Articles | Volume 21, issue 23
https://doi.org/10.5194/acp-21-17577-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-17577-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intercomparison of middle atmospheric meteorological analyses for the Northern Hemisphere winter 2009–2010
John P. McCormack
Space Science Division, Naval Research Laboratory, Washington D.C., USA
now at: Heliophysics Division, Science Mission Directorate, NASA Headquarters, Washington D.C., USA
V. Lynn Harvey
CORRESPONDING AUTHOR
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder CO, USA
Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder CO, USA
Cora E. Randall
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder CO, USA
Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder CO, USA
Nicholas Pedatella
High Altitude Observatory, National Center for Atmospheric Research, Boulder CO, USA
Dai Koshin
Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
Kaoru Sato
Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
Lawrence Coy
Science Systems and Applications, Lanham MD, USA
NASA Goddard Space Flight Center, Greenbelt MD, USA
Shingo Watanabe
Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
Fabrizio Sassi
Space Science Division, Naval Research Laboratory, Washington D.C., USA
Laura A. Holt
NorthWest Research Associates, Boulder CO, USA
Related authors
Fabrizio Sassi, Angeline G. Burrell, Sarah E. McDonald, Jennifer L. Tate, and John P. McCormack
Ann. Geophys., 42, 255–269, https://doi.org/10.5194/angeo-42-255-2024, https://doi.org/10.5194/angeo-42-255-2024, 2024
Short summary
Short summary
This study shows how middle-atmospheric data (starting at 40 km) affect day-to-day ionospheric variability. We do this by using lower atmospheric measurements that include and exclude the middle atmosphere in a coupled ionosphere–thermosphere model. Comparing the two simulations reveals differences in two thermosphere–ionosphere coupling mechanisms. Additionally, comparison against observations showed that including the middle-atmospheric data improved the resulting ionosphere.
Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elizabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Peter R. Colarco, Sandip Dhomse, Lola Falletti, Eric Fleming, Ben Johnson, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
Geosci. Model Dev., 18, 5487–5512, https://doi.org/10.5194/gmd-18-5487-2025, https://doi.org/10.5194/gmd-18-5487-2025, 2025
Short summary
Short summary
To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model–observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goals of this activity: (1) to evaluate the climate model performance and (2) to understand the Earth system responses to this eruption.
Clara Orbe, Alison Ming, Gabriel Chiodo, Michael Prather, Mohamadou Diallo, Qi Tang, Andreas Chrysanthou, Hiroaki Naoe, Xin Zhou, Irina Thaler, Dillon Elsbury, Ewa Bednarz, Jonathon S. Wright, Aaron Match, Shingo Watanabe, James Anstey, Tobias Kerzenmacher, Stefan Versick, Marion Marchand, Feng Li, and James Keeble
EGUsphere, https://doi.org/10.5194/egusphere-2025-2761, https://doi.org/10.5194/egusphere-2025-2761, 2025
Short summary
Short summary
The quasi-biennial oscillation (QBO) is the main source of wind fluctuations in the tropical stratosphere, which can couple to surface climate. However, models do a poor job of simulating the QBO in the lower stratosphere, for reasons that remain unclear. One possibility is that models do not completely represent how ozone influences the QBO-associated wind variations. Here we propose a multi-model framework for assessing how ozone influences the QBO in recent past and future climates.
Zhihong Zhuo, Xinyue Wang, Yunqian Zhu, Ewa M. Bednarz, Eric Fleming, Peter R. Colarco, Shingo Watanabe, David Plummer, Georgiy Stenchikov, William Randel, Adam Bourassa, Valentina Aquila, Takashi Sekiya, Mark R. Schoeberl, Simone Tilmes, Wandi Yu, Jun Zhang, Paul J. Kushner, and Francesco S. R. Pausata
EGUsphere, https://doi.org/10.5194/egusphere-2025-1505, https://doi.org/10.5194/egusphere-2025-1505, 2025
Short summary
Short summary
The 2022 Hunga eruption caused unprecedented stratospheric water injection, triggering unique atmospheric impacts. This study combines observations and model simulations, projecting a stratospheric water vapor anomaly lasting 4–7 years, with significant temperature variations and ozone depletion in the upper atmosphere lasting 7–10 years. These findings offer critical insights into the role of stratospheric water vapor in shaping climate and atmospheric chemistry.
Hiroaki Naoe, Jorge L. Garcia-Franco, Chang-Hyun Park, Mario Rodrigo, Froila M. Palmeiro, Federico Serva, Masakazu Taguchi, Kohei Yoshida, James A. Anstey, Javier Garcia-Serrano, Seok-Woo Son, Yoshio Kawatani, Neal Butchart, Kevin Hamilton, Chih-Chieh Chen, Anne Glanville, Tobias Kerzenmacher, Francois Lott, Clara Orbe, Scott Osprey, Mijeong Park, Jadwiga H. Richter, Stefan Versick, and Shingo Watanabe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1148, https://doi.org/10.5194/egusphere-2025-1148, 2025
Short summary
Short summary
This study examines links between the stratospheric Quasi-Biennial Oscillation (QBO) and large-scale atmospheric circulations in the tropics, subtropics, and polar regions. The QBO teleconnections and their modulation by the El Niño-Southern Oscillation (ENSO) are investigated through a series of climate model experiments. While QBO teleconnections are qualitatively reproduced by the multi-model ensemble, they are not consistent due to modelled QBO bias and other systematic model biases.
Abdullah A. Fahad, Andrea Molod, Krzysztof Wargan, Dimitris Menemenlis, Patrick Heimbach, Atanas Trayanov, Ehud Strobach, and Lawrence Coy
EGUsphere, https://doi.org/10.21203/rs.3.rs-1892797/v2, https://doi.org/10.21203/rs.3.rs-1892797/v2, 2025
Short summary
Short summary
This study used a 1-degree GEOS-MITgcm coupled GCM to analyze the Northern Hemisphere (NH) stratospheric temperature response to external forcing. Results show the NH polar stratospheric temperature increased from 1992 to 2000, contrary to the expectation of stratospheric cooling with rising CO2. However, from 2000 to 2020, the temperature decreased. The study concluded that changes in CO2 and Ozone drive the meridional eddy transport of heat, dictating polar stratospheric temperature behavior.
Dong L. Wu, Valery A. Yudin, Kyu-Myong Kim, Mohar Chattopadhyay, Lawrence Coy, Ruth S. Lieberman, C. C. Jude H. Salinas, Jae N. Lee, Jie Gong, and Guiping Liu
Atmos. Meas. Tech., 18, 843–863, https://doi.org/10.5194/amt-18-843-2025, https://doi.org/10.5194/amt-18-843-2025, 2025
Short summary
Short summary
Global Navigation Satellite System radio occultation data help monitor climate and weather prediction but are affected by residual ionospheric errors (RIEs). A new excess-phase-gradient method detects and corrects RIEs, showing both positive and negative values, varying by latitude, time, and solar activity. Tests show that RIE impacts polar stratosphere temperatures in models, with differences up to 3–4 K. This highlights the need for RIE correction to improve the accuracy of data assimilation.
Dillon Elsbury, Federico Serva, Julie M. Caron, Seung-Yoon Back, Clara Orbe, Jadwiga H. Richter, James A. Anstey, Neal Butchart, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Yoshio Kawatani, Tobias Kerzenmacher, Francois Lott, Hiroaki Naoe, Scott Osprey, Froila M. Palmeiro, Seok-Woo Son, Masakazu Taguchi, Stefan Versick, Shingo Watanabe, and Kohei Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-3950, https://doi.org/10.5194/egusphere-2024-3950, 2025
Short summary
Short summary
This study examines how the Madden-Julian Oscillation (MJO), a major tropical weather pattern, is influenced by persistent El Niño or La Niña sea surface temperature conditions during winter. Using a coordinated set of climate model experiments, we find that El Niño strengthens Kelvin waves, speeding up MJO propagation, while La Niña strengthens Rossby waves, slowing it down. Better understanding these interactions between the MJO and ocean helps us better understand natural climate variability.
Yoshio Kawatani, Kevin Hamilton, Shingo Watanabe, James A. Anstey, Jadwiga H. Richter, Neal Butchart, Clara Orbe, Scott M. Osprey, Hiroaki Naoe, Dillon Elsbury, Chih-Chieh Chen, Javier García-Serrano, Anne Glanville, Tobias Kerzenmacher, François Lott, Froila M. Palmerio, Mijeong Park, Federico Serva, Masakazu Taguchi, Stefan Versick, and Kohei Yoshioda
EGUsphere, https://doi.org/10.5194/egusphere-2024-3270, https://doi.org/10.5194/egusphere-2024-3270, 2024
Short summary
Short summary
The Quasi-Biennial Oscillation (QBO) of the tropical stratospheric mean winds has been relatively steady over the 7 decades it has been observed, but there are always cycle-to-cycle variations. This study used several global atmospheric models to investigate systematic modulation of the QBO by the El Niño/La Niña cycle. All models simulated shorter periods during El Niño, in agreement with observations. By contrast, the models disagreed even on the sign of the El Niño effect on QBO amplitude.
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024, https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Short summary
We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in general atmospheric circulation and atmospheric processes.
Fabrizio Sassi, Angeline G. Burrell, Sarah E. McDonald, Jennifer L. Tate, and John P. McCormack
Ann. Geophys., 42, 255–269, https://doi.org/10.5194/angeo-42-255-2024, https://doi.org/10.5194/angeo-42-255-2024, 2024
Short summary
Short summary
This study shows how middle-atmospheric data (starting at 40 km) affect day-to-day ionospheric variability. We do this by using lower atmospheric measurements that include and exclude the middle atmosphere in a coupled ionosphere–thermosphere model. Comparing the two simulations reveals differences in two thermosphere–ionosphere coupling mechanisms. Additionally, comparison against observations showed that including the middle-atmospheric data improved the resulting ionosphere.
Daniele Visioni, Alan Robock, Jim Haywood, Matthew Henry, Simone Tilmes, Douglas G. MacMartin, Ben Kravitz, Sarah J. Doherty, John Moore, Chris Lennard, Shingo Watanabe, Helene Muri, Ulrike Niemeier, Olivier Boucher, Abu Syed, Temitope S. Egbebiyi, Roland Séférian, and Ilaria Quaglia
Geosci. Model Dev., 17, 2583–2596, https://doi.org/10.5194/gmd-17-2583-2024, https://doi.org/10.5194/gmd-17-2583-2024, 2024
Short summary
Short summary
This paper describes a new experimental protocol for the Geoengineering Model Intercomparison Project (GeoMIP). In it, we describe the details of a new simulation of sunlight reflection using the stratospheric aerosols that climate models are supposed to run, and we explain the reasons behind each choice we made when defining the protocol.
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
Eframir Franco-Diaz, Michael Gerding, Laura Holt, Irina Strelnikova, Robin Wing, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Chem. Phys., 24, 1543–1558, https://doi.org/10.5194/acp-24-1543-2024, https://doi.org/10.5194/acp-24-1543-2024, 2024
Short summary
Short summary
We use satellite, lidar, and ECMWF data to study storm-related waves that propagate above Kühlungsborn, Germany, during summer. Although these events occur in roughly half of the years of the satellite data we analyzed, we focus our study on two case study years (2014 and 2015). These events could contribute significantly to middle atmospheric circulation and are not accounted for in weather and climate models.
Daniele Visioni, Ben Kravitz, Alan Robock, Simone Tilmes, Jim Haywood, Olivier Boucher, Mark Lawrence, Peter Irvine, Ulrike Niemeier, Lili Xia, Gabriel Chiodo, Chris Lennard, Shingo Watanabe, John C. Moore, and Helene Muri
Atmos. Chem. Phys., 23, 5149–5176, https://doi.org/10.5194/acp-23-5149-2023, https://doi.org/10.5194/acp-23-5149-2023, 2023
Short summary
Short summary
Geoengineering indicates methods aiming to reduce the temperature of the planet by means of reflecting back a part of the incoming radiation before it reaches the surface or allowing more of the planetary radiation to escape into space. It aims to produce modelling experiments that are easy to reproduce and compare with different climate models, in order to understand the potential impacts of these techniques. Here we assess its past successes and failures and talk about its future.
Phoebe Noble, Neil Hindley, Corwin Wright, Chihoko Cullens, Scott England, Nicholas Pedatella, Nicholas Mitchell, and Tracy Moffat-Griffin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-150, https://doi.org/10.5194/acp-2022-150, 2022
Revised manuscript not accepted
Short summary
Short summary
We use long term radar data and the WACCM-X model to study the impact of dynamical phenomena, including the 11-year solar cycle, ENSO, QBO and SAM, on Antarctic mesospheric winds. We find that in summer, the zonal wind (both observationally and in the model) is strongly correlated with the solar cycle. We also see important differences in the results from the other processes. In addition we find important and large biases in the winter model zonal winds relative to the observations.
Dai Koshin, Kaoru Sato, Masashi Kohma, and Shingo Watanabe
Geosci. Model Dev., 15, 2293–2307, https://doi.org/10.5194/gmd-15-2293-2022, https://doi.org/10.5194/gmd-15-2293-2022, 2022
Short summary
Short summary
The 4D ensemble Kalman filter data assimilation system for the whole neutral atmosphere has been updated. The update includes the introduction of a filter to reduce the generation of spurious waves, change in the order of horizontal diffusion of the forecast model to reproduce more realistic tidal amplitudes, and use of additional satellite observations. As a result, the analysis performance has been greatly improved, even for disturbances with periods of less than 1 d.
David E. Siskind, V. Lynn Harvey, Fabrizio Sassi, John P. McCormack, Cora E. Randall, Mark E. Hervig, and Scott M. Bailey
Atmos. Chem. Phys., 21, 14059–14077, https://doi.org/10.5194/acp-21-14059-2021, https://doi.org/10.5194/acp-21-14059-2021, 2021
Short summary
Short summary
General circulation models have had a very difficult time simulating the descent of nitric oxide through the polar mesosphere to the stratosphere. Here, we present results suggesting that, with the proper specification of middle atmospheric meteorology, the simulation of this process can be greatly improved. Despite differences in the detailed geographic morphology of the model NO as compared with satellite data, we show that the overall abundance is likely in good agreement with the data.
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Laura A. Holt, and Lars Hoffmann
Atmos. Meas. Tech., 14, 5873–5886, https://doi.org/10.5194/amt-14-5873-2021, https://doi.org/10.5194/amt-14-5873-2021, 2021
Short summary
Short summary
Measuring atmospheric gravity waves in low vertical-resolution data is technically challenging, especially when the waves are significantly longer in the vertical than in the length of the measurement domain. We introduce and demonstrate a modification to the existing Stockwell transform methods of characterising these waves that address these problems, with no apparent reduction in the other capabilities of the technique.
Arata Amemiya and Kaoru Sato
Atmos. Chem. Phys., 20, 13857–13876, https://doi.org/10.5194/acp-20-13857-2020, https://doi.org/10.5194/acp-20-13857-2020, 2020
Short summary
Short summary
The spatial pattern of subseasonal variability of the Asian monsoon anticyclone (AMA) is analyzed using long-term reanalysis data, integrating two different views using potential vorticity and the geopotential height anomaly. This study provides a link between two existing description of the Asian monsoon anticyclone, which is important for the understanding of the whole life cycle of its characteristic subseasonal variability pattern.
Cited articles
Anderson, J. L., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Arellano, A. F.:
The Data Assimilation Research Testbed: A community data assimilation facility,
B. Am. Meteorol. Soc.,
90, 1283–1296, https://doi.org/10.1175/2009BAMS2618.1, 2009.
Becker, E. and Vadas, S. L.:
Secondary gravity waves in the winter mesosphere: Results from a high-resolution global circulation model,
J. Geophys. Res.,
123, 2605–2627, https://doi.org/10.1002/2017JD027460, 2018.
Beres, J. H., Garcia, R. R., Boville, B. A., and Sassi, F.:
Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM),
J. Geophys. Res.,
110, D10108, https://doi.org/10.1029/2004JD005504, 2005.
Bosilovich, M., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R., Kovach, R., Liu, Q., Molod, A., Norris, P., Wargan, K., Chao, W., Reichle, R., Takacs, L., Vikhliaev, Y., Bloom, S., Collow, A., Firth, S., Labow, G., Partyka, G., Pawson, S., Reale, O., Schubert, S. D., and Suarez, M.:
MERRA-2: Initial evaluation of the climate, NASA Tech. Report Series on Global Modeling and Data Assimilation, NASA/TM–2015-104606, Vol. 43,
NASA Goddard Space Flight Center, Greenbelt, Maryland, 2015.
Blanc, E., Ceranna, L., Hauchecorne, A., Charlton-Perez, A., Marchetti, E., Evers, L. G., Kvaerna, T., Lastovicka, J., Eliasson, L., Crosby, N. B., Blanc-Benon, P., Le Pichon, A., Brachet, N., Pilger, C., Keckhut, P., Assink, J. D., Smets, P. S. M., Lee, C. F., Kero, J., Sindelarova, T., Kämpfer, N., Rüfenacht, R., Farges, T., Millet, C.,
Näsholm, S. P., Gibbons, S. J., Espy, P. J., Hibbins, R. E., Heinrich, P., Ripepe, M., Khaykin, S., Mze, N., and Chum, J.: Toward an improved representation of middle atmospheric dynamics thanks to the ARISE Project, Surv. Geophys., 39, 171–225, https://doi.org/10.1007/s10712-017-9444-0, 2018.
Burks, D. and Leovy, C.:
Planetary waves near the mesospheric easterly jet,
Geophys. Res. Lett.,
13, 193–196, https://doi.org/10.1029/GL013i003p00193, 1986.
Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H.: A sudden stratospheric warming compendium, Earth Syst. Sci. Data, 9, 63–76, https://doi.org/10.5194/essd-9-63-2017, 2017.
Chandran, A., Garcia, R. R., Collins, R. L., and Chang, L. C.:
Secondary planetary waves in the middle and upper atmosphere following the stratospheric sudden warming event of January 2012,
Geophys. Res. Lett.,
40, 1861–1867, https://doi.org/10.1002/grl.50373, 2013.
Chang, L. C., Palo, S. E., and Liu, H.-L.:
Short-term variability in the migrating diurnal tide caused by interactions with the quasi 2-day wave,
J. Geophys. Res.,
116, D12112, https://doi.org/10.1029/2010JD014996, 2011.
Chang, L. C., Yue, J., Wang, W., Wu, Q., and Meier, R. R.:
Quasi two-day wave-related variability in the background dynamics and composition of the mesosphere/thermosphere, and the ionosphere,
J. Geophys. Res.-Space,
119, 4786–4804, https://doi.org/10.1002/2014JA019936, 2014.
Chau, J. L., Fejer, B. G., and Goncharenko, L. P.:
Quiet variability of equatorial ExB drifts during a sudden stratospheric warming event,
Geophys. Res. Lett.,
36, L05101, https://doi.org/10.1029/2008GL036785, 2009.
Coy, L.:
A possible 2-day oscillation near the tropical stratopause,
J. Atmos. Sci.,
36, 1615–1618, https://doi.org/10.1175/1520-0469(1979)036<1615:APDONT>2.0.CO;2, 1979.
Coy, L., Wargan, K., Molod, A. M., McCarty, W. R., and Pawson, S.:
Structure and dynamics of the quasi-biennial oscillation in MERRA-2,
J. Climate,
29, 5339–5354, https://doi.org/10.1175/JCLI-D-15-0809.1, 2016.
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The Community Earth System Model Version 2 (CESM2), J. Adv. Model. Earth Sys., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916, 2020.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.:
The ERA-Interim reanalysis: configuration and performance of the data assimilation system,
Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
de Wit, R. J., Hibbins, R. E., Espy, P. J., and Hennum, E. A.: Coupling in the middle atmosphere related to the 2013 major sudden stratospheric warming, Ann. Geophys., 33, 309–319, https://doi.org/10.5194/angeo-33-309-2015, 2015.
Dhadly, M. S., Emmert, J. T., Drob, D. P., McCormack, J. P., and Niciejewski, R.:
Short-term and interannual variations of migrating diurnal and semidiurnal tides in the mesosphere and lower thermosphere,
J. Geophys. Res.,
123, 7106–7123, https://doi.org/10.1029/2018JA025748, 2018.
Eckermann, S. D.:
Explicitly stochastic parameterization of non-orographic gravity wave drag,
J. Atmos. Sci.,
68, 1749–1765, https://doi.org/10.1175/2011JAS3684.1, 2011.
Eckermann, S. D., Ma, J., Hoppel, K. W., Kuhl, D. D., Allen, D. R., Doyle, J. A., Viner, K. C., Ruston, B. C., Baker, N. L., Swadley, S. D., Whitcomb, T. R., Reynolds, C. A., Xu, L., Kaifler, N., Kaifler, B., Reid, I. M., Murphy, D. J., and Love, P. T.:
High-Altitude (0–100 km) Global Atmospheric Reanalysis System: Description and Application to the 2014 Austral Winter of the Deep Propagating Gravity Wave Experiment (DEEPWAVE),
Mon. Weather Rev.,
146, 2639–2666, https://doi.org/10.1175/MWR-D-17-0386.1, 2018.
Ern, M., Preusse, P., Kalisch, S., Kaufmann, M., and Riese, M.:
Role of gravity waves in the forcing of quasi two-day waves in the mesosphere: An observational study,
J. Geophys. Res.-Atmos.,
118, 3467–3485, https://doi.org/10.1029/2012JD018208, 2013.
Eswaraiah, S., Kim, Y. H., Liu, H, Venkat Ratnam, M., and Lee, J.:
Do minor sudden stratospheric warmings in the Southern Hemisphere (SH) impact coupling between stratosphere and mesosphere–lower thermosphere (MLT) like major warmings?,
Earth Planets Space,
69, 119, https://doi.org/10.1186/s40623-017-0704-5, 2017.
Forbes, J. M. and Wu, D.:
Solar tides as revealed by measurements of mesosphere temperature by the MLS experiment on UARS,
J. Atmos. Sci.,
63, 1776–1797, https://doi.org/10.1175/JAS3724.1, 2006.
Forbes, J. M. and Zhang, X.:
The quasi-6 day wave and its interactions with solar tides,
J. Geophys. Res.-Space,
122, 4764–4776, https://doi.org/10.1002/2017JA023954, 2017.
Forbes, J. M., Zhang, X., Palo, S., Russell III, J. M., Mertens, C. J., and Mlynczak, M.:
Tidal variability in the ionospheric dynamo region,
J. Geophys. Res.,
113, A02310, https://doi.org/10.1029/2007JA012737, 2008.
France, J. A., Randall, C. E., Lieberman, R. S., Harvey, V. L., Eckermann, S. D., Siskind, D. E., Lumpe, J. D., Bailey, S. M., Carstens, J. N., and Russell III, J. M.:
Local and remote planetary wave effects on polar mesospheric clouds in the Northern Hemisphere in 2014,
J. Geophys. Res.-Atmos.,
123, 5149–5162, https://doi.org/10.1029/2017JD028224, 2018.
Fritts, D. C. and Alexander, M. J.:
Gravity wave dynamics and effects in the middle atmosphere,
Rev. Geophys.,
41, 1003, https://doi.org/10.1029/2001RG000106, 2003.
Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner, T., Davis, S., Gerber, E. P., Harvey, V. L., Hegglin, M. I., Homeyer, C. R., Knox, J. A., Krüger, K., Lambert, A., Long, C. S., Martineau, P., Molod, A., Monge-Sanz, B. M., Santee, M. L., Tegtmeier, S., Chabrillat, S., Tan, D. G. H., Jackson, D. R., Polavarapu, S., Compo, G. P., Dragani, R., Ebisuzaki, W., Harada, Y., Kobayashi, C., McCarty, W., Onogi, K., Pawson, S., Simmons, A., Wargan, K., Whitaker, J. S., and Zou, C.-Z.: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems, Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, 2017.
Garcia, R. and Boville, B.: Downward control of the mean meridional circulation and temperature distribution of the polar winter stratosphere, J. Atmos. Sci., 51, 2238–2245, 1994.
Garcia, R. R., Dunkerton, T. J., Lieberman, R. S., and Vincent, R. A.:
Climatology of the semi-annual oscillation of the tropical middle atmosphere,
J. Geophys. Res.,
102, 26019–26032, https://doi.org/10.1029/97JD00207, 1997.
Garcia, R. R., Lieberman, R. S., Russell III, J. M., and Mlynczak, M. G.:
Large-scale waves in the mesosphere and lower thermosphere observed by SABER,
J. Atmos. Sci.,
62, 4384–4399, https://doi.org/10.1175/JAS3612.1, 2005.
Garcia, R. R., Smith, A. K., Kinnison, D. E., de la Cámara, Á., and Murphy, D. J.:
Modification of the Gravity Wave Parameterization in the Whole Atmosphere Community Climate Model: Motivation and Results,
J. Atmos. Sci.,
74, 275–291, https://doi.org/10.1175/JAS-D-16-0104.1, 2017.
Gaspari, G. and Cohn, S. E.:
Construction of correlation functions in two and three dimensions,
Q. J. Roy. Meteor. Soc.,
125, 723–757, https://doi.org/10.1002/qj.49712555417, 1999.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.:
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2),
J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Global Modeling and Assimilation Office (GMAO):
MERRA-2 inst3_3d_asm_Nv: 3d,3-Hourly, Instantaneous, Model-Level, Assimilation, Assimilated Meteorological Fields V5.12.4,
Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, USA, https://doi.org/10.5067/WWQSXQ8IVFW8, 2015.
Goncharenko, L. and Zhang, S.-R.:
Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude,
Geophys. Res. Lett.,
35, L21103, https://doi.org/10.1029/2008GL035684, 2008.
Goncharenko, L. P., Chau, J. L., Liu, H.-L., and Coster, A. J.:
Unexpected connections between the stratosphere and ionosphere,
Geophys. Res. Lett.,
37, L10101, https://doi.org/10.1029/2010GL043125, 2010.
Goncharenko, L. P., Coster, A. J., Plumb, R. A., and Domeisen, D. I. V.:
The potential role of stratospheric ozone in the stratosphere–ionosphere coupling during stratospheric warmings,
Geophys. Res. Lett.,
39, L08101, https://doi.org/10.1029/2012GL051261, 2012.
Goncharenko, L. P., Hsu, V. W., Brum, C. G. M., Zhang, S.-R., and Fentzke, J. T.:
Wave signatures in the midlatitude ionosphere during a sudden stratospheric warming of January 2010.
J. Geophys. Res.,
118, 472–487, https://doi.org/10.1029/2012JA018251, 2013.
Gu, S.-Y, Li, T., Dou, X., Wu, Q., Mlynczak, M. G., and Russell III, J. M.:
Observations of quasi-two-day wave by TIMED/SABER and TIMED/TIDI,
J. Geophys. Res.-Atmos.,
118, 1624–1639, https://doi.org/10.1002/jgrd.50191, 2013.
Hagan, M. E., Maute, A., Roble, R. G., Richmond, A. D., Immel, T. J., and England, S. L.:
Connections between deep tropical clouds and the Earth's ionosphere,
Geophys. Res. Lett.,
34, L20109, https://doi.org/10.1029/2007GL030142, 2007.
Harris, T. J.:
A long-term study of the quasi-two-day wave in the middle atmosphere,
J. Atmos. Terr. Phys.,
56, 569–579, https://doi.org/10.1016/0021-9169(94)90098-1, 1994.
Harvey, V. L., Randall, C. E., Becker, E., Smith, A. K., Bardeen, C. G., France, J. A., and Goncharenko, L. P.:
Evaluation of the mesospheric polar vortices in WACCM,
J. Geophys. Res.-Atmos.,
124, 10626–10645, https://doi.org/10.1020/2019JD030727, 2019.
Harvey, V. L., Knox, J. A., France, J. A., Fujiwara, M., Gray, L., Hirooka, T., Hitchcock, P., Hitchman, M., Kawatani, Y., Manney, G. L., McCormack, J., Orsolini, Y., Sakazaki, T., and
Tomikawa, Y.: Chapter 11: Upper Stratosphere and Lower Mesosphere, SPARC Reanalysis Intercomparison Project (S-RIP) Final Report, edited by: Fujiwara, M., Manney, G. L., Gray, L. J., and Wright, J. S., SPARC Report No. 10, WCRP-6/2021, SPARC, DLR-IPA, Oberpfaffenhofen, Germany, https://doi.org/10.17874/800dee57d13, 2021.
Hayashi, Y.:
A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses,
J. Meteorol. Soc. Jpn.,
49, 125–128, 1971.
Hindley, N. P., Wright, C. J., Hoffmann, L., Moffat-Griffin, T., and Mitchell, N. J.:
An 18-year climatology of directional stratospheric gravity wave momentum flux from 3-D satellite observations,
Geophys. Res. Lett.,
47, e2020GL089557, https://doi.org/10.1029/2020GL089557, 2020.
Hines, C. O.:
Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation,
J. Atmos. Sol.-Terr. Phy.,
59, 371–386, https://doi.org/10.1016/S1364-6826(96)00079-X, 1997.
Hoppel, K. W., Eckermann, S. D., Coy, L., Nedoluha, G. E., Allen, D. R., Swadley, S. D., and Baker, N. L.:
Evaluation of SSMIS Upper Atmosphere Sounding Channels for High-Altitude Data Assimilation,
Mon. Weather Rev.,
141, 3314–3330, https://doi.org/10.1175/MWR-D-13-00003.1, 2013.
Immel, T. J., Sagawa, E., England, S. L., Henderson, S. B., Hagan, M. E., Mende, S. B., Frey, H. U., Swenson, C. M., and Paxton, L. J.:
Control of equatorial ionospheric morphology by atmospheric tides,
Geophys. Res. Lett.,
33, L15108, https://doi.org/10.1029/2006GL026161, 2006.
Jones Jr., M., Drob, D. P., Siskind, D. E., McCormack, J. P., Maute, A., McDonald, S. E., and Dymond, K. F.:
Evaluating different techniques for constraining lower atmospheric variability in an upper atmosphere general circulation model: A case study during the 2010 sudden stratospheric warming,
J. Adv. Model. Earth Sy.,
10, 3076–3102. https://doi.org/10.1029/2018MS001440, 2018.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C. Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.:
The NCEP/NCAR 40-year reanalysis project,
B. Am. Meteorol. Soc.,
77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Karlsson, B. and Becker, E.:
How Does Interhemispheric Coupling Contribute to Cool Down the Summer Polar Mesosphere?,
J. Climate,
29, 8807–8821, 2016.
Karlsson, B., McLandress, C., and Shepherd, T. G.:
Inter-hemispheric mesospheric coupling in a comprehensive middle atmosphere model,
J. Atmos. Sol.-Terr. Phy.,
71, 518–530, https://doi.org/10.1016/j.jastp.2008.08.006, 2009a.
Karlsson, B., Randall, C. E., Benze, S., Mills, M., Harvey, V. L., Bailey, S., M., and Russell III, J. M.:
Intra-seasonal variability of polar mesospheric clouds due to inter-hemispheric coupling.
Geophys. Res. Lett.,
36, L20802, https://doi.org/10.1029/2009GL040348, 2009b.
Kawatani, Y., Hamilton, K., Miyazaki, K., Fujiwara, M., and Anstey, J. A.: Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses, Atmos. Chem. Phys., 16, 6681–6699, https://doi.org/10.5194/acp-16-6681-2016, 2016.
Kawatani, Y., Hirooka, T., Hamilton, K., Smith, A. K., and Fujiwara, M.: Representation of the equatorial stratopause semiannual oscillation in global atmospheric reanalyses, Atmos. Chem. Phys., 20, 9115–9133, https://doi.org/10.5194/acp-20-9115-2020, 2020.
Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R., and Fiorino, M.:
The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation,
B. Am. Meteorol. Soc.,
82, 247–267, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2, 2001.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 reanalysis: general specifications and basic characteristics,
J. Meteorol. Soc. Jpn.,
93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Koshin, D., Sato, K., Miyazaki, K., and Watanabe, S.: An ensemble Kalman filter data assimilation system for the whole neutral atmosphere, Geosci. Model Dev., 13, 3145–3177, https://doi.org/10.5194/gmd-13-3145-2020, 2020.
Koshin, D., Sato, K., Kohma, M., and Watanabe, S.: An update on the 4D-LETKF data assimilation system for the whole neutral atmosphere, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2020-381, in review, 2021.
Koushik, N., Kumar, K. K., Ramkumar, G., Subrahmanyam, K. V., Kishore Kumar, G., Hocking, W. K., He, M., and Latteck, R.:
Planetary waves in the mesosphere lower thermosphere during stratospheric sudden warming: observations using a network of meteor radars from high to equatorial latitudes,
Clim. Dynam.
54, 4059–4074, https://doi.org/10.1007/s00382-020-05214-5, 2020.
Kuhl, D. D., Rosmond, T. E., Bishop, C. H., McLay, J., and Baker, N. L.:
Comparison of Hybrid Ensemble/4DVar and 4DVar within the NAVDAS-AR Data Assimilation Framework,
Mon. Weather Rev.,
141, 2740–2758, 2013.
umar, K. K., Subrahmanyam, K. V., Mathew, S. S., Koushik, N., and Ramkumar, G.:
Simultaneous observations of the quasi 2-day wave climatology over the low and equatorial latitudes in the mesosphere lower thermosphere,
Clim. Dynam,
51, 221–233, https://doi.org/10.1007/s00382-017-3916-2, 2018.
Labitzke, K.:
Temperature changes in the mesosphere and stratosphere connected with circulation changes in winter,
J. Atmos. Sci.,
29, 756–766, https://doi.org/10.1175/1520-0469(1972)029<0756:TCITMA>2.0.CO;2, 1972.
Laskar, F. I., McCormack, J. P., Chau, J. L., Pallamraju, D., Hoffmann, P., and Singh, R. P.:
Interhemispheric meridional circulation during sudden stratospheric warming,
J. Geophys. Res.,
124, 7112–7122, https://doi.org/10.1029/2018JA026424, 2019.
Lewis, H.: Geodesy calculations in ROPP, GRAS SAF Report 02, Met Office, Exeter, United Kingdom, 2007.
Lieberman, R. S., Riggin, D. M. Franke, S. J. Manson, A. H. Meek, C. Nakamura, T. Tsuda, T. Vincent, R. A., and Reid, I.:
The 6.5-day wave in the mesosphere and lower thermosphere: Evidence for baroclinic/barotropic instability,
J. Geophys. Res.,
108, 4640, https://doi.org/10.1029/2002JD003349, 2003.
Lieberman, R. S., Riggin, D. M., Ortland, D. A., Oberheide, J., and Siskind, D. E.:
Global observations and modeling of nonmigrating diurnal tides generated by tide-planetary wave interactions,
J. Geophys. Res.-Atmos.,
120, 11419–11437, https://doi.org/10.1002/2015JD023739, 2015.
Lieberman, R. S., France, J., Ortland, D. A., and Eckermann, S. D.:
The role of inertial instability in cross-hemispheric coupling,
J. Atmos. Sci.,
78, 1113–1127, https://doi.org/10.1175/JAS-D-20-0119.1, 2021.
Lilienthal, F. and Jacobi, Ch.: Meteor radar quasi 2-day wave observations over 10 years at Collm (51.3∘ N, 13.0∘ E), Atmos. Chem. Phys., 15, 9917–9927, https://doi.org/10.5194/acp-15-9917-2015, 2015.
Lima, L. M., Alves, E. O., Batista, P. P., Clemesha,
B. R., Medeiros, A. F., and Buriti, R. A.: Sudden stratospheric warming effects on the
mesospheric tides and 2-day wave dynamics at 7∘ S, J. Atmos. Sol.-Terr. Phys., 78–79,
99–107, https://doi.org/10.1016/j.jastp.2011.02.013, 2012.
Limpasuvan, V. and Wu, D. L.:
Two-day wave observations of UARS Microwave Limb Sounder mesospheric water vapor and temperature,
J. Geophys. Res.,
108, 4307, https://doi.org/10.1029/2002JD002903, 2003.
Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., and Smith, A. K.:
On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause,
J. Geophys. Res.-Atmos.,
121, 4518–4537, https://doi.org/10.1002/2015JD024401, 2016.
Liu, H.-L., Bardeen, C. G., Foster, B. T., Lauritzen, P., Liu, J., Lu, G., Marsh, D. R., Maute, A., McInerney, J. M., Pedatella, N. M., Qian, L., Richmond, A. D., Roble, R. G., Solomon, S. C., Vitt, F. M., and Wang, W.:
Development and validation of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension,
J. Adv. Model. Earth Sy.,
10, 381–402. https://doi.org/10.1002/2017MS001232, 2018.
Manney, G. L., Krüger, K., Pawson, S.,
Minschwaner, K., Schwartz, M. J., Daffer, W. H., Livesey, N. J., Mlynczak, M. G.,
Remsberg, E. E., Russell III, J. M., and Waters, J .W.: The evolution of the stratopause
during the 2006 major warming: Satellite data and assimilated meteorological analyses,
J. Geophys. Res., 113, D11115, https://doi.org/10.1029/2007JD009097, 2008.
Marlton, G., Charlton-Perez, A., Harrison, G., Polichtchouk, I., Hauchecorne, A., Keckhut, P., Wing, R., Leblanc, T., and Steinbrecht, W.: Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses, Atmos. Chem. Phys., 21, 6079–6092, https://doi.org/10.5194/acp-21-6079-2021, 2021.
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J. F., Calvo, N., and Polvani, L. M.:
Climate change from 1850 to 2005 simulated in CESM1 (WACCM),
J. Climate,
26, 7372–7391, https://doi.org/10.1175/JCLI-D-12-00558.1, 2013.
Matsuno, T.:
A Dynamical Model of the Stratospheric Sudden Warming,
J. Atmos. Sci.,
28, 1479–1494, https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2, 1971.
Maute, A., Hagan, M. E., Richmond, A. D., and Roble, R. G.:
TIME-GCM study of the ionospheric equatorial vertical drift changes during the 2006 stratospheric sudden warming,
J. Geophys. Res.-Space,
119, 1287–1305, https://doi.org/10.1002/2013JA019490, 2014.
McCarty, W., Coy, L., Gelaro, R., Huang, A., Merkova, D., Smith, E. B., Seinkiewicz, M., and Wargan, K.: MERRA-2 Input Observations: Summary and Assessment, NASA Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-2016-104606, vol. 46, NASA Goddard Space Flight Center, Greenbelt, Maryland, 2016.
McCormack, J. P., Coy, L., and Hoppel, K. W.:
Evolution of the quasi 2-day wave during January 2006,
J. Geophys. Res.,
114, D20115, https://doi.org/10.1029/2009JD012239, 2009.
McCormack, J. P., Coy, L., and Singer, W.:
Intraseasonal and interannual variability of the quasi 2-day wave in the Northern Hemisphere summer mesosphere,
J. Geophys. Res.-Atmos.,
119, 2928–2946, https://doi.org/10.1002/2013JD020199, 2014.
McCormack, J., Hoppel, K., Kuhl, D., de Wit, R., Stober, G., Espy, P., Baker, N., Brown, P., Fritts, D., Jacobi, C., Janches, D., Mitchell, N., Ruston, B., Swadley, S., Viner, K., Whitcomb, T., and Hibbins, R.:
Comparison of mesospheric winds from a high-altitude meteorological analysis system and meteor radar observations during the boreal winters of 2009–2010 and 2012–2013,
J. Atmos. Sol.-Terr. Phy.,
154, 132–166, https://doi.org/10.1016/j.jastp.2016.12.007, 2017.
McCormack, J., Harvey, V. L., Randall, C.,
Pedatella, N., Koshin, D., Sato, K., Coy, L., Watanabe, S., Sassi, F., and Holt, L.:
Intercomparison of Middle Atmospheric Meteorological Analyses for the
Northern Hemisphere Winter 2009–2010, Zenodo [data set],
https://doi.org/10.5281/zenodo.5567401, 2021.
McDonald, S. E., Sassi, F., Tate, J., McCormack, J., Kuhl, D. D., Drob, D. P., Metzler, C., and Mannucci, A. J.:
Impact of non-migrating tides on the low latitude ionosphere during a sudden stratospheric warming event in January 2010,
J. Atmos. Sol.-Terr. Phy.,
171, 188–200, https://doi.org/10.1016/j.jastp.2017.09.012, 2018.
McFarlane, N. A.:
The Effect of Orographically Excited Gravity Wave Drag on the General Circulation of the Lower Stratosphere and Troposphere,
J. Atmos. Sci.,
44, 1775–1800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2, 1987.
McLandress, C.:
Interannual variations of the diurnal tide in the mesosphere induced by a zonal-mean wind oscillation in the tropics,
Geophys. Res. Lett.,
29, 1305, https://doi.org/10.1029/2001GL014551, 2002.
Miyoshi, Y. and Hirooka, T.:
Quasi-biennial variation of the 5-day wave in the stratosphere,
J. Geophys. Res.,
108, 4620, https://doi.org/10.1029/2002JD003145, 2003.
Miyoshi, T. and Yamane, S.:
Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution.
Mon. Weather Rev.,
135, 3841–3861, https://doi.org/10.1175/2007MWR1873.1, 2007.
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015.
Neale, R. B., Richter, J. H., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch, P. J., and Zhang, M.:
The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments,
J. Climate,
26, 5150–5168, https://doi.org/10.1175/JCLI-D-12-00236.1, 2013.
Orsolini, Y. J., Limpasuvan, V., and Leovy, C. B.:
The tropical stratopause response in the UKMO stratospheric analyses: Evidence for a 2-day wave and inertial circulations,
Q. J. Roy. Meteor. Soc.,
123, 1707–1724, https://doi.org/10.1002/qj.49712354212, 1997.
Pancheva, D. V.:
Quasi-2-day wave and tidal variability observed over Ascension Island during January/February 2003,
J. Atmos. Terr. Phys., 68, 390–407, https://doi.org/10.1016/j.jastp.2005.02.028, 2006.
Pedatella, N.: WACCMX DART 2010 Northern Hemisphere Winter Temperature and Wind. Version 1.0, UCAR/NCAR – DASH Repository [data set], https://doi.org/10.5065/d88c-y005, 2021.
Pedatella, N. M. and Forbes, J. M.:
Evidence for stratosphere sudden warming-ionosphere coupling due to vertically propagating tides,
Geophys. Res. Lett.,
37, L11104, https://doi.org/10.1029/2010GL043560, 2010.
Pedatella, N. M. and Liu, H.-L.:
The influence of atmospheric tide and planetary wave variability during sudden stratosphere warmings on the low latitude ionosphere,
J. Geophys. Res.-Space,
118, 5333–5347, https://doi.org/10.1002/jgra.50492, 2013.
Pedatella, N. M., Fuller-Rowell, T., Wang, H., Jin, H., Miyoshi, Y., Fujiwara, H., Shinagawa, H., Liu, H.-L., Sassi, F., Schmidt, H., Matthias, V., and Goncharenko, L.:
The neutral dynamics during the 2009 sudden stratosphere warming simulated by different whole atmosphere models,
J. Geophys. Res.-Space,
119, 1306–1324, https://doi.org/10.1002/2013JA019421, 2014a.
Pedatella, N. M., Raeder, K., Anderson, J. L., and Liu, H.-L.:
Ensemble data assimilation in the Whole Atmosphere Community Climate Model,
J. Geophys. Res.-Atmos.,
119, 9793–9809, https://doi.org/10.1002/2014JD021776, 2014b.
Pedatella, N. M., Liu, H.-L., Marsh, D. R., Raeder, K., Anderson, J. L., Chau, J. L., Goncharenko, L. P., and Siddiqui, T. A.:
Analysis and hindcast experiments of the 2009 sudden stratospheric warming in WACCMX+DART,
J. Geophys. Res.-Space,
123, 3131–3153, https://doi.org/10.1002/2017JA025107, 2018.
Pedatella, N. M., Liu, H.-L., Marsh, D. R., Raeder, K., and Anderson, J. L.:
Error growth in the mesosphere and lower thermosphere based on hindcast experiments in a whole atmosphere model,
Space Weather,
17, 1442–1460, https://doi.org/10.1029/2019SW002221, 2019.
Pedatella, N. M., Anderson, L., Chen, C. H., Raeder, K., Liu, J., Liu, H.-L., and Lin, C. H.:
Assimilation of ionosphere observations in the Whole Atmosphere Community Climate Model with thermosphere-ionosphere eXtension (WACCMX),
J. Geophys. Res.,
125, e2020JA028251, https://doi.org/10.1029/2020JA028251, 2020.
Pfister, L.:
Baroclinic instability of easterly jets with applications to the summer mesosphere,
J. Atmos. Sci.,
42, 313–330, https://doi.org/10.1175/1520-0469(1985)042<0313:BIOEJW>2.0.CO;2, 1985.
Plumb, R. A.:
Baroclinic instability of the summer mesosphere: A mechanism for the quasi-two-day wave?,
J. Atmos. Sci.,
40, 262–270, https://doi.org/10.1175/1520-0469(1983)040<0262:BIOTSM>2.0.CO;2, 1983.
Remsberg, E. E., Marshall, B. T., Garcia-Comas, M., Krueger, D., Lingenfelser, G. S., Martin-Torres, J., Mlynczak, M. G., Russell III, J. M., Smith, A. K., Zhao, Y., Brown, C., Gordley, L. L., Lopez-Gonzalez, M. J., Lopez-Puertas, M., She, C.-Y., Taylor, M. J., and Thompson, R. E.:
Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,
J. Geophys. Res.,
113, D17101, https://doi.org/10.1029/2008JD010013, 2008.
Richter, J. H., Sassi, F., and Garcia, R. R.:
Towards a physically based gravity wave source parameterization in a general circulation model,
J. Atmos. Sci.,
67, 136-156, https://doi.org/10.1175/2009JAS3112.1, 2010.
Sakazaki, T., Fujiwara, M., Zhang, X., Hagan, M. E., and Forbes, J. M.:
Diurnal tides from the troposphere to the lower mesosphere as deduced from TIMED/SABER satellite data and six global reanalysis data sets,
J. Geophys. Res.,
117, D13108, https://doi.org/10.1029/2011JD017117, 2012.
Salby, M. L.:
Rossby normal modes in nonuniform background configurations. Part II. Equinox and solstice conditions,
J. Atmos. Sci.,
38, 9, 1827–1840, https://doi.org/10.1175/1520-0469(1981)038<1827:RNMINB>2.0.CO;2, 1981.
Sassi, F. and Liu, H.-L.:
Westward traveling planetary wave events in the lower thermosphere during solar minimum conditions simulated by SD-WACCM-X,
J. Atmos. Sol. Terr. Phy.,
119, 11–26, https://doi.org/10.1016/j.jastp.2014.06.009, 2014.
Sassi, F., Garcia, R. R., and Hoppel, K. W.:
Large-scale Rossby normal modes during some recent northern hemisphere winters,
J. Atmos. Sci.,
69, 820–839, https://doi.org/10.1175/JAS-D-11-0103.1, 2012.
Sassi, F., Liu, H.-L., Ma, J., and Garcia, R. R.:
The lower thermosphere during the northern hemisphere winter of 2009: A modeling study using high-altitude data assimilation products in WACCM-X,
J. Geophys. Res.-Atmos.,
118, 8954–8968, https://doi.org/10.1002/jgrd.50632, 2013.
Sassi, F., Liu, H.-L., and Emmert, J. T.:
Traveling planetary-scale waves in the lower thermosphere: Effects on neutral density and composition during solar minimum conditions,
J. Geophys. Res.-Space,
121, 1780–1801, https://doi.org/10.1002/2015JA022082, 2016.
Sassi, F., Siskind, D. E., Tate, J. L., Liu, H.-L., and Randall, C. E.:
Simulations of the boreal winter upper mesosphere and lower thermosphere with meteorological specifications in SD-WACCM-X,
J. Geophys. Res.,
123, 3791–3811, https://doi.org/10.1002/2017JD027782, 2018.
Sassi, F., McCormack, J. P., and McDonald, S. E.:
Whole atmosphere coupling on intraseasonal and interseasonal time scales: A potential source of increased predictive capability,
Radio Sci.,
54, 913–933, https://doi.org/10.1029/2019RS006847, 2019.
Sassi, F., McCormack, J. P., Tate, J. L., Kuhl, D. D., and Baker, N. L.:
Assessing the impact of middle atmosphere observations on day-to-day variability in lower thermospheric winds using WACCM-X,
J. Atmos. Sol.-Terr. Phy., 212,
105486, https://doi.org/10.1016/j.jastp.2020.105486, 2021.
Sato, K., Yasui, R., and Miyoshi, Y.:
The Momentum Budget in the Stratosphere, Mesosphere, and Lower Thermosphere. Part I: Contributions of Different Wave Types and In Situ Generation of Rossby Waves,
J. Atmos. Sci.,
75, 3613–3633, https://doi.org/10.1175/JAS-D-17-0336.1, 2018.
Schoeberl, M. R., Douglass, A. R., Hilsenrath, E., Bhartia, P. K., Beer, R., Waters, J. W., Gunson, M. R., Froidevaux, L., Gille, J. C., Barnett, J. J., Levelt, P. F., and DeCola, P.:
Overview of the EOS Aura Mission,
IEEE T. Geosci. Remote,
44, 1066–1074, https://doi.org/10.1109/TGRS.2005.861950, 2006.
Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J., Froidevaux, L., Ao, C. O., Bernath, P. F., Boone, C. D., Cofield, R. E., Daffer, W. H., Drouin, B. J., Fetzer, E. J., Fuller, R. A., Jarnot, R. F., Jiang, J. H., Jiang, Y. B., Knosp, B. W., Krüger, K., Li, J.-L. F., Mlynczak, M. G., Pawson, S., Russell III, J. M., Santee, M. L., Snyder, W. V., Stek, P. C., Thurstans, R. P., Tompkins, A. M., Wagner, P. A., Walker, K. A., Waters, J. W., and Wu, D. L.:
Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements,
J. Geophys. Res.,
113, D15S11, https://doi.org/10.1029/2007JD008783, 2008.
Siddiqui, T. A., Maute, A., and Pedatella, N. M.:
On the Importance of Interactive Ozone Chemistry in Earth-System Models for Studying Mesophere–Lower Thermosphere Tidal Changes during Sudden Stratospheric Warmings,
J. Geophys. Res.-Space,
124, 10690–10707, https://doi.org/10.1029/2019JA027193, 2019.
Siskind, D. E. and McCormack, J. P.:
Summer mesospheric warmings and the quasi-2 day wave,
Geophys. Res. Lett.,
41, 717–722, https://doi.org/10.1002/2013GL058875, 2014.
Siskind, D. E., Eckermann, S. D., McCormack, J. P., Coy, L., Hoppel, K. W., and Baker, N. L.:
Case studies of the mesospheric response to recent minor, major, and extended stratospheric warmings,
J. Geophys. Res.,
115, D00N03, https://doi.org/10.1029/2010JD014114, 2010.
Siskind, D. E., Jones Jr., M., Drob, D. P., McCormack, J. P., Hervig, M. E., Marsh, D. R., Mlynczak, M. G., Bailey, S. M., Maute, A., and Mitchell, N. J.: On the relative roles of dynamics and chemistry governing the abundance and diurnal variation of low-latitude thermospheric nitric oxide, Ann. Geophys., 37, 37–48, https://doi.org/10.5194/angeo-37-37-2019, 2019.
Smith, A. K.:
The origin of stationary planetary waves in the upper mesosphere,
J. Atmos. Sci.,
60, 3033–3041, 2003.
Smith, A. K.:
Global dynamics of the MLT,
Surv. Geophys.,
33, 1177–1230, https://doi.org/10.1007/s10712-012-9196-9, 2012.
Smith, A. K., Pedatella, N. M., and Mullen, Z. K.:
Interhemispheric coupling mechanisms in the middle atmosphere of WACCM6,
J. Atmos. Sci.,
77, 1101–1118, https://doi.org/10.1175/JAS-D-19-0253.1, 2020.
Stober, G., Baumgarten, K., McCormack, J. P., Brown, P., and Czarnecki, J.: Comparative study between ground-based observations and NAVGEM-HA analysis data in the mesosphere and lower thermosphere region, Atmos. Chem. Phys., 20, 11979–12010, https://doi.org/10.5194/acp-20-11979-2020, 2020.
Stockwell, R. G., Mansinha, L., and Lowe, R. P.:
Localization of the complex spectrum: The S transform,
IEEE T. Signal Proces.,
44, 998–1001, 1996.
Stray, N. H., Orsolini, Y. J., Espy, P. J., Limpasuvan, V., and Hibbins, R. E.: Observations of planetary waves in the mesosphere-lower thermosphere during stratospheric warming events, Atmos. Chem. Phys., 15, 4997–5005, https://doi.org/10.5194/acp-15-4997-2015, 2015.
Talaat, E. R., Yee, J.-H., and Zhu, X.:
Observations of the 6.5-day wave in the mesosphere and lower thermosphere,
J. Geophys. Res.,
106, 20715–20723, https://doi.org/10.1029/2001JD900227, 2001.
Torrence, C. and Compo, G. P.:
A Practical Guide to Wavelet Analysis,
B. Am. Meteorol. Soc.,
79, 61–78, https://doi.org/10.1175/1520-0477(1998)079%3C0061:APGTWA%3E2.0.CO;2, 1998.
Tunbridge, V. M., Sandford, D. J., and Mitchell, N. J.:
Zonal wave numbers of the summertime 2-day planetary wave observed in the mesosphere by EOS Aura Microwave Limb Sounder,
J. Geophys. Res.,
116, D11103, https://doi.org/10.1029/2010JD014567, 2011.
Tweedy, O. V., Limpasuvan, V., Orsolini, Y. J., Smith, A. K., Garcia, R. R., Kinnison, D., Randall, C. E., Kvissel, O.-K., Stordal, F., Harvey, V. L., and Chandran, A.:
Nighttime secondary ozone layer during major stratospheric sudden warmings in specified-dynamics WACCM,
J. Geophys. Res.,
118, 8346–8358, https://doi.org/10.1002/jgrd.50651, 2013.
Vadas, S. L. and Becker, E.:
Numerical modeling of the excitation, propagation, and dissipation of primary and secondary gravity waves during wintertime at McMurdo Station in the Antarctic,
J. Geophys. Res.,
123, 9326–9369, https://doi.org/10.1029/2017JD027974, 2018.
Watanabe, S.:
Constraints on a Non-orographic Gravity Wave Drag Parameterization Using a Gravity Wave Resolving General Circulation Model,
SOLA,
4, 61–64, https://doi.org/10.2151/sola.2008-016, 2008.
Watanabe, S. and Miyahara, S.:
Quantification of the gravity wave forcing of the migrating diurnal tide in a gravity wave–resolving general circulation model,
J. Geophys. Res.,
114, D07110, https://doi.org/10.1029/2008JD011218, 2009.
Webster, S., Brown, A. R., Cameron, D. R., and Jones, C. P.:
Improvements to the representation of orography in the Met Office Unified Model,
Q. J. Roy. Meteor. Soc.,
129, 1989–2010, https://doi.org/10.1256/qj.02.133, 2003.
Yee, J.-H., Cameron, G. E., and Kusnierkiewicz, D. Y.: Overview of TIMED, Proc. SPIE 3756, Optical Spectroscopic
Techniques and Instrumentation for Atmospheric and Space Research III, Denver, Colorado, United States, https://doi.org/10.1117/12.366378, 1999.
Yue, J., Wang, W., Richmond, A. D., and Liu, H.-L.:
Quasi-two-day wave coupling of the mesosphere and lower thermosphere-ionosphere in the TIME-GCM: Two-day oscillations in the ionosphere,
J. Geophys. Res.,
117, A07305, https://doi.org/10.1029/2012JA017815, 2012.
Zhang, X., Forbes, J. M., Hagan, M. E., Russell III, J. M., Palo, S. E., Mertens, C. J., and Mlynczak, M. G.:
Monthly tidal temperatures 20–120 km from TIMED/SABER,
J. Geophys. Res.,
111, A10S08, https://doi.org/10.1029/2005JA011504, 2006.
Zülicke, C., Becker, E., Matthias, V., Peters, D. H.
W., Schmidt, H., Liu, H.-L., de la Torre Ramos, L., and Mitchell, D.M.: Coupling of
Stratospheric Warmings with Mesospheric Coolings in Observations and Simulations,
J. Climate, 31, 1107–1133, https://doi.org/10.1175/JCLI-D-17-0047.1, 2018.
Short summary
In order to have confidence in atmospheric predictions, it is important to know how well different numerical model simulations of the Earth’s atmosphere agree with one another. This work compares four different data assimilation models that extend to or beyond the mesosphere. Results shown here demonstrate that while the models are in close agreement below ~50 km, large differences arise at higher altitudes in the mesosphere and lower thermosphere that will need to be reconciled in the future.
In order to have confidence in atmospheric predictions, it is important to know how well...
Altmetrics
Final-revised paper
Preprint