Articles | Volume 21, issue 20
https://doi.org/10.5194/acp-21-15809-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-15809-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improving the representation of HONO chemistry in CMAQ and examining its impact on haze over China
Shuping Zhang
State Key Joint Laboratory of Environment Simulation and Pollution
Control, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
State Key Joint Laboratory of Environment Simulation and Pollution
Control, School of Environment, Tsinghua University, Beijing 100084, China
University of Chinese Academy of Sciences, Beijing 100049, China
Golam Sarwar
CORRESPONDING AUTHOR
Center for Environmental Measurement and Modeling, U.S. Environmental
Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC
27711, USA
Jia Xing
CORRESPONDING AUTHOR
State Key Joint Laboratory of Environment Simulation and Pollution
Control, School of Environment, Tsinghua University, Beijing 100084, China
State Key Joint Laboratory of Environment Simulation and Pollution
Control, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
University of Chinese Academy of Sciences, Beijing 100049, China
Center for Excellence in Regional Atmospheric Environment, Institute
of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Chaoyang Xue
State Key Joint Laboratory of Environment Simulation and Pollution
Control, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
University of Chinese Academy of Sciences, Beijing 100049, China
Arunachalam Sarav
Institute for the Environment, The University of North Carolina at
Chapel Hill, 100 Europa Drive, Chapel Hill, NC 27514, USA
Dian Ding
State Key Joint Laboratory of Environment Simulation and Pollution
Control, School of Environment, Tsinghua University, Beijing 100084, China
Haotian Zheng
State Key Joint Laboratory of Environment Simulation and Pollution
Control, School of Environment, Tsinghua University, Beijing 100084, China
Yujing Mu
State Key Joint Laboratory of Environment Simulation and Pollution
Control, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
University of Chinese Academy of Sciences, Beijing 100049, China
Center for Excellence in Regional Atmospheric Environment, Institute
of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Fengkui Duan
State Key Joint Laboratory of Environment Simulation and Pollution
Control, School of Environment, Tsinghua University, Beijing 100084, China
Tao Ma
State Key Joint Laboratory of Environment Simulation and Pollution
Control, School of Environment, Tsinghua University, Beijing 100084, China
State Key Joint Laboratory of Environment Simulation and Pollution
Control, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
University of Chinese Academy of Sciences, Beijing 100049, China
Center for Excellence in Regional Atmospheric Environment, Institute
of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Model code and software
CMAQ (Version 5.3) USEPA https://zenodo.org/record/3585898
Short summary
Six heterogeneous HONO chemistry updates in CMAQ significantly improve HONO concentration. HONO production is primarily controlled by the heterogeneous reactions on ground and aerosol surfaces during haze. Additional HONO chemistry updates increase OH and production of secondary aerosols: sulfate, nitrate, and SOA.
Six heterogeneous HONO chemistry updates in CMAQ significantly improve HONO concentration. HONO...
Altmetrics
Final-revised paper
Preprint