Articles | Volume 21, issue 19
https://doi.org/10.5194/acp-21-15023-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-15023-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements
Charles A. Brock
CORRESPONDING AUTHOR
Chemical Sciences Laboratory, National Oceanic and Atmospheric
Administration, Boulder, Colorado 80305, USA
Karl D. Froyd
Chemical Sciences Laboratory, National Oceanic and Atmospheric
Administration, Boulder, Colorado 80305, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado 80309, USA
Maximilian Dollner
Faculty of Physics, Aerosol Physics and Environmental Physics, University of Vienna, Vienna, 1090, Austria
Christina J. Williamson
Chemical Sciences Laboratory, National Oceanic and Atmospheric
Administration, Boulder, Colorado 80305, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado 80309, USA
Gregory Schill
Chemical Sciences Laboratory, National Oceanic and Atmospheric
Administration, Boulder, Colorado 80305, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado 80309, USA
Daniel M. Murphy
Chemical Sciences Laboratory, National Oceanic and Atmospheric
Administration, Boulder, Colorado 80305, USA
Nicholas J. Wagner
Chemical Sciences Laboratory, National Oceanic and Atmospheric
Administration, Boulder, Colorado 80305, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado 80309, USA
Agnieszka Kupc
Faculty of Physics, Aerosol Physics and Environmental Physics, University of Vienna, Vienna, 1090, Austria
Jose L. Jimenez
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado 80309, USA
Department of Chemistry, University of Colorado, Boulder, Colorado
80309, USA
Pedro Campuzano-Jost
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado 80309, USA
Department of Chemistry, University of Colorado, Boulder, Colorado
80309, USA
Benjamin A. Nault
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado 80309, USA
Department of Chemistry, University of Colorado, Boulder, Colorado
80309, USA
Jason C. Schroder
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado 80309, USA
Department of Chemistry, University of Colorado, Boulder, Colorado
80309, USA
Douglas A. Day
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado 80309, USA
Department of Chemistry, University of Colorado, Boulder, Colorado
80309, USA
Derek J. Price
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado 80309, USA
Department of Chemistry, University of Colorado, Boulder, Colorado
80309, USA
Bernadett Weinzierl
Faculty of Physics, Aerosol Physics and Environmental Physics, University of Vienna, Vienna, 1090, Austria
Joshua P. Schwarz
Chemical Sciences Laboratory, National Oceanic and Atmospheric
Administration, Boulder, Colorado 80305, USA
Joseph M. Katich
Chemical Sciences Laboratory, National Oceanic and Atmospheric
Administration, Boulder, Colorado 80305, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado 80309, USA
Siyuan Wang
Chemical Sciences Laboratory, National Oceanic and Atmospheric
Administration, Boulder, Colorado 80305, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado 80309, USA
Linghan Zeng
School of Earth and Atmospheric Sciences, Georgia Institute of
Technology, Atlanta, Georgia 30332, USA
Rodney Weber
School of Earth and Atmospheric Sciences, Georgia Institute of
Technology, Atlanta, Georgia 30332, USA
Jack Dibb
Earth Systems Research Center, Institute for the Study of Earth,
Oceans, and Space, University of New Hampshire, Durham, New Hampshire 03824, USA
Eric Scheuer
Earth Systems Research Center, Institute for the Study of Earth,
Oceans, and Space, University of New Hampshire, Durham, New Hampshire 03824, USA
Glenn S. Diskin
Langley Research Center, National Aeronautics and Space
Administration, Hampton, Virginia 23681, USA
Joshua P. DiGangi
Langley Research Center, National Aeronautics and Space
Administration, Hampton, Virginia 23681, USA
ThaoPaul Bui
Ames Research Center, National Aeronautics and Space Administration, Moffett Field, California 94035, USA
Jonathan M. Dean-Day
Bay Area Environment Research Institute, Moffett Field, California
94035, USA
Chelsea R. Thompson
Chemical Sciences Laboratory, National Oceanic and Atmospheric
Administration, Boulder, Colorado 80305, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado 80309, USA
Jeff Peischl
Chemical Sciences Laboratory, National Oceanic and Atmospheric
Administration, Boulder, Colorado 80305, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado 80309, USA
Thomas B. Ryerson
Chemical Sciences Laboratory, National Oceanic and Atmospheric
Administration, Boulder, Colorado 80305, USA
Ilann Bourgeois
Chemical Sciences Laboratory, National Oceanic and Atmospheric
Administration, Boulder, Colorado 80305, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, Colorado 80309, USA
Bruce C. Daube
Department of Earth and Planetary Sciences, Harvard University,
Cambridge, Massachusetts 02138, USA
Róisín Commane
School of Engineering and Applied Sciences, Harvard University,
Cambridge, Massachusetts 02138, USA
now at: Earth and Environmental Sciences, Lamont–Doherty Earth
Observatory, Columbia University, Palisades, New York 10964, USA
Steven C. Wofsy
Department of Earth and Planetary Sciences, Harvard University,
Cambridge, Massachusetts 02138, USA
Viewed
Total article views: 6,050 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 Mar 2021)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
4,259 | 1,713 | 78 | 6,050 | 315 | 64 | 102 |
- HTML: 4,259
- PDF: 1,713
- XML: 78
- Total: 6,050
- Supplement: 315
- BibTeX: 64
- EndNote: 102
Total article views: 4,134 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 08 Oct 2021)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
3,125 | 951 | 58 | 4,134 | 188 | 59 | 91 |
- HTML: 3,125
- PDF: 951
- XML: 58
- Total: 4,134
- Supplement: 188
- BibTeX: 59
- EndNote: 91
Total article views: 1,916 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 Mar 2021)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,134 | 762 | 20 | 1,916 | 127 | 5 | 11 |
- HTML: 1,134
- PDF: 762
- XML: 20
- Total: 1,916
- Supplement: 127
- BibTeX: 5
- EndNote: 11
Viewed (geographical distribution)
Total article views: 6,050 (including HTML, PDF, and XML)
Thereof 5,965 with geography defined
and 85 with unknown origin.
Total article views: 4,134 (including HTML, PDF, and XML)
Thereof 4,060 with geography defined
and 74 with unknown origin.
Total article views: 1,916 (including HTML, PDF, and XML)
Thereof 1,905 with geography defined
and 11 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
16 citations as recorded by crossref.
- High temperature and pressure regime soot: Physical, optical and chemical signatures from high explosive detonations A. Aiken et al. 10.1080/02786826.2022.2105686
- Contrail formation on ambient aerosol particles for aircraft with hydrogen combustion: a box model trajectory study A. Bier et al. 10.5194/acp-24-2319-2024
- Reducing Aerosol Forcing Uncertainty by Combining Models With Satellite and Within‐The‐Atmosphere Observations: A Three‐Way Street R. Kahn et al. 10.1029/2022RG000796
- A first global height-resolved cloud condensation nuclei data set derived from spaceborne lidar measurements G. Choudhury & M. Tesche 10.5194/essd-15-3747-2023
- Unprecedented levels of ultrafine particles, major sources, and the hydrological cycle W. Junkermann & J. Hacker 10.1038/s41598-022-11500-5
- Deconstruction of tropospheric chemical reactivity using aircraft measurements: the Atmospheric Tomography Mission (ATom) data M. Prather et al. 10.5194/essd-15-3299-2023
- The Cloud Indicator: A novel algorithm for automatic detection and classification of clouds using airborne in situ observations M. Dollner et al. 10.1016/j.atmosres.2024.107504
- Improved Dust Representation and Impacts on Dust Transport and Radiative Effect in CAM5 Z. Ke et al. 10.1029/2021MS002845
- Description and performance of a sectional aerosol microphysical model in the Community Earth System Model (CESM2) S. Tilmes et al. 10.5194/gmd-16-6087-2023
- Impact of particle size, refractive index, and shape on the determination of the particle scattering coefficient – an optical closure study evaluating different nephelometer angular truncation and illumination corrections M. Teri et al. 10.5194/amt-15-3161-2022
- Atmospheric concentrations of black carbon are substantially higher in spring than summer in the Arctic Z. Jurányi et al. 10.1038/s43247-023-00749-x
- Particle number concentrations and size distributions in the stratosphere: implications of nucleation mechanisms and particle microphysics F. Yu et al. 10.5194/acp-23-1863-2023
- Annual cycle of aerosol properties over the central Arctic during MOSAiC 2019–2020 – light-extinction, CCN, and INP levels from the boundary layer to the tropopause A. Ansmann et al. 10.5194/acp-23-12821-2023
- Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere M. Abou-Ghanem et al. 10.5194/acp-24-8263-2024
- Evaluation of aerosol number concentrations from CALIPSO with ATom airborne in situ measurements G. Choudhury et al. 10.5194/acp-22-7143-2022
- The importance of size ranges in aerosol instrument intercomparisons: a case study for the Atmospheric Tomography Mission H. Guo et al. 10.5194/amt-14-3631-2021
15 citations as recorded by crossref.
- High temperature and pressure regime soot: Physical, optical and chemical signatures from high explosive detonations A. Aiken et al. 10.1080/02786826.2022.2105686
- Contrail formation on ambient aerosol particles for aircraft with hydrogen combustion: a box model trajectory study A. Bier et al. 10.5194/acp-24-2319-2024
- Reducing Aerosol Forcing Uncertainty by Combining Models With Satellite and Within‐The‐Atmosphere Observations: A Three‐Way Street R. Kahn et al. 10.1029/2022RG000796
- A first global height-resolved cloud condensation nuclei data set derived from spaceborne lidar measurements G. Choudhury & M. Tesche 10.5194/essd-15-3747-2023
- Unprecedented levels of ultrafine particles, major sources, and the hydrological cycle W. Junkermann & J. Hacker 10.1038/s41598-022-11500-5
- Deconstruction of tropospheric chemical reactivity using aircraft measurements: the Atmospheric Tomography Mission (ATom) data M. Prather et al. 10.5194/essd-15-3299-2023
- The Cloud Indicator: A novel algorithm for automatic detection and classification of clouds using airborne in situ observations M. Dollner et al. 10.1016/j.atmosres.2024.107504
- Improved Dust Representation and Impacts on Dust Transport and Radiative Effect in CAM5 Z. Ke et al. 10.1029/2021MS002845
- Description and performance of a sectional aerosol microphysical model in the Community Earth System Model (CESM2) S. Tilmes et al. 10.5194/gmd-16-6087-2023
- Impact of particle size, refractive index, and shape on the determination of the particle scattering coefficient – an optical closure study evaluating different nephelometer angular truncation and illumination corrections M. Teri et al. 10.5194/amt-15-3161-2022
- Atmospheric concentrations of black carbon are substantially higher in spring than summer in the Arctic Z. Jurányi et al. 10.1038/s43247-023-00749-x
- Particle number concentrations and size distributions in the stratosphere: implications of nucleation mechanisms and particle microphysics F. Yu et al. 10.5194/acp-23-1863-2023
- Annual cycle of aerosol properties over the central Arctic during MOSAiC 2019–2020 – light-extinction, CCN, and INP levels from the boundary layer to the tropopause A. Ansmann et al. 10.5194/acp-23-12821-2023
- Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere M. Abou-Ghanem et al. 10.5194/acp-24-8263-2024
- Evaluation of aerosol number concentrations from CALIPSO with ATom airborne in situ measurements G. Choudhury et al. 10.5194/acp-22-7143-2022
Latest update: 22 Nov 2024
Short summary
The Atmospheric Tomography Mission was an airborne study that mapped the chemical composition of the remote atmosphere. From this, we developed a comprehensive description of aerosol properties that provides a unique, global-scale dataset against which models can be compared. The data show the polluted nature of the remote atmosphere in the Northern Hemisphere and quantify the contributions of sea salt, dust, soot, biomass burning particles, and pollution particles to the haziness of the sky.
The Atmospheric Tomography Mission was an airborne study that mapped the chemical composition of...
Altmetrics
Final-revised paper
Preprint