Articles | Volume 21, issue 23
https://doi.org/10.5194/acp-21-17665-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-21-17665-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Is the Atlantic Ocean driving the recent variability in South Asian dust?
Priyanka Banerjee
CORRESPONDING AUTHOR
Divecha Centre for Climate Change, Indian Institute of Science,
Bangalore, India
Sreedharan Krishnakumari Satheesh
Divecha Centre for Climate Change, Indian Institute of Science,
Bangalore, India
Centre for Atmospheric and Oceanic Sciences, Indian Institute of
Science, Bangalore, India
Krishnaswamy Krishna Moorthy
Centre for Atmospheric and Oceanic Sciences, Indian Institute of
Science, Bangalore, India
Related authors
No articles found.
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024, https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary
Short summary
The South Asian Pollution Experiment 2018 used access to three strategically located receptor observatories. Observational constraints revealed opposing trends in the mass absorption cross sections of black carbon (BC MAC) and brown carbon (BrC MAC) during long-range transport. Models estimating the climate effects of BC aerosols may have underestimated the ambient BC MAC over distant receptor areas, leading to discrepancies in aerosol absorption predicted by observation-constrained models.
Nair Krishnan Kala, Narayana Sarma Anand, Mohanan R. Manoj, Srinivasan Prasanth, Harshavardhana S. Pathak, Thara Prabhakaran, Pramod D. Safai, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 23, 12801–12819, https://doi.org/10.5194/acp-23-12801-2023, https://doi.org/10.5194/acp-23-12801-2023, 2023
Short summary
Short summary
We present a 3D data set of aerosol black carbon over the Indian mainland by assimilating data from surface, aircraft, and balloon measurements, along with multi-satellite observations. Radiative transfer computations using height-resolved aerosol absorption show higher warming in the free troposphere and will have large implications for atmospheric stability. This data set will help reduce the uncertainty in aerosol radiative effects in climate model simulations over the Indian region.
Nair K. Kala, Narayana Sarma Anand, Mohanan R. Manoj, Harshavardhana S. Pathak, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 6067–6085, https://doi.org/10.5194/acp-22-6067-2022, https://doi.org/10.5194/acp-22-6067-2022, 2022
Short summary
Short summary
We present the 3-D distribution of atmospheric aerosols and highlight its variation with respect to longitudes over the Indian mainland and the surrounding oceans using long-term satellite observations and realistic synthesised data. The atmospheric heating due to the 3-D distribution of aerosols is estimated using radiative transfer calculations. We believe that our findings will have strong implications for aerosol–radiation interactions in regional climate simulations.
Archana Devi and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 5365–5376, https://doi.org/10.5194/acp-22-5365-2022, https://doi.org/10.5194/acp-22-5365-2022, 2022
Short summary
Short summary
Global maps of aerosol absorption were generated using a multi-satellite retrieval algorithm. The retrieved values were validated with available aircraft-based measurements and compared with other global datasets. Seasonal and spatial distributions of aerosol absorption over various regions are also presented. The global maps of single scattering albedo with improved accuracy provide important input to climate models for assessing the climatic impact of aerosols on regional and global scales.
S. Arora, A. V. Kulkarni, P. Ghosh, and S. K. Satheesh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 431–436, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-431-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-431-2021, 2021
Mohanan R. Manoj, Sreedharan K. Satheesh, Krishnaswamy K. Moorthy, Jamie Trembath, and Hugh Coe
Atmos. Chem. Phys., 21, 8979–8997, https://doi.org/10.5194/acp-21-8979-2021, https://doi.org/10.5194/acp-21-8979-2021, 2021
Short summary
Short summary
Vertical distributions of atmospheric aerosols across the Indo-Gangetic Plain (IGP) and their ability to form clouds have been studied based on airborne measurements during the SWAAMI field campaign. The ability of the aerosols to act as cloud-forming nuclei exhibited large spatial variation across the IGP and strong seasonality with increase in this ability with increase in altitude prior to the onset of monsoon and decrease with increase in altitude during the active phase of the monsoon.
Harshavardhana Sunil Pathak, Sreedharan Krishnakumari Satheesh, Krishnaswamy Krishna Moorthy, and Ravi Shankar Nanjundiah
Atmos. Chem. Phys., 20, 14237–14252, https://doi.org/10.5194/acp-20-14237-2020, https://doi.org/10.5194/acp-20-14237-2020, 2020
Short summary
Short summary
We have estimated the aerosol radiative forcing (ARF) by employing the assimilated, gridded aerosol datasets over the Indian region. The present ARF estimates are more accurate and certain than those estimated using the currently available, latest satellite-retrieved aerosol products. Therefore, the present ARF estimates and corresponding assimilated aerosol products emerge as potential candidates for improving the aerosol climate impact assessment at regional, subregional and seasonal scales.
Harshavardhana Sunil Pathak, Sreedharan Krishnakumari Satheesh, Ravi Shankar Nanjundiah, Krishnaswamy Krishna Moorthy, Sivaramakrishnan Lakshmivarahan, and Surendran Nair Suresh Babu
Atmos. Chem. Phys., 19, 11865–11886, https://doi.org/10.5194/acp-19-11865-2019, https://doi.org/10.5194/acp-19-11865-2019, 2019
Short summary
Short summary
We have developed quality-enhanced, gridded datasets for aerosol optical depth (AOD) and absorption AOD by assimilating highly accurate measurements from the dense network of ground-based stations, with respective satellite-retrieved datasets. The assimilated datasets demonstrate improved accuracy and reduced uncertainties as compared to respective satellite products. Thus, these assimilated products emerge as important tools to improve the accuracy of climate impact assessment of aerosols.
Kadiri Saikranthi, Basivi Radhakrishna, Thota Narayana Rao, and Sreedharan Krishnakumari Satheesh
Atmos. Chem. Phys., 19, 10423–10432, https://doi.org/10.5194/acp-19-10423-2019, https://doi.org/10.5194/acp-19-10423-2019, 2019
Short summary
Short summary
Recent studies have shown that simulation of monsoons can be improved with an exact representation of SST–precipitation relationship. The vertical structure of precipitation with SST is distinctly different over the Arabian Sea than over the Bay of Bengal. The reflectivity profiles show variation with SST over the Arabian Sea and do not show considerable variation with SST over the Bay of Bengal. The variations in reflectivity profiles seem to originate at the cloud formation stage itself.
Gaurav Govardhan, Sreedharan Krishnakumari Satheesh, Krishnaswamy Krishna Moorthy, and Ravi Nanjundiah
Atmos. Chem. Phys., 19, 8229–8241, https://doi.org/10.5194/acp-19-8229-2019, https://doi.org/10.5194/acp-19-8229-2019, 2019
Short summary
Short summary
We show substantial improvements in the near-surface BC mass concentrations simulated by a regional chemistry transport model, WRF-Chem, over the Indian region, upon scaling up the CMIP5 equivalent anthropogenic BC emissions by 3 and introducing a diurnal variation to those. The diurnality in emissions alone significantly controls the simulated near-surface BC mass concentration, with a mean delay of 3–4 h. The simulated AOD, however, is still underestimated.
James Brooks, James D. Allan, Paul I. Williams, Dantong Liu, Cathryn Fox, Jim Haywood, Justin M. Langridge, Ellie J. Highwood, Sobhan K. Kompalli, Debbie O'Sullivan, Suresh S. Babu, Sreedharan K. Satheesh, Andrew G. Turner, and Hugh Coe
Atmos. Chem. Phys., 19, 5615–5634, https://doi.org/10.5194/acp-19-5615-2019, https://doi.org/10.5194/acp-19-5615-2019, 2019
Short summary
Short summary
Our study, for the first time, presents measurements of aerosol chemical composition and physical characteristics across northern India in the pre-monsoon and monsoon seasons of 2016 using the FAAM BAe-146 UK research aircraft. Across northern India, an elevated aerosol layer dominated by sulfate aerosol exists that diminishes with monsoon arrival. The Indo-Gangetic Plain (IGP) boundary layer is dominated by organics, whereas outside the IGP sulfate dominates with increased scattering aerosol.
Kruthika Eswaran, Sreedharan Krishnakumari Satheesh, and Jayaraman Srinivasan
Atmos. Chem. Phys., 19, 3307–3324, https://doi.org/10.5194/acp-19-3307-2019, https://doi.org/10.5194/acp-19-3307-2019, 2019
Short summary
Short summary
Multiple satellite retrieval algorithms are used to counter problems, such as cloud contamination, faced by sensors with large pixel sizes. This work uses one such algorithm to retrieve a parameter (single scattering albedo) over the oceans. It was found that the joint algorithm performed better than the original when aerosols were present near the surface. Discrepancy between the measurements was seen when elevated aerosols were present which might not have been detected by cruise instruments.
Chandrika Rajendran Hariram, Gaurav Govardhan, Mohanan Remani Manoj, Narayana Sarma Anand, Karuppiah Kannan, Sreedharan Krishnakumari Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-745, https://doi.org/10.5194/acp-2018-745, 2018
Revised manuscript not accepted
Short summary
Short summary
The knowledge on the realistic state of mixing of aerosols is inevitable for climate studies. Our paper unravels the existing uncertainties regarding the morphology and mixing state of aerosols, hitherto unexplained. To the best of our knowledge, this is a first-of-its kind study over the Indian region, coupling realistic aerosol observations, advanced spectroscopic, microscopic and image processing techniques on atmospheric aerosols at single particle resolution.
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Dust aerosol from the Aralkum Desert influences the radiation budget and atmospheric dynamics of Central Asia
Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Synergistic effects of the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on dust activities in North China during the following spring
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Microphysical modelling of aerosol scavenging by different types of clouds: description and validation of the approach
Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns
In-plume and out-of-plume analysis of aerosol–cloud interactions derived from the 2014–2015 Holuhraun volcanic eruption
Impacts of atmospheric circulation patterns and cloud inhibition on aerosol radiative effect and boundary layer structure during winter air pollution in Sichuan Basin, China
Investigating the sign of stratocumulus adjustments to aerosols in the ICON global storm-resolving model
A model study investigating the sensitivity of aerosol forcing to the volatilities of semi-volatile organic compounds
Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models
Modeling impacts of dust mineralogy on fast climate response
Representation of iron aerosol size distributions is critical in evaluating atmospheric soluble iron input to the ocean
Uncertainties in laboratory-measured shortwave refractive indices of mineral dust aerosols and derived optical properties: a theoretical assessment
Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants
Role of atmospheric aerosols in severe winter fog over the Indo-Gangetic Plain of India: a case study
Long-term variability in black carbon emissions constrained by gap-filled absorption aerosol optical depth and associated premature mortality in China
Intercomparison of aerosol optical depths from four reanalyses and their multi-reanalysis consensus
Global aviation contrail climate effects from 2019 to 2021
Multi-model effective radiative forcing of the 2020 sulphur cap for shipping
Rapid iodine oxoacid nucleation enhanced by dimethylamine in broad marine regions
Simulations of the impact of cloud condensation nuclei and ice-nucleating particles perturbations on the microphysics and radar reflectivity factor of stratiform mixed-phase clouds
Warming effects of reduced sulfur emissions from shipping
Aerosols in the central Arctic cryosphere: satellite and model integrated insights during Arctic spring and summer
Observationally constrained regional variations of shortwave absorption by iron oxides emphasize the cooling effect of dust
Droplet collection efficiencies inferred from satellite retrievals constrain effective radiative forcing of aerosol–cloud interactions
Global aerosol-type classification using a new hybrid algorithm and Aerosol Robotic Network data
Simulated phase state and viscosity of secondary organic aerosols over China
Comparing the simulated influence of biomass burning plumes on low-level clouds over the southeastern Atlantic under varying smoke conditions
A global dust emission dataset for estimating dust radiative forcings in climate models
Improved simulations of biomass burning aerosol optical properties and lifetimes in the NASA GEOS Model during the ORACLES-I campaign
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Revealing dominant patterns of aerosols regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Sharp increase in Saharan dust intrusions over the western Euro-Mediterranean in February–March 2020–2022 and associated atmospheric circulation
Temporal and spatial variations in dust activity in Australia based on remote sensing and reanalysis datasets
Sensitivity of global direct aerosol shortwave radiative forcing to uncertainties in aerosol optical properties
Molecular-level study on the role of methanesulfonic acid in iodine oxoacid nucleation
Improving estimation of a record breaking East Asian dust storm emission with lagged aerosol Ångström Exponent observations
Regional to global distributions, trends, and drivers of biogenic volatile organic compound emission from 2001 to 2020
Impacts of ice-nucleating particles on cirrus clouds and radiation derived from global model simulations with MADE3 in EMAC
Seasonal characteristics of emission, distribution, and radiative effect of marine organic aerosols over the western Pacific Ocean: an investigation with a coupled regional climate aerosol model
Fire–precipitation interactions amplify the quasi-biennial variability in fires over southern Mexico and Central America
Improved estimates of smoke exposure during Australia fire seasons: importance of quantifying plume injection heights
New particle formation induced by anthropogenic–biogenic interactions on the southeastern Tibetan Plateau
Investigation of observed dust trends over the Middle East region in NASA Goddard Earth Observing System (GEOS) model simulations
Impact of Biomass Burning Aerosols (BBA) on the tropical African climate in an ocean-atmosphere-aerosols coupled climate model
A new process-based and scale-aware desert dust emission scheme for global climate models – Part II: Evaluation in the Community Earth System Model version 2 (CESM2)
The key role of atmospheric absorption in the Asian Summer Monsoon response to dust emissions in CMIP6 models
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024, https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing aerosol–cloud climate interactions in the post-fossil-fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with (NH4)2SO4. A good agreement was observed between their model-estimated and experimental HGFs.
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024, https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary
Short summary
The Aralkum is a new desert in Central Asia formed by the desiccation of the Aral Sea. This has created a source of atmospheric dust, with implications for the balance of solar and thermal radiation. Simulating these effects using a dust transport model, we find that Aralkum dust adds radiative cooling effects to the surface and atmosphere on average but also adds heating events. Increases in surface pressure due to Aralkum dust strengthen the Siberian High and weaken the summer Asian heat low.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024, https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Short summary
This study examines how the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) affect dust activities in North China during the following spring. The results show that the NAO and ENSO, particularly in their negative phases, greatly influence dust activities. When both are negative, their combined effect on dust activities is even greater. This research highlights the importance of these climate patterns in predicting spring dust activities in North China.
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024, https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Short summary
Our study unravels how stagnant winter conditions elevate aerosol levels in Stuttgart. Cloud cover at night plays a pivotal role, impacting morning air quality. Validating a key model, our findings aid accurate air quality predictions, crucial for effective pollution mitigation in urban areas.
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024, https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary
Short summary
In a study of two consecutive winter seasons, we used measurements and modelling tools to identify the levels and sources of black carbon pollution in a medium-sized urban area of the Po Valley, Italy. Our findings show that biomass burning and traffic-related emissions (especially from Euro 4 diesel cars) significantly contribute to BC concentrations. This research offers crucial insights for policymakers and urban planners aiming to improve air quality in cities.
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Amy H. Peace, Ying Chen, George Jordan, Daniel G. Partridge, Florent Malavelle, Eliza Duncan, and Jim M. Haywood
Atmos. Chem. Phys., 24, 9533–9553, https://doi.org/10.5194/acp-24-9533-2024, https://doi.org/10.5194/acp-24-9533-2024, 2024
Short summary
Short summary
Natural aerosols from volcanic eruptions can help us understand how anthropogenic aerosols modify climate. We use observations and model simulations of the 2014–2015 Holuhraun eruption plume to examine aerosol–cloud interactions in September 2014. We find a shift to clouds with smaller, more numerous cloud droplets in the first 2 weeks of the eruption. In the third week, the background meteorology and previous conditions experienced by air masses modulate the aerosol perturbation to clouds.
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Emilie Fons, Ann Kristin Naumann, David Neubauer, Theresa Lang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 8653–8675, https://doi.org/10.5194/acp-24-8653-2024, https://doi.org/10.5194/acp-24-8653-2024, 2024
Short summary
Short summary
Aerosols can modify the liquid water path (LWP) of stratocumulus and, thus, their radiative effect. We compare storm-resolving model and satellite data that disagree on the sign of LWP adjustments and diagnose this discrepancy with causal inference. We find that strong precipitation, the absence of wet scavenging, and cloud deepening under a weak inversion contribute to positive LWP adjustments to aerosols in the model, despite weak negative effects from cloud-top entrainment enhancement.
Muhammed Irfan, Thomas Kühn, Taina Yli-Juuti, Anton Laakso, Eemeli Holopainen, Douglas R. Worsnop, Annele Virtanen, and Harri Kokkola
Atmos. Chem. Phys., 24, 8489–8506, https://doi.org/10.5194/acp-24-8489-2024, https://doi.org/10.5194/acp-24-8489-2024, 2024
Short summary
Short summary
The study examines how the volatility of semi-volatile organic compounds affects secondary organic aerosol (SOA) formation and climate. Our simulations show that uncertainties in these volatilities influence aerosol mass and climate impacts. Accurate representation of these compounds in climate models is crucial for predicting global climate patterns.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Qianqian Song, Paul Ginoux, María Gonçalves Ageitos, Ron L. Miller, Vincenzo Obiso, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7421–7446, https://doi.org/10.5194/acp-24-7421-2024, https://doi.org/10.5194/acp-24-7421-2024, 2024
Short summary
Short summary
We implement and simulate the distribution of eight dust minerals in the GFDL AM4.0 model. We found that resolving the eight minerals reduces dust absorption compared to the homogeneous dust used in the standard GFDL AM4.0 model that assumes a globally uniform hematite content of 2.7 % by volume. Resolving dust mineralogy results in significant impacts on radiation, land surface temperature, surface winds, and precipitation over North Africa in summer.
Mingxu Liu, Hitoshi Matsui, Douglas Hamilton, Sagar Rathod, Kara Lamb, and Natalie Mahowald
EGUsphere, https://doi.org/10.5194/egusphere-2024-1454, https://doi.org/10.5194/egusphere-2024-1454, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides iron to promote marine primary production, yet its amount remains highly uncertain. This study demonstrates that iron-containing particle size at emission is a critical factor in regulating their input to open oceans by performing global aerosol simulations. Further observational constraints on this are needed to reduce modelling uncertainties.
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024, https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Short summary
The retrieval of refractive indices of dust aerosols from laboratory optical measurements is commonly done assuming spherical particles. This paper aims to investigate the uncertainties in the shortwave refractive indices and corresponding optical properties by considering non-spherical and inhomogeneous models for dust samples. The study emphasizes the significance of using non-spherical models for simulating dust aerosols.
Wenxuan Hua, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Zilin Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 6787–6807, https://doi.org/10.5194/acp-24-6787-2024, https://doi.org/10.5194/acp-24-6787-2024, 2024
Short summary
Short summary
In this study, we diagnose uncertainties in carbon monoxide and organic carbon emissions from four inventories for seven major wildfire-prone regions. Uncertainties in vegetation classification methods, fire detection products, and cloud obscuration effects lead to bias in these biomass burning (BB) emission inventories. By comparing simulations with measurements, we provide certain inventory recommendations. Our study has implications for reducing uncertainties in emissions in further studies.
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024, https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Short summary
This study examines the role of atmospheric aerosols in winter fog over the Indo-Gangetic Plains of India using WRF-Chem. The increase in RH with aerosol–radiation feedback (ARF) is found to be important for fog formation as it promotes the growth of aerosols in the polluted environment. Aqueous-phase chemistry in the fog increases PM2.5 concentration, further affecting ARF. ARF and aqueous-phase chemistry affect the fog intensity and the timing of fog formation by ~1–2 h.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Roger Teoh, Zebediah Engberg, Ulrich Schumann, Christiane Voigt, Marc Shapiro, Susanne Rohs, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 6071–6093, https://doi.org/10.5194/acp-24-6071-2024, https://doi.org/10.5194/acp-24-6071-2024, 2024
Short summary
Short summary
The radiative forcing (RF) due to aviation contrails is comparable to that caused by CO2. We estimate that global contrail net RF in 2019 was 62.1 mW m−2. This is ~1/2 the previous best estimate for 2018. Contrail RF varies regionally due to differences in conditions required for persistent contrails. COVID-19 reduced contrail RF by 54% in 2020 relative to 2019. Globally, 2 % of all flights account for 80 % of the annual contrail energy forcing, suggesting a opportunity to mitigate contrail RF.
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
EGUsphere, https://doi.org/10.5194/egusphere-2024-1394, https://doi.org/10.5194/egusphere-2024-1394, 2024
Short summary
Short summary
In 2020 new regulations by the International Maritime Organization of sulphur emissions came into force that reduced emissions of SO2 from the shipping sector by approximately 80 %. In this study, we use multiple models to calculate by how much the Earth energy balance changed due to the emission reduction, the so called effective radiative forcing. The calculated effective radiative forcing is weak, comparable to the effect of the increase in CO2 over the last two to three years.
Haotian Zu, Biwu Chu, Yiqun Lu, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 5823–5835, https://doi.org/10.5194/acp-24-5823-2024, https://doi.org/10.5194/acp-24-5823-2024, 2024
Short summary
Short summary
The nucleation of iodic acid (HIO3) and iodous acid (HIO2) was proven to be critical in marine areas. However, HIO3–HIO2 nucleation cannot effectively derive the rapid nucleation in some polluted coasts. We find a significant enhancement of dimethylamine (DMA) on the HIO3–HIO2 nucleation in marine and polar regions with abundant DMA sources, which may establish reasonable connections between the HIO3–HIO2 nucleation and the rapid formation of new particles in polluted marine and polar regions.
Junghwa Lee, Patric Seifert, Tempei Hashino, Maximilian Maahn, Fabian Senf, and Oswald Knoth
Atmos. Chem. Phys., 24, 5737–5756, https://doi.org/10.5194/acp-24-5737-2024, https://doi.org/10.5194/acp-24-5737-2024, 2024
Short summary
Short summary
Spectral bin model simulations of an idealized supercooled stratiform cloud were performed with the AMPS model for variable CCN and INP concentrations. We performed radar forward simulations with PAMTRA to transfer the simulations into radar observational space. The derived radar reflectivity factors were compared to observational studies of stratiform mixed-phase clouds. These studies report a similar response of the radar reflectivity factor to aerosol perturbations as we found in our study.
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Kenneth S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-1428, https://doi.org/10.5194/egusphere-2024-1428, 2024
Short summary
Short summary
Sulfur emissions from shipping has been reduced by about 80 % as a result of the new regulation introduced in 2020. This has reduced aerosol in the atmosphere and its cooling effect through interactions with clouds. As a result, our coupled climate model simulations predict a global warming of 0.04 K averaged over three decades, potentially surpassing the Paris target of 1.5 K or contributing to recent temperature spikes, particularly notable in the Arctic with a mean warming of 0.15 K.
Basudev Swain, Marco Vountas, Aishwarya Singh, Nidhi L. Anchan, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Sachin S. Gunthe, Hartmut Bösch, and John P. Burrows
Atmos. Chem. Phys., 24, 5671–5693, https://doi.org/10.5194/acp-24-5671-2024, https://doi.org/10.5194/acp-24-5671-2024, 2024
Short summary
Short summary
Arctic amplification (AA) accelerates the warming of the central Arctic cryosphere and affects aerosol dynamics. Limited observations hinder a comprehensive analysis. This study uses AEROSNOW aerosol optical density (AOD) data and GEOS-Chem simulations to assess AOD variability. Discrepancies highlight the need for improved observational integration into models to refine our understanding of aerosol effects on cloud microphysics, ice nucleation, and radiative forcing under evolving AA.
Vincenzo Obiso, María Gonçalves Ageitos, Carlos Pérez García-Pando, Jan P. Perlwitz, Gregory L. Schuster, Susanne E. Bauer, Claudia Di Biagio, Paola Formenti, Kostas Tsigaridis, and Ron L. Miller
Atmos. Chem. Phys., 24, 5337–5367, https://doi.org/10.5194/acp-24-5337-2024, https://doi.org/10.5194/acp-24-5337-2024, 2024
Short summary
Short summary
We calculate the dust direct radiative effect (DRE) in an Earth system model accounting for regionally varying soil mineralogy through a new observationally constrained method. Linking dust absorption at solar wavelengths to the varying amount of specific minerals (i.e., iron oxides) improves the modeled range of dust single scattering albedo compared to observations and increases the global cooling by dust. Our results may contribute to improved estimates of the dust DRE and its climate impact.
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
Atmos. Chem. Phys., 24, 5287–5302, https://doi.org/10.5194/acp-24-5287-2024, https://doi.org/10.5194/acp-24-5287-2024, 2024
Short summary
Short summary
Single-layer warm liquid clouds cover nearly one-third of the Earth's surface, and uncertainties regarding the impact of aerosols on their radiative properties pose a significant challenge to climate prediction. Here, we demonstrate how satellite observations can be used to constrain Earth system model estimates of the radiative forcing from the interactions of aerosols with clouds due to warm rain processes.
Xiaoli Wei, Qian Cui, Leiming Ma, Feng Zhang, Wenwen Li, and Peng Liu
Atmos. Chem. Phys., 24, 5025–5045, https://doi.org/10.5194/acp-24-5025-2024, https://doi.org/10.5194/acp-24-5025-2024, 2024
Short summary
Short summary
A new aerosol-type classification algorithm has been proposed. It includes an optical database built by Mie scattering and a complex refractive index working as a baseline to identify different aerosol types. The new algorithm shows high accuracy and efficiency. Hence, a global map of aerosol types was generated to characterize aerosol types across the five continents. It will help improve the accuracy of aerosol inversion and determine the sources of aerosol pollution.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024, https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Short summary
We use a numerical model to study interactions between humid light-absorbing aerosol plumes, clouds, and radiation over the southeast Atlantic. We find that the warming produced by the aerosols reduces cloud cover, especially in highly polluted situations. Aerosol impacts on drizzle play a minor role. However, aerosol effects on cloud reflectivity and moisture-induced changes in cloud cover dominate the climatic response and lead to an overall cooling by the biomass burning plumes.
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
EGUsphere, https://doi.org/10.5194/egusphere-2024-1124, https://doi.org/10.5194/egusphere-2024-1124, 2024
Short summary
Short summary
This study derives a desert dust emission dataset for 1841–2000, by employing a combination of observed dust records from sedimentary cores as well as reanalyzed global dust cycle constraints. We evaluate the ability of global models to replicate the observed historical dust variability by using the emission dataset to force a historical simulation in an Earth system model. We show that prescribing our emissions forces the model to match better against observations than other mechanistic models.
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
EGUsphere, https://doi.org/10.5194/egusphere-2024-1000, https://doi.org/10.5194/egusphere-2024-1000, 2024
Short summary
Short summary
The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the hygroscopic growth process, but it is difficult to characterize how much water is absorbed under different relative humidities (RHs). In this study, we propose a method to obtain the water content in the coatings based on the equivalent complex refractive index retrieved from optical properties, and this method is verified from theoretical inspect. This method performs well for thickly coated BC at high RHs.
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2024-1024, https://doi.org/10.5194/egusphere-2024-1024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three SSP scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Emilio Cuevas-Agulló, David Barriopedro, Rosa Delia García, Silvia Alonso-Pérez, Juan Jesús González-Alemán, Ernest Werner, David Suárez, Juan José Bustos, Gerardo García-Castrillo, Omaira García, África Barreto, and Sara Basart
Atmos. Chem. Phys., 24, 4083–4104, https://doi.org/10.5194/acp-24-4083-2024, https://doi.org/10.5194/acp-24-4083-2024, 2024
Short summary
Short summary
During February–March (FM) 2020–2022, unusually intense dust storms from northern Africa hit the western Euro-Mediterranean (WEM). Using dust products from satellites and atmospheric reanalysis for 2003–2022, results show that cut-off lows and European blocking are key drivers of FM dust intrusions over the WEM. A higher frequency of cut-off lows associated with subtropical ridges is observed in the late 2020–2022 period.
Yahui Che, Bofu Yu, and Katherine Bracco
Atmos. Chem. Phys., 24, 4105–4128, https://doi.org/10.5194/acp-24-4105-2024, https://doi.org/10.5194/acp-24-4105-2024, 2024
Short summary
Short summary
Dust events occur more frequently during the Austral spring and summer in dust regions, including central Australia, the southwest of Western Australia, and the northern and southern regions of eastern Australia using remote sensing and reanalysis datasets. High-concentration dust is distributed around central Australia and in the downwind northern and southern Australia. Typically, around 50 % of the dust lifted settles on Australian land, with the remaining half being deposited in the ocean.
Jonathan Elsey, Nicolas Bellouin, and Claire Ryder
Atmos. Chem. Phys., 24, 4065–4081, https://doi.org/10.5194/acp-24-4065-2024, https://doi.org/10.5194/acp-24-4065-2024, 2024
Short summary
Short summary
Aerosols influence the Earth's energy balance. The uncertainty in this radiative forcing is large depending partly on uncertainty in measurements of aerosol optical properties. We have developed a freely available new framework of millions of radiative transfer simulations spanning aerosol uncertainty and assess the impact on radiative forcing uncertainty. We find that reducing these uncertainties would reduce radiative forcing uncertainty, but non-aerosol uncertainties must also be considered.
Jing Li, Nan Wu, Biwu Chu, An Ning, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 3989–4000, https://doi.org/10.5194/acp-24-3989-2024, https://doi.org/10.5194/acp-24-3989-2024, 2024
Short summary
Short summary
Iodic acid (HIO3) nucleates with iodous acid (HIO2) efficiently in marine areas; however, whether methanesulfonic acid (MSA) can synergistically participate in the HIO3–HIO2-based nucleation is unclear. We provide molecular-level evidence that MSA can efficiently promote the formation of HIO3–HIO2-based clusters using a theoretical approach. The proposed MSA-enhanced iodine nucleation mechanism may help us to deeply understand marine new particle formation events with bursts of iodine particles.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-840, https://doi.org/10.5194/egusphere-2024-840, 2024
Short summary
Short summary
In March 2021, East Asia experienced an outbreak of severe dust storms after an absence of one and a half decades. Here, we innovative used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize the dust emission and reproduce the dust storm. This work is valuable for the quantification of health damage, aviation risks, and profound impacts on the Earth system, but also to reveal the climatic driving force and the process of desertification.
Hao Wang, Xiaohong Liu, Chenglai Wu, and Guangxing Lin
Atmos. Chem. Phys., 24, 3309–3328, https://doi.org/10.5194/acp-24-3309-2024, https://doi.org/10.5194/acp-24-3309-2024, 2024
Short summary
Short summary
We quantified different global- and regional-scale drivers of biogenic volatile organic compound (BVOC) emission trends over the past 20 years. The results show that global greening trends significantly boost BVOC emissions and deforestation reduces BVOC emissions in South America and Southeast Asia. Elevated temperature in Europe and increased soil moisture in East and South Asia enhance BVOC emissions. The results deepen our understanding of long-term BVOC emission trends in hotspots.
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 24, 3217–3240, https://doi.org/10.5194/acp-24-3217-2024, https://doi.org/10.5194/acp-24-3217-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) have important influences on cirrus clouds and the climate system; however, the understanding of their global impacts is still uncertain. We perform numerical simulations with a global aerosol–climate model to analyse INP-induced cirrus changes and the resulting climate impacts. We evaluate various sources of uncertainties, e.g. the ice-nucleating ability of INPs and the role of model dynamics, and provide a new estimate for the global INP–cirrus effect.
Jiawei Li, Zhiwei Han, Pingqing Fu, Xiaohong Yao, and Mingjie Liang
Atmos. Chem. Phys., 24, 3129–3161, https://doi.org/10.5194/acp-24-3129-2024, https://doi.org/10.5194/acp-24-3129-2024, 2024
Short summary
Short summary
Organic aerosols of marine origin are important for aerosol climatic effects but are poorly understood. For the first time, an online coupled regional chemistry–climate model is applied to explore the characteristics of emission, distribution, and direct and indirect radiative effects of marine organic aerosols over the western Pacific, which reveals an important role of marine organic aerosols in perturbing cloud and radiation and promotes understanding of global aerosol climatic impact.
Yawen Liu, Yun Qian, Philip J. Rasch, Kai Zhang, Lai-yung Ruby Leung, Yuhang Wang, Minghuai Wang, Hailong Wang, Xin Huang, and Xiu-Qun Yang
Atmos. Chem. Phys., 24, 3115–3128, https://doi.org/10.5194/acp-24-3115-2024, https://doi.org/10.5194/acp-24-3115-2024, 2024
Short summary
Short summary
Fire management has long been a challenge. Here we report that spring-peak fire activity over southern Mexico and Central America (SMCA) has a distinct quasi-biennial signal by measuring multiple fire metrics. This signal is initially driven by quasi-biennial variability in precipitation and is further amplified by positive feedback of fire–precipitation interaction at short timescales. This work highlights the importance of fire–climate interactions in shaping fires on an interannual scale.
Xu Feng, Loretta J. Mickley, Michelle L. Bell, Tianjia Liu, Jenny A. Fisher, and Maria Val Martin
Atmos. Chem. Phys., 24, 2985–3007, https://doi.org/10.5194/acp-24-2985-2024, https://doi.org/10.5194/acp-24-2985-2024, 2024
Short summary
Short summary
During severe wildfire seasons, smoke can have a significant impact on air quality in Australia. Our study demonstrates that characterization of the smoke plume injection fractions greatly affects estimates of surface smoke PM2.5. Using the plume behavior predicted by the machine learning method leads to the best model agreement with observed surface PM2.5 in key cities across Australia, with smoke PM2.5 accounting for 5 %–52 % of total PM2.5 on average during fire seasons from 2009 to 2020.
Shiyi Lai, Ximeng Qi, Xin Huang, Sijia Lou, Xuguang Chi, Liangduo Chen, Chong Liu, Yuliang Liu, Chao Yan, Mengmeng Li, Tengyu Liu, Wei Nie, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Aijun Ding
Atmos. Chem. Phys., 24, 2535–2553, https://doi.org/10.5194/acp-24-2535-2024, https://doi.org/10.5194/acp-24-2535-2024, 2024
Short summary
Short summary
By combining in situ measurements and chemical transport modeling, this study investigates new particle formation (NPF) on the southeastern Tibetan Plateau. We found that the NPF was driven by the presence of biogenic gases and the transport of anthropogenic precursors. The NPF was vertically heterogeneous and shaped by the vertical mixing. This study highlights the importance of anthropogenic–biogenic interactions and meteorological dynamics in NPF in this climate-sensitive region.
Adriana Rocha-Lima, Peter R. Colarco, Anton S. Darmenov, Edward P. Nowottnick, Arlindo M. da Silva, and Luke D. Oman
Atmos. Chem. Phys., 24, 2443–2464, https://doi.org/10.5194/acp-24-2443-2024, https://doi.org/10.5194/acp-24-2443-2024, 2024
Short summary
Short summary
Observations show an increasing aerosol optical depth trend in the Middle East between 2003–2012. We evaluate the NASA Goddard Earth Observing System (GEOS) model's ability to capture these trends and examine the meteorological and surface parameters driving dust emissions. Our results highlight the importance of data assimilation for long-term trends of atmospheric aerosols and support the hypothesis that vegetation cover loss may have contributed to increasing dust emissions in the period.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
EGUsphere, https://doi.org/10.5194/egusphere-2024-496, https://doi.org/10.5194/egusphere-2024-496, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean-atmosphere-aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low cloud fraction, decreasing the ocean and continental surface temperature and by reducing the precipitation of the coastal Western Africa. It also highlights the key role of the ocean temperature response and its feedbacks for the September to November season.
Danny M. Leung, Jasper F. Kok, Longlei Li, Natalie M. Mahowald, David M. Lawrence, Simone Tilmes, Erik Kluzek, Martina Klose, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 2287–2318, https://doi.org/10.5194/acp-24-2287-2024, https://doi.org/10.5194/acp-24-2287-2024, 2024
Short summary
Short summary
This study uses a premier Earth system model to evaluate a new desert dust emission scheme proposed in our companion paper. We show that our scheme accounts for more dust emission physics, hence matching better against observations than other existing dust emission schemes do. Our scheme's dust emissions also couple tightly with meteorology, hence likely improving the modeled dust sensitivity to climate change. We believe this work is vital for improving dust representation in climate models.
Alcide Zhao, Laura Wilcox, and Claire Ryder
EGUsphere, https://doi.org/10.5194/egusphere-2023-3075, https://doi.org/10.5194/egusphere-2023-3075, 2024
Short summary
Short summary
Climate models include desert dust aerosols, which interact with radiation and can change circulation patterns. We assess the effect of dust on the Indian and East Asian summer monsoons through multi-model experiments where dust emissions are doubled, isolating the effect of dust for the first time. We find that dust results in an enhanced Indian summer monsoon and a southward shift of equatorial rainfall. Our results show the importance of accurate dust representation in climate model.
Cited articles
Abish, B. and Mohanakumar, K.: Absorbing aerosol variability over the Indian
subcontinent and its increasing dependence on ENSO, Glob. Planet. Change,
106, 13–19, https://doi.org/10.1016/j.gloplacha.2013.02.007, 2013.
AERONET: Aerosol Robotic network [dataset], available at: https://aeronet.gsfc.nasa.gov/, last access: 31 August 2020.
Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Heavens, N. G.,
Zender, C. S., Maggi, V., Kok, J. F., and Otto-Bliesner, B. L.: Improved
dust representation in the Community Atmosphere Model. J. Adv. Model. Earth
Syst., 6, 541–570, https://doi.org/10.1002/2013MS000279, 2014.
Annamalai, H., Taguchi, B., McCreary, J. P., Nagura, M., and Miyama, T.:
Systematic errors in South Asian monsoon simulation: Importance of
equatorial Indian Ocean processes, J. Clim., 30, 8159–8178,
https://doi.org/10.1175/JCLI-D-16-0573.1, 2017.
Ashok, K., Guan, Z., and Yamagata, T.: Impact of the Indian Ocean dipole on
the relationship between the Indian monsoon rainfall and ENSO, Geophys. Res.
Lett., 28, 4499–4502, https://doi.org/10.1029/2001GL013294, 2001.
Ashok, K., Guan, Z., Saji, N. H., and Yamagata, T.: Individual and combined
influences of ENSO and the Indian Ocean Dipole on the Indian Summer Monsoon,
J. Climate, 17, 3141–3155,
https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2, 2004.
Ashok, K., Behera, S. K., Rao, S. A., Weng, H. Y., and Yamagata, T.: El
Niño Modoki and its possible teleconnection, J. Geophys. Res.-Ocean.,
112, C11007, https://doi.org/10.1029/2006JC003798, 2007.
Ashouri, H., Hsu, K., Sorooshian, S., Braithwaite, D. K., Knapp, K. R.,
Cecil, L. D., Nelson, B. R., and Pratt, O. P.: PERSIANN-CDR: daily
precipitation climate data record from multisatellite observations for
hydrological and climate studies, B. Am. Meteorol. Soc., 96, 69–83,
https://doi.org/10.1175/BAMS-D-13-00068.1, 2015.
Barlow, M., Heidi, C., and Bradfield, L.: Drought in Central and Southwest
Asia: La Ninã, the Warm Pool, and Indian Ocean Precipitation, J.
Climate, 15, 697–700, 2002.
Banerjee, P. and Kumar, S. P.: ENSO Modulation of Interannual Variability
of Dust Aerosols over the Northwest Indian Ocean, J. Clim., 29,
1287–1303, https://doi.org/10.1175/JCLI-D-15-0039.1, 2016.
Banerjee, P., Satheesh, S. K., Krishnamoorthy, K., Nanjundiah, R. S., and
Nair, V. S.: Long-Range Transport of Mineral Dust to the Northeast Indian
Ocean: Regional versus Remote Sources and the Implications, J. Clim., 32,
1525–1549, https://doi.org/10.1175/JCLI-D-18-0403.1, 2019.
Bjerknes, J.: Atlantic air-sea interaction, Adv. Geophys., 10, 1–82
https://doi.org/10.1016/S0065-2687(08)60005-9, 1964.
Bollasina, M. A., Ming, Y., and Ramaswamy, V.: Anthropogenic aerosols and
the weakening of the South Asian summer monsoon, Science, 334, 502–505,
https://doi.org/10.1126/science.1204994, 2011.
Boos, W. R. and Hurley, J. V.: Thermodynamic Bias in the Multimodel Mean
Boreal Summer Monsoon, J. Clim., 26, 2279–2287,
https://doi.org/10.1175/jcli-d-12-00493.1, 2013.
Borah, P. J., Venugopal, V., Sukhatme, J., Muddevihal, P., and Goswami, B.
N.: Indian monsoon derailed by
a North Atlantic wavetrain, Science, 370, 1335–1338, https://doi.org/10.1126/science.aay6043, 2020.
Capelle, V., Chédin, A., Pondrom, M., Crevoisier, C., Armante, R.,
Crepeau, L., and Scott, N.: Infrared dust aerosol optical depth retrieved
daily from IASI and comparison with AERONET over the period 2007–2016,
Remote Sens. Environ., 206, 15–32,
https://doi.org/10.1016/j.rse.2017.12.008, 2018.
Chang, C., Harr, P., and Ju, J.: Possible Roles of Atlantic Circulations on
the Weakening Indian Monsoon Rainfall–ENSO Relationship, J. Clim., 14,
2376–2380, https://doi.org/10.1175/1520-0442(2001)014<2376:PROACO>2.0.CO;2, 2001.
Chattopadhyay, R., Phani, R., Sabeerali, C. T., Dhakate, A. R., Salunke, K.
D., Mahapatra, S., Suryachandra Rao, A., and Goswami, B. N.: Influence of
extratropical sea-surface temperature on the Indian summer monsoon: An
unexplored source of seasonal predictability, Q. J. Roy. Meteor. Soc.,
141, 2760–2775, https://doi.org/10.1002/qj.2562, 2015.
Delworth, T. L., Zeng, F., Vecchi, G. A., Yang, X., Zhang, L., and Zhang,
R.: The North Atlantic Oscillation as a driver of rapid climate change in
the Northern Hemisphere, Nat. Geosci., 9, 509–513,
https://doi.org/10.1038/ngeo2738, 2016.
Deser, C., Guo, R., and Lehner, F.: The relative contributions of tropical
Pacific sea surface temperatures and atmospheric internal variability to the
recent global warming hiatus, Geophys. Res. Lett., 44, 7945–7954,
https://doi.org/10.1002/2017GL074273, 2017a.
Deser, C., Hurrell, J. W., and Phillips, A.S.: The role of the North
Atlantic Oscillation in European climate projections, Clim. Dynam., 49,
3141–3157, https://doi.org/10.1007/s00382-016-3502-z, 2017b.
Deepshikha, S., Satheesh, S. K., and Srinivasan, J.: Dust aerosols over India and adjacent continents retrieved using METEOSAT infrared radiance
Part II: quantification of wind dependence and estimation of radiative forcing, Ann. Geophys., 24, 63–79, https://doi.org/10.5194/angeo-24-63-2006, 2006.
England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai,
W., Gupta, A. S., McPhaden, M. J., Purich, A., and Santoso, A.: Recent
intensification of wind-driven circulation in the Pacific and the on-going
warming hiatus, Nat. Clim. Change, 4, 222–227,
https://doi.org/10.1038/nclimate2106, 2014.
Feng, S. and Hu, Q.: How the North Atlantic Multidecadal Oscillation may
have influenced the Indian summer monsoon during the past two millennia?,
Geophys. Res. Lett., 35, L01707, https://doi.org/10.1029/2007GL032484, 2008.
Folland, C. K., Knight, J., Linderholm, H. W., Fereday, D., Ineson, S., and
Hurrell, J. W.: The summer North Atlantic Oscillation: past, present, and
future, J. Clim., 22, 1082–1103, 2009.
Gao, M., Sherman, P., Song, S., Yu, Y., Wu, Z., and McElroy, M. B.: Seasonal
prediction of Indian wintertime aerosol pollution using the ocean memory
effect, Sci. Adv., 5, eaav4157, https://doi.org/10.1126/sciadv.aav4157,
2019.
Gao, Y., Wang, H. J., and Chen, D.: Interdecadal variations of the South
Asian summer monsoon circulation variability and the associated sea surface
temperatures on interannual scales, Adv. Atmos. Sci., 34, 816–832,
https://doi.org/10.1007/s00376-017-6246-8, 2017.
Gastineau, G. and Frankignoul, C.: Influence of the North Atlantic SST
Variability on the Atmospheric Circulation during the Twentieth Century, J.
Clim., 28, 1396–1416, https://doi.org/10.1175/JCLI-D-14-00424.1, 2015.
Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M.:
Global-scale attribution of anthropogenic and natural dust sources and their
emission rates based on MODIS Deep Blue aerosol products, Rev. Geophys., 50,
RG3005, https://doi.org/10.1029/2012RG000388, 2012.
Goswami, B. N., Madhusoodanan, M., Neema, C., and Sengupta, D.: A physical
mechanism for North Atlantic SST influence on the Indian summer monsoon,
Geophys. Res. Lett., 33, L02706, https://doi.org/10.1029/2005GL024803, 2006.
Han, Z., Luo, F. F., and Wan, J. H.: The observational influence of the North
Atlantic SST tripole on the early spring atmospheric circulation, Geophys.
Res. Lett., 43, 2998–3003, https://doi.org/10.1002/2016GL068099, 2016.
Hanf, F. S. and Annamalai, H.: Systematic Errors in South Asian Monsoon
Precipitation: Process-Based Diagnostics and Sensitivity to Entrainment in
NCAR Models, J. Clim., 33, 2817–2840,
https://doi.org/10.1175/JCLI-D-18-0495.1, 2020.
Hirahara, S., Ishii, M., and Fukuda, Y.: Centennial-scale sea surface
temperature analysis and its uncertainty, J. Clim., 27, 57–75,
https://doi.org/10.1175/JCLI-D-12-00837.1, 2014.
Hsu, N. C., Tsay, S. C., King, M. D., and Herman, J. R.: Aerosol Properties
over Bright-Reflecting Source Regions, IEEE T. Geosci. Remote, 42, 557–569,
https://doi.org/10.1109/TGRS.2004.824067, 2004.
Hsu, N. C., Tsay, S.-C., King, M. D., and Herman, J. R.: Deep Blue
retrievals of Asian aerosol properties during ACE-Asia, IEEE T. Geosci.
Remote Sens., 44, 3180–3195, https://doi.org/10.1109/TGRS.2006.879540,
2006.
Hu, S. and Fedorov, A. V.: The extreme El Niño of 2015–2016 and the end
of global warming hiatus, Geophys. Res. Lett., 44, 3816–3824,
https://doi.org/10.1002/2017GL072908, 2017.
Huang B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H-M.: Extended
Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades,
Validations, and Intercomparisons, J. Clim., 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.
Huang, X., Zhou, T., Turner, A., Dai, A., Chen, X., Clark, R., and Zou, L.:
The Recent Decline and Recovery of Indian Summer Monsoon Rainfall: Relative
Roles of External Forcing and Internal Variability, J. Clim., 33,
5035–5060, https://doi.org/10.1175/jcli-d-19-0833.1, 2020.
Huffman, G. J., Alder, R. F., Arkin, P., Chang, A., Ferraro, R., Gruber, A.,
Janowiak, J., McNab, A., Rudolf, B., and Schneider, U.: The Global
Precipitation Climatology Project (GPCP) Combined Precipitation Dataset, B.
Am. Meteorol. Soc., 78, 5–20,
https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2, 1997.
Hurrell, J. W.: Decadal trends in the North Atlantic oscillation: Regional
temperatures and precipitation, Science, 269, 676–679,
https://doi.org/10.1126/science.269.5224.676, 1995.
Hurrell, J. W. and Deser C.: North Atlantic climate variability: the role
of the North Atlantic Oscillation, J. Mar. Syst., 78, 28–41,
https://doi.org/10.1016/j.jmarsys.2008.11.026, 2009.
Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., and Rosinski, J.: A New
Sea Surface Temperature and Sea Ice Boundary Dataset for the Community
Atmosphere Model, J. Clim., 21, 5145–5153,
https://doi.org/10.1175/2008JCLI2292.1, 2008.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., amarque, J. F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein,
M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J. T., and Marshall, S.: The community earth system model: A framework for collaborative research, B. Am. Meteorol. Soc., 94, 1339–1360,
https://doi.org/10.1175/BAMS-12-00121.1, 2013.
Iles, C. and Hegerl, G.: Role of the North Atlantic Oscillation in decadal
temperature trends, Environ. Res. Lett., 12, 114010,
https://doi.org/10.1088/1748-9326/aa9152, 2017.
Jin, Q. and Wang, C.: The greening of Northwest Indian subcontinent and
reduction of dust abundance resulting from Indian summer monsoon revival,
Sci. Rep., 8, 4573, https://doi.org/10.1038/s41598-018-23055-5, 2018.
Jin, Q., Wei, J., and Yang, Z.-L.: Positive response of Indian summer
rainfall to Middle East dust, Geophys. Res. Lett., 41, 4068–4074,
https://doi.org/10.1002/2014GL059980, 2014.
Jin, Q., Wei, J., Pu, B., Yang, Z. L., and Parajuli, S. P.: High summertime
aerosol loadings over the Arabian Sea and their transport pathways, J.
Geophys. Res.-Atmos., 123, 10568–10590,
https://doi.org/10.1029/2018jd028588, 2018.
Kalnay, E., Kanamitsu, M., Kistler, R., Collines, W., Deaven, D., Gandin,
L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A.,
Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.
C., Ropelewski, C., and Wang, J.: The NCEP/NCAR 40-year reanalysis project,
B. Am. Meteorol. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:Tnyrp>2.0.Co;2, 1996.
Kim, M.-K., Lau, W. K. M., Kim, K.-M., Sang, J., Kim, Y.-H., and Lee, W.-S.:
Amplification of ENSO effects on Indian summer monsoon by absorbing
aerosols, Clim. Dynam., 46, 2657–2671,
https://doi.org/10.1007/s00382-015-2722-y, 2016.
Kinter III, J., Miyakoda, K., and Yang, S.: Recent change in the connection
from the Asian monsoon to ENSO, J. Clim., 15, 1203–1215,
https://doi.org/10.1175/1520-0442(2002)015<1203:RCITCF>2.0.CO;2, 2002.
Kosaka, Y. and Xie, S. P.: Recent global-warming hiatus tied to equatorial
Pacific surface cooling, Nature, 501, 403–407,
https://doi.org/10.1038/nature12534, 2013.
Kosaka, Y. and Xie , S. P.: The tropical Pacific as a key pacemaker of the
variable rates of global warming, Nat. Geosci., 9,
669–673, https://doi.org/10.1038/ngeo2770, 2016.
Krishnamurthy, L. and Krishnamurthy, V.: Teleconnections of Indian monsoon
rainfall with AMO and Atlantic tripole, Clim. Dynam., 46, 2269–2285,
https://doi.org/10.1007/s00382-015-2701-3, 2015.
Kucharski, F., Bracco, A., Yoo, J. H., and Molteni, F.: Low-frequency
variability of the Indian monsoon – ENSO relation and the Tropical
Atlantic: the “weakening” of the '80s and '90s, J. Clim., 20,
4255–4266, https://doi.org/10.1175/JCLI4254.1, 2007.
Kucharski, F., Bracco, A., Yoo, J. H., and Molteni, F.: Atlantic forced
component of the Indian monsoon interannual variability, Geophys. Res.
Lett., 35, L04706, https://doi.org/10.1029/2007GL033037, 2008.
Kumar, K. K., Rajagopalan, B., and Cane, K. A.: On the weakening
relationship between the Indian Monsoon and ENSO, Science, 284, 2156–2159,
https://doi.org/10.1126/science.284.5423.2156, 1999.
Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G., and Cane, M. A.:
Unraveling the mystery of Indian monsoon failure during El Niño,
Science, 314, 115–119, https://doi.org/10.1126/science.1131152, 2006.
Lee, T. and McPhaden, M. J.: Increasing intensity of El Niño in the
central-equatorial Pacific, Geophys. Res. Lett., 37, L14603,
https://doi.org/10.1029/2010GL044007, 2010.
Liu, W., Fedorov, A. V., Xie, S. P., and Hu, S.: Climate impacts of a
weakened Atlantic Meridional Overturning Circulation in a warming climate,
Sci. Adv., 6, eaaz4876, https://doi.org/10.1126/sciadv.aaz4876, 2020.
Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M., Zender,
C. S., and Luo, C.: Change in atmospheric mineral aerosols in response to
climate: Last glacial period, preindustrial, modern, and doubled carbon
dioxide climates, J. Geophys. Res.-Atmos., 111, D10202,
https://doi.org/10.1029/2005JD006653, 2006.
Mariotti, A., Zeng, N., and Lau, K.-M.: Euro-Mediterranean rainfall and ENSO
– a seasonally varying relationship, Geophys. Res. Lett., 29, 1621–1625,
https://doi.org/10.1029/2001GL014248, 2002.
Marticorena, B. and Bergametti, G.: Modeling the atmospheric dust cycle.1.
Design of a soil-derived emission scheme, J. Geophys. Res.-Atmos., 100,
16415–16430, 1995.
Mohtadi, M., Prange, M., Oppo, D.W., De Pol-Holz, R., Merkel, U., Zhang, X.,
Steinke, S., and Lückge, A.: North Atlantic forcing of tropical Indian
Ocean climate, Nature, 509, 76–80, 2014.
NCAR: Gridded Climate Datasets, available at: https://psl.noaa.gov/data/gridded/, last access: 29 July 2019.
Neale, R. B., Richter, J. H., Conley, A. J., Park, S., Lauritzen, P. H., and
Gettleman, A.: Description of the NCAR Community Atmosphere Model (CAM 4.0),
NCAR Tech. Note NCAR/TN-485+STR, 212 pp., available at:
http://www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf (last access: 18 September 2020), 2010.
Notaro, M., Yu, Y., and Kalashnikova, O. V.: Regime shift in Arabian dust
activity, triggered by persistent fertile crescent drought, J. Geophys.
Res.-Atmos., 120, 10229–10249, https://doi.org/10.1002/2015JD023855, 2015.
Osborne, J. M., Collins, M., Screen, J. A., Thomson, S. I., and Dunstone,
N.: The North Atlantic as a Driver of Summer Atmospheric Circulation, J.
Clim., 33, 7335–7351, https://doi.org/10.1175/JCLI-D-19-0423.1, 2020.
Ossó, A., Sutton, R., Shaffrey, L., and Dong, B.: Observational evidence
of European summer weather patterns predictable from spring, P. Natl.
Acad. Sci. USA, 115, 59–63, https://doi.org/10.1073/pnas.1713146114, 2018.
Ossó, A., Sutton, R., Shaffrey, L., and Dong, B.: Development,
Amplification, and Decay of Atlantic/European Summer Weather Patterns Linked
to Spring North Atlantic Sea Surface Temperatures, J. Clim., 33,
5939–5951, https://doi.org/10.1175/JCLI-D-19-0613.1, 2020.
Pandey, S. K., Vinoj, V., Landu, K., and Babu, S. S.: Declining pre-monsoon
dust loading over South Asia: Signature of a changing regional climate, Sci.
Rep., 7, 16062, https://doi.org/10.1038/s41598-017-16338-w, 2017.
Pandithurai, G., Dipu, S., Dani, K. K., Tiwari, S., Bisht, D. S., Devara, P.
C. S., and Pinker, R. T.: Aerosol radiative forcing during dust events over
New Delhi, India, J. Geophys. Res.-Atmos., 113, D13209,
https://doi.org/10.1029/2008JD009804, 2008.
Pourmand, A., Marcantonio, F., and Schulz, H.: Variations in productivity
and eolian fluxes in the northeastern Arabian Sea during the past 110 ka,
Earth Planet. Sc. Lett., 221, 39–54, https://doi.org/10.1016/S0012-821X(04)00109-8,
2004.
Pu, B. and Ginoux, P.: The impact of the Pacific Decadal Oscillation on
springtime dust activity in Syria, Atmos. Chem. Phys., 16, 13431–13448,
https://doi.org/10.5194/acp-16-13431-2016, 2016.
Pu, B. and Ginoux, P.: How reliable are CMIP5 models in simulating dust
optical depth?, Atmos. Chem. Phys., 18, 12491–12510,
https://doi.org/10.5194/acp-18-12491-2018, 2018.
Rajeevan, M. and Sridhar, L.: Inter-annual relationship between Atlantic
sea surface temperature anomalies and Indian summer monsoon, Geophys. Res.
Lett., 35, L21704, https://doi.org/10.1029/2008GL036025, 2008.
Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T.,
Washington, W. M., Fu, Q., Sikka, D. R., and Wild, M.: Atmospheric brown
clouds: Impacts on South Asian climate and hydrological cycle, P. Natl.
Acad. Sci. USA, 102, 5326–5333, https://doi.org/10.1073/pnas.0500656102,
2005.
Rasmusson, E. M. and Carpenter, T. H.: The relationship between eastern
equatorial Pacific sea surface temperatures and rainfall over India and Sri
Lanka, Mon. Weather Rev., 111, 517–528, 1983.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the
late nineteenth century, J. Geophys. Res.-Atmos., 108, 4407,
https://doi.org/10.1029/2002JD002670, 2003.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.:
An improved in situ and satellite SST analysis for climate, J. Clim., 15,
1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002.
Rodwell, M. J., Rowell, D. P., and Folland, C. K.: Oceanic forcing of the
wintertime North Atlantic Oscillation and European climate, Nature, 398,
320–323, https://doi.org/10.1038/18648, 1999.
Sabeerali, C. T., Ajayamohan, R. S., Bangalath, H. K., and Chen, N.:
Atlantic Zonal Mode: an emerging source of Indian summer monsoon variability
in a warming world, Geophys. Res. Lett., 46, 4460–4464,
https://doi.org/10.1029/2019GL082379, 2019.
Safaierad, R., Mohtadi, M., Zolitschka, B., Yokoyama, Y., Vogt, C.,
and Schefuß, E.: Elevated dust depositions in West Asia linked to
ocean–atmosphere shifts during North Atlantic cold events, P. Natl.
Acad. Sci. USA, 117, 18272–18277, https://doi.org/10.1073/pnas.2004071117, 2020.
Sanap, S. D., Ayantika, D. C., Pandithurai, G., and Niranjan, K.: Assessment
of the aerosol distribution over Indian subcontinent in CMIP5 models, Atmos.
Environ., 87, 123–137, https://doi.org/10.1016/j.atmosenv.2014.01.017,
2014.
Satheesh, S. K. and Ramanathan, V.: Large differences in tropical aerosol
forcing at the top of the atmosphere and Earth's surface, Nature, 405,
60–63, 2000.
Sikka, D. R.: Some aspects of the large scale fluctuations of summer monsoon
rainfall over India in relation to fluctuations in the planetary and
regional scale circulation parameters, P. Ind. Acad. Sci., 89, 179–195, 1980.
Solmon, F., Nair, V. S., and Mallet, M.: Increasing Arabian dust activity
and the Indian summer monsoon, Atmos. Chem. Phys., 15, 8051–8064,
https://doi.org/10.5194/acp-15-8051-2015, 2015.
Sperber, K. R., Annamalai, H., Kang, I.-S., Kitoh, A., Moise, A., Turner,
A., Wang, B., and Zhou, T.: The Asian summer monsoon: an intercomparison of
CMIP5 vs. CMIP3 simulations of the late 20th century, Clim. Dynam., 41,
2711–2744, https://doi.org/10.1007/s00382-012-1607-6, 2013.
Srivastava, A. K., Rajeevan, M., and Kulkarni, R.: Teleconnection of OLR and
SST anomalies over Atlantic Ocean with Indian summer monsoon, Geophys. Res.
Lett., 29, 1284, https://doi.org/10.1029/2001GL013837, 2002.
Srivastava, G., Chakraborty, A., and Nanjundiah, R.S.: Multidecadal see-saw
of the impact of ENSO on Indian and West African summer monsoon rainfall,
Clim. Dynam., 52, 6633–6649, https://doi.org/10.1007/s00382-018-4535-2, 2019.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: Climate
Change 2013: The Physical Science Basis, Contribution of Working Group I to
the Fifth Assessment Report of the Inter-governmental Panel on Climate
Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Sun, J. Q., Wang, H. J., and Yuan, W.: Role of the tropical Atlantic sea
surface temperature in the decadal change of the summer North Atlantic
Oscillation, J. Geophys. Res.-Atmos., 114, D20110,
https://doi.org/10.1029/2009JD012395, 2009.
Trenberth, K. E. and Fasullo, J. T.: An apparent hiatus in global warming?,
Earth's Future, 1, 19–32, https://doi.org/10.1002/2013EF000165, 2013.
Trenberth, K. E., Fasullo, J. T., Branstator, G., and Phillips, A. S.:
Seasonal aspects of the recent pause in surface warming, Nat. Clim. Change,
4, 911–916, https://doi.org/10.1038/nclimate2341, 2014.
Thompson, L. G., Yao, T., Mosley-Thompson, E., Davis, M. E., Henderson, K.
A., and Lin, P. N.: A high-resolution millennial record of the South Asian
Monsoon from Himalayan ice cores, Science, 289, 1916–1919, 2000.
Vinoj, V., Rasch, P., Wang, H., Yoon, J., Ma, P., Landu, K., and Singh, B.:
Short-term modulation of Indian summer monsoon rainfall by West Asian dust,
Nat. Geosci., 7, 308–313, https://doi.org/10.1038/ngeo2107, 2014.
Visbeck, M., Cullen, H., Krahmann, G., and Naik, N.: An ocean model's
response to North Atlantic Oscillation-like wind forcing, Geophys. Res.
Lett., 25, 4521–4524, 1998.
Visbeck, M. H., Hurrell, J. W., Polvani, L., and Cullen, H. M.: The North
Atlantic Oscillation: past, present and future, P. Natl. Acad. Sci. USA, 98,
12876–12877, 2001.
Walker, A. L., Liu, M., Miller, S. D., Richardson, K. A., and Westphal, D.
L.: Development of a dust source database for mesoscale forecasting in
southwest Asia, J. Geophys. Res.-Atmos., 114, D18207,
https://doi.org/10.1029/2008JD011541, 2009.
Wang, B., Xiang, B., Li, J., Webster, P. J., Rajeevan, M. N., Liu, J., and
Ha, K.-J.: Rethinking Indian monsoon rainfall prediction in the context of
recent global warming, Nat. Commun., 6, 7154,
https://doi.org/10.1038/ncomms8154, 2015.
Wulff, C. O., Greatbatch, R. J., Domeisen, D. I. V., Gollan, G., and Hansen,
F.: Tropical forcing of the summer east Atlantic pattern, Geophys. Res.
Lett., 44, 11166–11173, https://doi.org/10.1002/2017GL075493, 2017.
Xie, S.-P. and Kosaka, Y.: What caused the global surface warming hiatus of
1998–2013?, Curr. Clim. Change Rep., 3, 128–140,
https://doi.org/10.1007/s40641-017-0063-0, 2017.
Yeh, S.-W., Kug, J.-S., Dewitte, B., Kwon, M.-H., Kirtman, B.P., and Jin,
F.-F.: El Niño in a changing climate, Nature, 461, 511–514, 2009.
Yu, Y., Notaro, M., Liu, Z., Wang, F., Alkolibi, F., Fadda, E., and Bakhrjy,
F.: Climatic controls on the interannual to decadal variability in Saudi
Arabian dust activity: toward the development of a seasonal dust prediction
model, J. Geophys. Res.-Atmos., 120, 1739–1758,
https://doi.org/10.1002/2014JD022611, 2015.
Zender, C. S., Bian, H., and Newman, D.: Mineral Dust Entrainment and
Deposition (DEAD) model: Description and 1990s dust climatology, J. Geophys.
Res.-Atmos., 108, 4416, https://doi.org/10.1029/2002JD002775, 2003a.
Zender, C. S., Newman, D., and Torres, O.: Spatial heterogeneity in aeolian
erodibility: uniform, topographic, geomorphic and hydrologic hypotheses, J.
Geophys. Res.-Atmos., 108, 4543, https://doi.org/10.1029/2002JD003039, 2003b.
Zhang, R. and Delworth, T. L.: Impact of Atlantic multidecadal oscillations
on India/Sahel rainfall and Atlantic hurricanes, Geophys. Res. Lett., 33,
L17712, https://doi.org/10.1029/2006GL026267, 2006.
Zhu, A., Ramanathan, V., Li, F., and Kim, D.: Dust plumes over the Pacific,
Indian, and Atlantic oceans: climatology and radiative impact, J. Geophys.
Res.-Atmos., 112, D16208, https://doi.org/10.1029/2007JD008427, 2007.
Short summary
We show that the Atlantic Ocean is the major driver of interannual variability in dust over South Asia since the second decade of the 21st century. This is a shift from the previously important role played by the Pacific Ocean in controlling dust over this region. Following the end of the recent global warming hiatus, anomalies of the North Atlantic sea surface temperature have remotely invoked a weakening of the South Asian monsoon and a strengthening of the dust-bearing northwesterlies.
We show that the Atlantic Ocean is the major driver of interannual variability in dust over...
Altmetrics
Final-revised paper
Preprint