Articles | Volume 21, issue 19
https://doi.org/10.5194/acp-21-15065-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-15065-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mass spectral characterization of secondary organic aerosol from urban cooking and vehicular sources
Wenfei Zhu
State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
Zirui Zhang
State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
Hui Wang
State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
Ying Yu
State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
Zheng Chen
State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
Ruizhe Shen
State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
Rui Tan
State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
Kai Song
State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
Kefan Liu
State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
Rongzhi Tang
State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
Yi Liu
State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
Shengrong Lou
State Environmental Protection Key Laboratory of Formation of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
Yuanju Li
State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
Wenbin Zhang
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
Zhou Zhang
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
Shijin Shuai
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
Hongming Xu
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
Shuangde Li
State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Yunfa Chen
State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
Francesco Canonaco
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), Villigen 5232, Switzerland
Andre S. H. Prévôt
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), Villigen 5232, Switzerland
Viewed
Total article views: 4,147 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 23 Apr 2021)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 2,777 | 1,274 | 96 | 4,147 | 335 | 81 | 136 |
- HTML: 2,777
- PDF: 1,274
- XML: 96
- Total: 4,147
- Supplement: 335
- BibTeX: 81
- EndNote: 136
Total article views: 3,020 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 11 Oct 2021)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 2,107 | 835 | 78 | 3,020 | 192 | 72 | 124 |
- HTML: 2,107
- PDF: 835
- XML: 78
- Total: 3,020
- Supplement: 192
- BibTeX: 72
- EndNote: 124
Total article views: 1,127 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 23 Apr 2021)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 670 | 439 | 18 | 1,127 | 143 | 9 | 12 |
- HTML: 670
- PDF: 439
- XML: 18
- Total: 1,127
- Supplement: 143
- BibTeX: 9
- EndNote: 12
Viewed (geographical distribution)
Total article views: 4,147 (including HTML, PDF, and XML)
Thereof 4,147 with geography defined
and 0 with unknown origin.
Total article views: 3,020 (including HTML, PDF, and XML)
Thereof 3,020 with geography defined
and 0 with unknown origin.
Total article views: 1,127 (including HTML, PDF, and XML)
Thereof 1,101 with geography defined
and 26 with unknown origin.
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
Latest update: 06 Dec 2025
Short summary
The experiments of primary emissions and secondary organic aerosol (SOA) formation from urban lifestyle sources (cooking and vehicles) were conducted. The mass spectral features of primary organic aerosol (POA) and SOA were characterized by using a high-resolution time-of-flight aerosol mass spectrometer. This work, for the first time, establishes the vehicle and cooking SOA source profiles and can be further used as source constraints in the OA source apportionment in the ambient atmosphere.
The experiments of primary emissions and secondary organic aerosol (SOA) formation from urban...
Altmetrics
Final-revised paper
Preprint