi.org/10.1029/2005GL024803, 2006.
Han, Z., Luo, F. F., and Wan, J. H.: The observational influence of the North
Atlantic SST tripole on the early spring atmospheric circulation, Geophys.
Res. Lett., 43, 2998–3003, https://doi.org/10.1002/2016GL068099, 2016.
Hanf, F. S. and Annamalai, H.: Systematic Errors in South Asian Monsoon
Precipitation: Process-Based Diagnostics and Sensitivity to Entrainment in
NCAR Models, J. Clim., 33, 2817–2840,
https://doi.org/10.1175/JCLI-D-18-0495.1, 2020.
Hirahara, S., Ishii, M., and Fukuda, Y.: Centennial-scale sea surface
temperature analysis and its uncertainty, J. Clim., 27, 57–75,
https://doi.org/10.1175/JCLI-D-12-00837.1, 2014.
Hsu, N. C., Tsay, S. C., King, M. D., and Herman, J. R.: Aerosol Properties
over Bright-Reflecting Source Regions, IEEE T. Geosci. Remote, 42, 557–569,
https://doi.org/10.1109/TGRS.2004.824067, 2004.
Hsu, N. C., Tsay, S.-C., King, M. D., and Herman, J. R.: Deep Blue
retrievals of Asian aerosol properties during ACE-Asia, IEEE T. Geosci.
Remote Sens., 44, 3180–3195, https://doi.org/10.1109/TGRS.2006.879540,
2006.
Hu, S. and Fedorov, A. V.: The extreme El Niño of 2015–2016 and the end
of global warming hiatus, Geophys. Res. Lett., 44, 3816–3824,
https://doi.org/10.1002/2017GL072908, 2017.
Huang B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H-M.: Extended
Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades,
Validations, and Intercomparisons, J. Clim., 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.
Huang, X., Zhou, T., Turner, A., Dai, A., Chen, X., Clark, R., and Zou, L.:
The Recent Decline and Recovery of Indian Summer Monsoon Rainfall: Relative
Roles of External Forcing and Internal Variability, J. Clim., 33,
5035–5060, https://doi.org/10.1175/jcli-d-19-0833.1, 2020.
Huffman, G. J., Alder, R. F., Arkin, P., Chang, A., Ferraro, R., Gruber, A.,
Janowiak, J., McNab, A., Rudolf, B., and Schneider, U.: The Global
Precipitation Climatology Project (GPCP) Combined Precipitation Dataset, B.
Am. Meteorol. Soc., 78, 5–20,
https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2, 1997.
Hurrell, J. W.: Decadal trends in the North Atlantic oscillation: Regional
temperatures and precipitation, Science, 269, 676–679,
https://doi.org/10.1126/science.269.5224.676, 1995.
Hurrell, J. W. and Deser C.: North Atlantic climate variability: the role
of the North Atlantic Oscillation, J. Mar. Syst., 78, 28–41,
https://doi.org/10.1016/j.jmarsys.2008.11.026, 2009.
Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., and Rosinski, J.: A New
Sea Surface Temperature and Sea Ice Boundary Dataset for the Community
Atmosphere Model, J. Clim., 21, 5145–5153,
https://doi.org/10.1175/2008JCLI2292.1, 2008.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., amarque, J. F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein,
M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J. T., and Marshall, S.: The community earth system model: A framework for collaborative research, B. Am. Meteorol. Soc., 94, 1339–1360,
https://doi.org/10.1175/BAMS-12-00121.1, 2013.
Iles, C. and Hegerl, G.: Role of the North Atlantic Oscillation in decadal
temperature trends, Environ. Res. Lett., 12, 114010,
https://doi.org/10.1088/1748-9326/aa9152, 2017.
Jin, Q. and Wang, C.: The greening of Northwest Indian subcontinent and
reduction of dust abundance resulting from Indian summer monsoon revival,
Sci. Rep., 8, 4573, https://doi.org/10.1038/s41598-018-23055-5, 2018.
Jin, Q., Wei, J., and Yang, Z.-L.: Positive response of Indian summer
rainfall to Middle East dust, Geophys. Res. Lett., 41, 4068–4074,
https://doi.org/10.1002/2014GL059980, 2014.
Jin, Q., Wei, J., Pu, B., Yang, Z. L., and Parajuli, S. P.: High summertime
aerosol loadings over the Arabian Sea and their transport pathways, J.
Geophys. Res.-Atmos., 123, 10568–10590,
https://doi.org/10.1029/2018jd028588, 2018.
Kalnay, E., Kanamitsu, M., Kistler, R., Collines, W., Deaven, D., Gandin,
L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A.,
Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.
C., Ropelewski, C., and Wang, J.: The NCEP/NCAR 40-year reanalysis project,
B. Am. Meteorol. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:Tnyrp>2.0.Co;2, 1996.
Kim, M.-K., Lau, W. K. M., Kim, K.-M., Sang, J., Kim, Y.-H., and Lee, W.-S.:
Amplification of ENSO effects on Indian summer monsoon by absorbing
aerosols, Clim. Dynam., 46, 2657–2671,
https://doi.org/10.1007/s00382-015-2722-y, 2016.
Kinter III, J., Miyakoda, K., and Yang, S.: Recent change in the connection
from the Asian monsoon to ENSO, J. Clim., 15, 1203–1215,
https://doi.org/10.1175/1520-0442(2002)015<1203:RCITCF>2.0.CO;2, 2002.
Kosaka, Y. and Xie, S. P.: Recent global-warming hiatus tied to equatorial
Pacific surface cooling, Nature, 501, 403–407,
https://doi.org/10.1038/nature12534, 2013.
Kosaka, Y. and Xie , S. P.: The tropical Pacific as a key pacemaker of the
variable rates of global warming, Nat. Geosci., 9,
669–673, https://doi.org/10.1038/ngeo2770, 2016.
Krishnamurthy, L. and Krishnamurthy, V.: Teleconnections of Indian monsoon
rainfall with AMO and Atlantic tripole, Clim. Dynam., 46, 2269–2285,
https://doi.org/10.1007/s00382-015-2701-3, 2015.
Kucharski, F., Bracco, A., Yoo, J. H., and Molteni, F.: Low-frequency
variability of the Indian monsoon – ENSO relation and the Tropical
Atlantic: the “weakening” of the '80s and '90s, J. Clim., 20,
4255–4266, https://doi.org/10.1175/JCLI4254.1, 2007.
Kucharski, F., Bracco, A., Yoo, J. H., and Molteni, F.: Atlantic forced
component of the Indian monsoon interannual variability, Geophys. Res.
Lett., 35, L04706, https://doi.org/10.1029/2007GL033037, 2008.
Kumar, K. K., Rajagopalan, B., and Cane, K. A.: On the weakening
relationship between the Indian Monsoon and ENSO, Science, 284, 2156–2159,
https://doi.org/10.1126/science.284.5423.2156, 1999.
Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G., and Cane, M. A.:
Unraveling the mystery of Indian monsoon failure during El Niño,
Science, 314, 115–119, https://doi.org/10.1126/science.1131152, 2006.
Lee, T. and McPhaden, M. J.: Increasing intensity of El Niño in the
central-equatorial Pacific, Geophys. Res. Lett., 37, L14603,
https://doi.org/10.1029/2010GL044007, 2010.
Liu, W., Fedorov, A. V., Xie, S. P., and Hu, S.: Climate impacts of a
weakened Atlantic Meridional Overturning Circulation in a warming climate,
Sci. Adv., 6, eaaz4876, https://doi.org/10.1126/sciadv.aaz4876, 2020.
Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M., Zender,
C. S., and Luo, C.: Change in atmospheric mineral aerosols in response to
climate: Last glacial period, preindustrial, modern, and doubled carbon
dioxide climates, J. Geophys. Res.-Atmos., 111, D10202,
https://doi.org/10.1029/2005JD006653, 2006.
Mariotti, A., Zeng, N., and Lau, K.-M.: Euro-Mediterranean rainfall and ENSO
– a seasonally varying relationship, Geophys. Res. Lett., 29, 1621–1625,
https://doi.org/10.1029/2001GL014248, 2002.
Marticorena, B. and Bergametti, G.: Modeling the atmospheric dust cycle.1.
Design of a soil-derived emission scheme, J. Geophys. Res.-Atmos., 100,
16415–16430, 1995.
Mohtadi, M., Prange, M., Oppo, D.W., De Pol-Holz, R., Merkel, U., Zhang, X.,
Steinke, S., and Lückge, A.: North Atlantic forcing of tropical Indian
Ocean climate, Nature, 509, 76–80, 2014.
NCAR: Gridded Climate Datasets, available at: https://psl.noaa.gov/data/gridded/, last access: 29 July 2019.
Neale, R. B., Richter, J. H., Conley, A. J., Park, S., Lauritzen, P. H., and
Gettleman, A.: Description of the NCAR Community Atmosphere Model (CAM 4.0),
NCAR Tech. Note NCAR/TN-485+STR, 212 pp., available at:
http://www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf (last access: 18 September 2020), 2010.
Notaro, M., Yu, Y., and Kalashnikova, O. V.: Regime shift in Arabian dust
activity, triggered by persistent fertile crescent drought, J. Geophys.
Res.-Atmos., 120, 10229–10249, https://doi.org/10.1002/2015JD023855, 2015.
Osborne, J. M., Collins, M., Screen, J. A., Thomson, S. I., and Dunstone,
N.: The North Atlantic as a Driver of Summer Atmospheric Circulation, J.
Clim., 33, 7335–7351, https://doi.org/10.1175/JCLI-D-19-0423.1, 2020.
Ossó, A., Sutton, R., Shaffrey, L., and Dong, B.: Observational evidence
of European summer weather patterns predictable from spring, P. Natl.
Acad. Sci. USA, 115, 59–63, https://doi.org/10.1073/pnas.1713146114, 2018.
Ossó, A., Sutton, R., Shaffrey, L., and Dong, B.: Development,
Amplification, and Decay of Atlantic/European Summer Weather Patterns Linked
to Spring North Atlantic Sea Surface Temperatures, J. Clim., 33,
5939–5951, https://doi.org/10.1175/JCLI-D-19-0613.1, 2020.
Pandey, S. K., Vinoj, V., Landu, K., and Babu, S. S.: Declining pre-monsoon
dust loading over South Asia: Signature of a changing regional climate, Sci.
Rep., 7, 16062, https://doi.org/10.1038/s41598-017-16338-w, 2017.
Pandithurai, G., Dipu, S., Dani, K. K., Tiwari, S., Bisht, D. S., Devara, P.
C. S., and Pinker, R. T.: Aerosol radiative forcing during dust events over
New Delhi, India, J. Geophys. Res.-Atmos., 113, D13209,
https://doi.org/10.1029/2008JD009804, 2008.
Pourmand, A., Marcantonio, F., and Schulz, H.: Variations in productivity
and eolian fluxes in the northeastern Arabian Sea during the past 110 ka,
Earth Planet. Sc. Lett., 221, 39–54, https://doi.org/10.1016/S0012-821X(04)00109-8,
2004.
Pu, B. and Ginoux, P.: The impact of the Pacific Decadal Oscillation on
springtime dust activity in Syria, Atmos. Chem. Phys., 16, 13431–13448,
https://doi.org/10.5194/acp-16-13431-2016, 2016.
Pu, B. and Ginoux, P.: How reliable are CMIP5 models in simulating dust
optical depth?, Atmos. Chem. Phys., 18, 12491–12510,
https://doi.org/10.5194/acp-18-12491-2018, 2018.
Rajeevan, M. and Sridhar, L.: Inter-annual relationship between Atlantic
sea surface temperature anomalies and Indian summer monsoon, Geophys. Res.
Lett., 35, L21704, https://doi.org/10.1029/2008GL036025, 2008.
Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T.,
Washington, W. M., Fu, Q., Sikka, D. R., and Wild, M.: Atmospheric brown
clouds: Impacts on South Asian climate and hydrological cycle, P. Natl.
Acad. Sci. USA, 102, 5326–5333, https://doi.org/10.1073/pnas.0500656102,
2005.
Rasmusson, E. M. and Carpenter, T. H.: The relationship between eastern
equatorial Pacific sea surface temperatures and rainfall over India and Sri
Lanka, Mon. Weather Rev., 111, 517–528, 1983.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the
late nineteenth century, J. Geophys. Res.-Atmos., 108, 4407,
https://doi.org/10.1029/2002JD002670, 2003.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.:
An improved in situ and satellite SST analysis for climate, J. Clim., 15,
1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002.
Rodwell, M. J., Rowell, D. P., and Folland, C. K.: Oceanic forcing of the
wintertime North Atlantic Oscillation and European climate, Nature, 398,
320–323, https://doi.org/10.1038/18648, 1999.
Sabeerali, C. T., Ajayamohan, R. S., Bangalath, H. K., and Chen, N.:
Atlantic Zonal Mode: an emerging source of Indian summer monsoon variability
in a warming world, Geophys. Res. Lett., 46, 4460–4464,
https://doi.org/10.1029/2019GL082379, 2019.
Safaierad, R., Mohtadi, M., Zolitschka, B., Yokoyama, Y., Vogt, C.,
and Schefuß, E.: Elevated dust depositions in West Asia linked to
ocean–atmosphere shifts during North Atlantic cold events, P. Natl.
Acad. Sci. USA, 117, 18272–18277, https://doi.org/10.1073/pnas.2004071117, 2020.
Sanap, S. D., Ayantika, D. C., Pandithurai, G., and Niranjan, K.: Assessment
of the aerosol distribution over Indian subcontinent in CMIP5 models, Atmos.
Environ., 87, 123–137, https://doi.org/10.1016/j.atmosenv.2014.01.017,
2014.
Satheesh, S. K. and Ramanathan, V.: Large differences in tropical aerosol
forcing at the top of the atmosphere and Earth's surface, Nature, 405,
60–63, 2000.
Sikka, D. R.: Some aspects of the large scale fluctuations of summer monsoon
rainfall over India in relation to fluctuations in the planetary and
regional scale circulation parameters, P. Ind. Acad. Sci., 89, 179–195, 1980.
Solmon, F., Nair, V. S., and Mallet, M.: Increasing Arabian dust activity
and the Indian summer monsoon, Atmos. Chem. Phys., 15, 8051–8064,
https://doi.org/10.5194/acp-15-8051-2015, 2015.
Sperber, K. R., Annamalai, H., Kang, I.-S., Kitoh, A., Moise, A., Turner,
A., Wang, B., and Zhou, T.: The Asian summer monsoon: an intercomparison of
CMIP5 vs. CMIP3 simulations of the late 20th century, Clim. Dynam., 41,
2711–2744, https://doi.org/10.1007/s00382-012-1607-6, 2013.
Srivastava, A. K., Rajeevan, M., and Kulkarni, R.: Teleconnection of OLR and
SST anomalies over Atlantic Ocean with Indian summer monsoon, Geophys. Res.
Lett., 29, 1284, https://doi.org/10.1029/2001GL013837, 2002.
Srivastava, G., Chakraborty, A., and Nanjundiah, R.S.: Multidecadal see-saw
of the impact of ENSO on Indian and West African summer monsoon rainfall,
Clim. Dynam., 52, 6633–6649, https://doi.org/10.1007/s00382-018-4535-2, 2019.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: Climate
Change 2013: The Physical Science Basis, Contribution of Working Group I to
the Fifth Assessment Report of the Inter-governmental Panel on Climate
Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Sun, J. Q., Wang, H. J., and Yuan, W.: Role of the tropical Atlantic sea
surface temperature in the decadal change of the summer North Atlantic
Oscillation, J. Geophys. Res.-Atmos., 114, D20110,
https://doi.org/10.1029/2009JD012395, 2009.
Trenberth, K. E. and Fasullo, J. T.: An apparent hiatus in global warming?,
Earth's Future, 1, 19–32, https://doi.org/10.1002/2013EF000165, 2013.
Trenberth, K. E., Fasullo, J. T., Branstator, G., and Phillips, A. S.:
Seasonal aspects of the recent pause in surface warming, Nat. Clim. Change,
4, 911–916, https://doi.org/10.1038/nclimate2341, 2014.
Thompson, L. G., Yao, T., Mosley-Thompson, E., Davis, M. E., Henderson, K.
A., and Lin, P. N.: A high-resolution millennial record of the South Asian
Monsoon from Himalayan ice cores, Science, 289, 1916–1919, 2000.
Vinoj, V., Rasch, P., Wang, H., Yoon, J., Ma, P., Landu, K., and Singh, B.:
Short-term modulation of Indian summer monsoon rainfall by West Asian dust,
Nat. Geosci., 7, 308–313, https://doi.org/10.1038/ngeo2107, 2014.
Visbeck, M., Cullen, H., Krahmann, G., and Naik, N.: An ocean model's
response to North Atlantic Oscillation-like wind forcing, Geophys. Res.
Lett., 25, 4521–4524, 1998.
Visbeck, M. H., Hurrell, J. W., Polvani, L., and Cullen, H. M.: The North
Atlantic Oscillation: past, present and future, P. Natl. Acad. Sci. USA, 98,
12876–12877, 2001.
Walker, A. L., Liu, M., Miller, S. D., Richardson, K. A., and Westphal, D.
L.: Development of a dust source database for mesoscale forecasting in
southwest Asia, J. Geophys. Res.-Atmos., 114, D18207,
https://doi.org/10.1029/2008JD011541, 2009.
Wang, B., Xiang, B., Li, J., Webster, P. J., Rajeevan, M. N., Liu, J., and
Ha, K.-J.: Rethinking Indian monsoon rainfall prediction in the context of
recent global warming, Nat. Commun., 6, 7154,
https://doi.org/10.1038/ncomms8154, 2015.
Wulff, C. O., Greatbatch, R. J., Domeisen, D. I. V., Gollan, G., and Hansen,
F.: Tropical forcing of the summer east Atlantic pattern, Geophys. Res.
Lett., 44, 11166–11173, https://doi.org/10.1002/2017GL075493, 2017.
Xie, S.-P. and Kosaka, Y.: What caused the global surface warming hiatus of
1998–2013?, Curr. Clim. Change Rep., 3, 128–140,
https://doi.org/10.1007/s40641-017-0063-0, 2017.
Yeh, S.-W., Kug, J.-S., Dewitte, B., Kwon, M.-H., Kirtman, B.P., and Jin,
F.-F.: El Niño in a changing climate, Nature, 461, 511–514, 2009.
Yu, Y., Notaro, M., Liu, Z., Wang, F., Alkolibi, F., Fadda, E., and Bakhrjy,
F.: Climatic controls on the interannual to decadal variability in Saudi
Arabian dust activity: toward the development of a seasonal dust prediction
model, J. Geophys. Res.-Atmos., 120, 1739–1758,
https://doi.org/10.1002/2014JD022611, 2015.
Zender, C. S., Bian, H., and Newman, D.: Mineral Dust Entrainment and
Deposition (DEAD) model: Description and 1990s dust climatology, J. Geophys.
Res.-Atmos., 108, 4416, https://doi.org/10.1029/2002JD002775, 2003a.
Zender, C. S., Newman, D., and Torres, O.: Spatial heterogeneity in aeolian
erodibility: uniform, topographic, geomorphic and hydrologic hypotheses, J.
Geophys. Res.-Atmos., 108, 4543, https://doi.org/10.1029/2002JD003039, 2003b.
Zhang, R. and Delworth, T. L.: Impact of Atlantic multidecadal oscillations
on India/Sahel rainfall and Atlantic hurricanes, Geophys. Res. Lett., 33,
L17712, https://doi.org/10.1029/2006GL026267, 2006.
Zhu, A., Ramanathan, V., Li, F., and Kim, D.: Dust plumes over the Pacific,
Indian, and Atlantic oceans: climatology and radiative impact, J. Geophys.
Res.-Atmos., 112, D16208, https://doi.org/10.1029/2007JD008427, 2007.
Short summary
We show that the Atlantic Ocean is the major driver of interannual variability in dust over South Asia since the second decade of the 21st century. This is a shift from the previously important role played by the Pacific Ocean in controlling dust over this region. Following the end of the recent global warming hiatus, anomalies of the North Atlantic sea surface temperature have remotely invoked a weakening of the South Asian monsoon and a strengthening of the dust-bearing northwesterlies.
We show that the Atlantic Ocean is the major driver of interannual variability in dust over...
Altmetrics
Final-revised paper
Preprint