Articles | Volume 21, issue 23
https://doi.org/10.5194/acp-21-17495-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-17495-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Eastward-propagating planetary waves in the polar middle atmosphere
Liang Tang
Electronic Information School, Wuhan University, Wuhan, China
Sheng-Yang Gu
CORRESPONDING AUTHOR
Electronic Information School, Wuhan University, Wuhan, China
Xian-Kang Dou
Electronic Information School, Wuhan University, Wuhan, China
Related authors
Liang Tang, Sheng-Yang Gu, and Xiankang Dou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3121, https://doi.org/10.5194/egusphere-2024-3121, 2024
Preprint withdrawn
Short summary
Short summary
The temperature amplitude and wave periods of each polar planetary wave event were determined using 2-D least-squares fitting. An important result in this work is that the propagation and amplification characteristics of polar planetary waves during austral winter periods are influenced by background zonal winds and atmospheric instability, and that there is significant variability temperature amplitude, wave period, and temporal variations examined for a given zonal wavenumber.
Sheng-Yang Gu, Dong Wang, Liang Tang, and Yafei Wei
EGUsphere, https://doi.org/10.5194/egusphere-2023-910, https://doi.org/10.5194/egusphere-2023-910, 2023
Preprint archived
Short summary
Short summary
Based on SABER observations, the seasonal and interannual variability of the peak emission rate and height of OH airglow is analyzed. The results show that the latitudinal variations of the semi-annual oscillation (SAO) and annual oscillation (AO) of peak emission rates and heights are similar. In addition, we find that the OH airglow emission is modulated by the quasi-biennial oscillation (QBO) in the equatorial region and solar activity.
Liang Tang, Sheng-Yang Gu, Shu-Yue Zhao, and Dong Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-778, https://doi.org/10.5194/acp-2022-778, 2022
Revised manuscript not accepted
Short summary
Short summary
We found that the interannual difference of the W3 and W4 Q2DW is significantly correlated with the Quasi-Biennial Oscillation westerly (QBOW) and easterly (QBOE) phase. In addition, planetary waves gain stronger source activity during the QBOW phase to provide sufficient energy for propagation and amplification. Overall, this study reveals a difference between the dynamics of mid-latitude westward planetary waves in the QBOW and QBOE phases.
Jin Hu, Shengyang Gu, Yusong Qin, Yuxuan Liu, and Yafei Wei
EGUsphere, https://doi.org/10.5194/egusphere-2025-2016, https://doi.org/10.5194/egusphere-2025-2016, 2025
Short summary
Short summary
This paper focuses on the response of the polar hydroxyl layer in the mesosphere to Arctic sudden stratospheric warming events with an elevated stratopause, revealing significant phase-dependent variations in hydroxyl distribution driven by gravity wave drag changes. These findings enhance our understanding of vertical and dynamical-photochemical coupling in the middle and upper atmosphere, which also offer valuable implications for the upper atmospheric sounding and modeling.
Liang Tang, Sheng-Yang Gu, and Xiankang Dou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3121, https://doi.org/10.5194/egusphere-2024-3121, 2024
Preprint withdrawn
Short summary
Short summary
The temperature amplitude and wave periods of each polar planetary wave event were determined using 2-D least-squares fitting. An important result in this work is that the propagation and amplification characteristics of polar planetary waves during austral winter periods are influenced by background zonal winds and atmospheric instability, and that there is significant variability temperature amplitude, wave period, and temporal variations examined for a given zonal wavenumber.
Sheng-Yang Gu, Dong Wang, Liang Tang, and Yafei Wei
EGUsphere, https://doi.org/10.5194/egusphere-2023-910, https://doi.org/10.5194/egusphere-2023-910, 2023
Preprint archived
Short summary
Short summary
Based on SABER observations, the seasonal and interannual variability of the peak emission rate and height of OH airglow is analyzed. The results show that the latitudinal variations of the semi-annual oscillation (SAO) and annual oscillation (AO) of peak emission rates and heights are similar. In addition, we find that the OH airglow emission is modulated by the quasi-biennial oscillation (QBO) in the equatorial region and solar activity.
Liang Tang, Sheng-Yang Gu, Shu-Yue Zhao, and Dong Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-778, https://doi.org/10.5194/acp-2022-778, 2022
Revised manuscript not accepted
Short summary
Short summary
We found that the interannual difference of the W3 and W4 Q2DW is significantly correlated with the Quasi-Biennial Oscillation westerly (QBOW) and easterly (QBOE) phase. In addition, planetary waves gain stronger source activity during the QBOW phase to provide sufficient energy for propagation and amplification. Overall, this study reveals a difference between the dynamics of mid-latitude westward planetary waves in the QBOW and QBOE phases.
Wen Yi, Jie Zeng, Xianghui Xue, Iain Reid, Wei Zhong, Jianfei Wu, Tingdi Chen, and Xiankang Dou
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-254, https://doi.org/10.5194/amt-2022-254, 2022
Revised manuscript not accepted
Short summary
Short summary
In recent years, the concept of multistatic meteor radar systems has attracted the attention of the atmospheric radar community, focusing on the MLT region. In this study, we apply a multistatic meteor radar system consisting of a monostatic meteor radar in Mengcheng (33.36° N, 116.49° E) and a remote receiver in Changfeng (31.98° N, 117.22° E) to estimate the two-dimensional horizontal wind field, and the horizontal divergence and relative vorticity of the wind field.
Shican Qiu, Mengzhen Yuan, Willie Soon, Victor Manuel Velasco Herrera, Zhanming Zhang, and Xiankang Dou
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2022-22, https://doi.org/10.5194/angeo-2022-22, 2022
Revised manuscript not accepted
Short summary
Short summary
In this paper, the solar radiation index Y10 acts as an indicator of the solar activity, and the vertical column of ice water content (IWC) characterizes the nature of the polar mesosphere cloud (PMC). Superposed epoch analysis is used to determine the time lag days of temperature and IWC anomalies in responding to Y10 for the PMC seasons from 2007–2015. The results show that the IWC can respond quickly to temperature within time lag of one day.
Yetao Cen, Chengyun Yang, Tao Li, James M. Russell III, and Xiankang Dou
Atmos. Chem. Phys., 22, 7861–7874, https://doi.org/10.5194/acp-22-7861-2022, https://doi.org/10.5194/acp-22-7861-2022, 2022
Short summary
Short summary
The MLT DW1 amplitude is suppressed during El Niño winters in both satellite observation and SD-WACCM simulations. The suppressed Hough mode (1, 1) in the tropopause region propagates vertically to the MLT region, leading to decreased DW1 amplitude. The latitudinal zonal wind shear anomalies during El Niño winters would narrow the waveguide and prevent the vertical propagation of DW1. The gravity wave drag excited by ENSO-induced anomalous convection could also modulate the MLT DW1 amplitude.
Dawei Tang, Tianwen Wei, Jinlong Yuan, Haiyun Xia, and Xiankang Dou
Atmos. Meas. Tech., 15, 2819–2838, https://doi.org/10.5194/amt-15-2819-2022, https://doi.org/10.5194/amt-15-2819-2022, 2022
Short summary
Short summary
During 11–20 March 2020, three aerosol transport events were investigated by a lidar system and an online bioaerosol detection system in Hefei, China.
Observation results reveal that the events not only contributed to high particulate matter pollution but also to the transport of external bioaerosols, resulting in changes in the fraction of fluorescent biological aerosol particles.
This detection method improved the time resolution and provided more parameters for aerosol detection.
Shican Qiu, Mengxi Shi, Willie Soon, Mingjiao Jia, Xianghui Xue, Tao Li, Peng Ju, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1085, https://doi.org/10.5194/acp-2021-1085, 2022
Revised manuscript not accepted
Short summary
Short summary
The solitary wave theory is applied for the first time to study the sporadic sodium layers (NaS). We perform soliton fitting processes on the observed data from the Andes Lidar Observatory, and find out that 24/27 NaS events exhibit similar features to a soliton. Time series of the net anomaly reveal the same variation process to the solution of a five-order KdV equation. Our results suggest the NaS phenomenon would be an appropriate tracer for nonlinear wave studies in the atmosphere.
Shican Qiu, Ning Wang, Willie Soon, Gaopeng Lu, Mingjiao Jia, Xingjin Wang, Xianghui Xue, Tao Li, and Xiankang Dou
Atmos. Chem. Phys., 21, 11927–11940, https://doi.org/10.5194/acp-21-11927-2021, https://doi.org/10.5194/acp-21-11927-2021, 2021
Short summary
Short summary
Our results suggest that lightning strokes would probably influence the ionosphere and thus give rise to the occurrence of a sporadic sodium layer (NaS), with the overturning of the electric field playing an important role. Model simulation results show that the calculated first-order rate coefficient could explain the efficient recombination of Na+→Na in this NaS case study. A conjunction between the lower and upper atmospheres could be established by these inter-connected phenomena.
Wei Zhong, Xianghui Xue, Wen Yi, Iain M. Reid, Tingdi Chen, and Xiankang Dou
Atmos. Meas. Tech., 14, 3973–3988, https://doi.org/10.5194/amt-14-3973-2021, https://doi.org/10.5194/amt-14-3973-2021, 2021
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Jianyuan Wang, Wen Yi, Jianfei Wu, Tingdi Chen, Xianghui Xue, Robert A. Vincent, Iain M. Reid, Paulo P. Batista, Ricardo A. Buriti, Toshitaka Tsuda, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-33, https://doi.org/10.5194/acp-2021-33, 2021
Revised manuscript not accepted
Short summary
Short summary
In this study, we report the climatology of migrating and non-migrating tides in mesopause winds estimated using multiyear observations from three meteor radars in the southern equatorial region. The results reveal that the climatological patterns of tidal amplitudes by meteor radars is similar to the Climatological Tidal Model of the Thermosphere (CTMT) results and the differences are mainly due to the effect of the stratospheric sudden warming (SSW) event.
Cited articles
Alexander, S. P. and Shepherd, M. G.: Planetary wave activity in the polar lower stratosphere, Atmos. Chem. Phys., 10, 707–718, https://doi.org/10.5194/acp-10-707-2010, 2010.
Andrews, D., Holton, J., and Leovy, C.: Middle Atmosphere Dynamics, 489 pp., Middle Atmosphere Dynamics, Volume 40 “International Geophysics”, Academic Press, ISBN 978-01-2058-576-2, 1987.
Bali, K., Dey, S., Ganguly, D., and Smith, K. R.: Space-time variability of ambient PM2.5 diurnal pattern over India from 18-years (2000–2017) of MERRA-2 reanalysis data, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2019-731, 2019.
Bosilovich, M. G., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R., Kovach, R., Liu, Q., Molod, A., Norris, P., Wargan, K., Chao, W., Reichle, R., Takacs, L., Vikhliaev, Y., Bloom, S., Collow, A., Firth, S., Labow, G., Partyka, G., Pawson, S., Reale, O., Schubert, S. D., Suarez, M., and Global Modeling and Assimilation Office (GMAO): MERRA-2, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], available at: http://disc.gsfc.nasa.gov (last access: 2 June 2021), 2015.
Coy, L., Štajner, I., DaSilva, A. M., Joiner, J., Rood, R. B., Pawson,
S., and Lin, S. J.: High-Frequency Planetary Waves in the Polar Middle
Atmosphere as Seen in a Data Assimilation System, J. Atmos.
Sci., 60, 2975–2992, https://doi.org/10.1175/1520-0469(2003)060<2975:Hpwitp>2.0.Co;2, 2003.
Gu, S.-Y., Li, T., Dou, X., Wu, Q., Mlynczak, M. G., and Russell Iii, J. M.:
Observations of Quasi-Two-Day wave by TIMED/SABER and TIMED/TIDI, J.
Geophys. Res.-Atmos., 118, 1624–1639, https://doi.org/10.1002/jgrd.50191, 2013.
Gu, S.-Y., Liu, H.-L., Pedatella, N. M., Dou, X., and Shu, Z.: The
quasi-2 day wave activities during 2007 boreal summer period as revealed by
Whole Atmosphere Community Climate Model, J. Geophys. Res.-Space, 121, 7256–7268, https://doi.org/10.1002/2016JA022867, 2016a.
Gu, S.-Y., Liu, H.-L., Pedatella, N. M., Dou, X., Li, T., and Chen, T.: The
quasi 2 day wave activities during 2007 austral summer period as revealed by
Whole Atmosphere Community Climate Model, J. Geophys. Res.-Space, 121, 2743–2754, https://doi.org/10.1002/2015JA022225, 2016b.
Gu, S.-Y., Liu, H.-L., Pedatella, N. M., Dou, X., and Liu, Y.: On the wave
number 2 eastward propagating quasi 2 day wave at middle and high latitudes,
J. Geophys. Res.-Space, 122, 4489–4499, https://doi.org/10.1002/2016JA023353, 2017.
Gu, S.-Y., Liu, H.-L., Dou, X., and Jia, M.: Ionospheric Variability Due to
Tides and Quasi-Two Day Wave Interactions, J. Geophys. Res.-Space, 123, 1554–1565, https://doi.org/10.1002/2017JA025105, 2018a.
Gu, S.-Y., Dou, X., Pancheva, D., Yi, W., and Chen, T.: Investigation of the
Abnormal Quasi 2-Day Wave Activities During the Sudden Stratospheric Warming
Period of January 2006, J. Geophys. Res.-Space, 123,
6031–6041, https://doi.org/10.1029/2018JA025596, 2018b.
Gu, S.-Y., Ruan, H., Yang, C.-Y., Gan, Q., Dou, X., and Wang, N.: The
Morphology of the 6-Day Wave in Both the Neutral Atmosphere and F Region
Ionosphere Under Solar Minimum Conditions, J. Geophys. Res.-Space, 123, 4232–4240, https://doi.org/10.1029/2018JA025302, 2018c.
Gu, S.-Y., Dou, X.-K., Yang, C.-Y., Jia, M., Huang, K.-M., Huang, C.-M., and
Zhang, S.-D.: Climatology and Anomaly of the Quasi-Two-Day Wave Behaviors
During 2003–2018 Austral Summer Periods, J. Geophys. Res.-Space, 124, 544–556, https://doi.org/10.1029/2018JA026047, 2019.
Lainer, M., Hocke, K., and Kämpfer, N.: Long-term observation of midlatitude quasi 2-day waves by a water vapor radiometer, Atmos. Chem. Phys., 18, 12061–12074, https://doi.org/10.5194/acp-18-12061-2018, 2018.
Li, H., Pilch Kedzierski, R., and Matthes, K.: On the forcings of the unusual Quasi-Biennial Oscillation structure in February 2016, Atmos. Chem. Phys., 20, 6541–6561, https://doi.org/10.5194/acp-20-6541-2020, 2020.
Liang, T.: Analysis data and code based on the study of Middle East propagating planetary waves in the polar middle atmosphere, available at: http://hdl.pid21.cn/21.86116.7/04.99.01720, last access: 2 June 2021.
Lilienthal, F. and Jacobi, Ch.: Meteor radar quasi 2-day wave observations over 10 years at Collm (51.3∘ N, 13.0∘ E), Atmos. Chem. Phys., 15, 9917–9927, https://doi.org/10.5194/acp-15-9917-2015, 2015.
Limpasuvan, V. and Wu, D. L.: Anomalous two-day wave behavior during the
2006 austral summer, Geophys. Res. Lett., 36, L04807, https://doi.org/10.1029/2008GL036387, 2009.
Liu, G., England, S. L., and Janches, D.: Quasi Two-, Three-, and Six-Day
Planetary-Scale Wave Oscillations in the Upper Atmosphere Observed by
TIMED/SABER Over ∼ 17 Years During 2002–2018, J. Geophys. Res.-Space, 124, 9462–9474, https://doi.org/10.1029/2019JA026918, 2019.
Liu, H. L., Talaat, E. R., Roble, R. G., Lieberman, R. S., Riggin, D. M.,
and Yee, J. H.: The 6.5-day wave and its seasonal variability in the middle
and upper atmosphere, J. Geophys. Res.-Atmos., 109, D21112,
https://doi.org/10.1029/2004JD004795, 2004.
Lu, X., Chu, X., Fuller-Rowell, T., Chang, L., Fong, W., and Yu, Z.:
Eastward propagating planetary waves with periods of 1–5 days in the winter
Antarctic stratosphere as revealed by MERRA and lidar, J.
Geophys. Res.-Atmos., 118, 9565–9578, https://doi.org/10.1002/jgrd.50717, 2013.
Manney, G. L. and Randel, W. J.: Instability at the Winter Stratopause: A
Mechanism for the 4-Day Wave, J. Atmos. Sci., 50,
3928–3938, https://doi.org/10.1175/1520-0469(1993)050<3928:IATWSA>2.0.CO;2, 1993.
Matthias, V. and Ern, M.: On the origin of the mesospheric quasi-stationary planetary waves in the unusual Arctic winter 2015/2016, Atmos. Chem. Phys., 18, 4803–4815, https://doi.org/10.5194/acp-18-4803-2018, 2018.
Meek, C. E., Manson, A. H., Franke, S. J., Singer, W., Hoffmann, P., Clark,
R. R., Tsuda, T., Nakamura, T., Tsutsumi, M., Hagan, M., Fritts, D. C.,
Isler, J., and Portnyagin, Y. I.: Global study of northern hemisphere
quasi-2-day wave events in recent summers near 90 km altitude, J.
Atmos. Terr. Phys., 58, 1401–1411, https://doi.org/10.1016/0021-9169(95)00120-4, 1996.
Merzlyakov, E. G. and Pancheva, D. V.: The 1.5–5-day eastward waves in the
upper stratosphere–mesosphere as observed by the Esrange meteor radar and
the SABER instrument, J. Atmos. Sol.-Terr. Phys.,
69, 2102–2117, https://doi.org/10.1016/j.jastp.2007.07.002,
2007.
Molod, A., Takacs, L., Suarez, M., Bacmeister, J., Song, I. S., and Eichmann, A.: The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna, Technical Report Series on Global Modeling and Data Assimilation, Volume 28, Goddard Space Flight Center Greenbelt, Maryland, NASA, 2012.
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015.
Palo, S. E., Roble, R. G., and Hagan, M. E.: Middle atmosphere effects of
the quasi-two-day wave determined from a General Circulation Model, Earth
Planet. Space, 51, 629–647, https://doi.org/10.1186/BF03353221, 1999.
Palo, S. E., Forbes, J. M., Zhang, X., Russell Iii, J. M., and Mlynczak, M.
G.: An eastward propagating two-day wave: Evidence for nonlinear planetary
wave and tidal coupling in the mesosphere and lower thermosphere,
Geophys. Res. Lett., 34, L07807, https://doi.org/10.1029/2006GL027728, 2007.
Pancheva, D., Mukhtarov, P., Siskind, D. E., and Smith, A. K.: Global
distribution and variability of quasi 2 day waves based on the NOGAPS-ALPHA
reanalysis model, J. Geophys. Res.-Space, 121,
11422–11449, https://doi.org/10.1002/2016JA023381, 2016.
Rao, N. V., Ratnam, M. V., Vedavathi, C., Tsuda, T., Murthy, B. V. K.,
Sathishkumar, S., Gurubaran, S., Kumar, K. K., Subrahmanyam, K. V., and Rao,
S. V. B.: Seasonal, inter-annual and solar cycle variability of the quasi
two day wave in the low-latitude mesosphere and lower thermosphere, J. Atmos. Sol.-Terr. Phy., 152–153, 20–29, https://doi.org/10.1016/j.jastp.2016.11.005, 2017.
Salby, M. L.: The 2-day wave in the middle atmosphere: Observations and
theory, J. Geophys. Res.-Oceans, 86, 9654–9660, https://doi.org/10.1029/JC086iC10p09654, 1981.
Sandford, D. J., Schwartz, M. J., and Mitchell, N. J.: The wintertime two-day wave in the polar stratosphere, mesosphere and lower thermosphere, Atmos. Chem. Phys., 8, 749–755, https://doi.org/10.5194/acp-8-749-2008, 2008.
Stray, N. H., Orsolini, Y. J., Espy, P. J., Limpasuvan, V., and Hibbins, R. E.: Observations of planetary waves in the mesosphere-lower thermosphere during stratospheric warming events, Atmos. Chem. Phys., 15, 4997–5005, https://doi.org/10.5194/acp-15-4997-2015, 2015.
Sun, J., Veefkind, J. P., van Velthoven, P., Tilstra, L. G., Chimot, J., Nanda, S., and Levelt, P. F.: Defining aerosol layer height for UVAI interpretation using aerosol vertical distributions characterized by MERRA-2, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-39, 2020.
Tunbridge, V. M., Sandford, D. J., and Mitchell, N. J.: Zonal wave numbers
of the summertime 2 day planetary wave observed in the mesosphere by EOS
Aura Microwave Limb Sounder, J. Geophys. Res.-Atmos.,
116, D11103, https://doi.org/10.1029/2010JD014567, 2011.
Ukhov, A., Mostamandi, S., da Silva, A., Flemming, J., Alshehri, Y., Shevchenko, I., and Stenchikov, G.: Assessment of natural and anthropogenic aerosol air pollution in the Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-Chem model simulations, Atmos. Chem. Phys., 20, 9281–9310, https://doi.org/10.5194/acp-20-9281-2020, 2020.
Venne, D. E. and Stanford, J. L.: Observation of a 4–Day Temperature Wave
in the Polar Winter Stratosphere, J. Atmos. Sci., 36,
2016–2019, https://doi.org/10.1175/1520-0469(1979)036<2016:Ooatwi>2.0.Co;2, 1979.
Wang, J. C., Chang, L. C., Yue, J., Wang, W., and Siskind, D. E.: The quasi
2 day wave response in TIME-GCM nudged with NOGAPS-ALPHA, J. Geophys. Res.-Space, 122, 5709–5732, https://doi.org/10.1002/2016JA023745, 2017.
Wu, W.-S., Purser, R. J., and Parrish, D. F.: Three-Dimensional Variational
Analysis with Spatially Inhomogeneous Covariances, Mon. Weather Rev.,
130, 2905–2916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2, 2002.
Xiong, J., Wan, W., Ding, F., Liu, L., Hu, L., and Yan, C.: Two Day Wave
Traveling Westward With Wave Number 1 During the Sudden Stratospheric
Warming in January 2017, J. Geophys. Res.-Space,
123, 3005–3013, https://doi.org/10.1002/2017JA025171, 2018.
Yadav, S., Vineeth, C., Kumar, K. K., Choudhary, R. K., Pant, T. K., and
Sunda, S.: Role of the phase of Quasi-Biennial Oscillation in modulating the
influence of SSW on Equatorial Ionosphere, 2019 URSI Asia-Pacific Radio
Science Conference (AP-RASC), 9–15 March 2019, 1–4,
https://doi.org/10.23919/URSIAP-RASC.2019.8738274, 2019.
Yamazaki, K., Nakamura, T., Ukita, J., and Hoshi, K.: A tropospheric pathway of the stratospheric quasi-biennial oscillation (QBO) impact on the boreal winter polar vortex, Atmos. Chem. Phys., 20, 5111–5127, https://doi.org/10.5194/acp-20-5111-2020, 2020.
Short summary
Our study explores the variation in the occurrence date, peak amplitude and wave period for eastward waves and the role of instability, background wind structure and the critical layer in eastward wave propagation and amplification.
Our study explores the variation in the occurrence date, peak amplitude and wave period for...
Altmetrics
Final-revised paper
Preprint