Articles | Volume 21, issue 19
https://doi.org/10.5194/acp-21-15003-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-15003-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An organic crystalline state in ageing atmospheric aerosol proxies: spatially resolved structural changes in levitated fatty acid particles
Adam Milsom
School of Geography, Earth and
Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
Adam M. Squires
Department of Chemistry, University of Bath, South Building,
Soldier Down Ln, Claverton Down, BA2 7AX, Bath, UK
Jacob A. Boswell
Department of Chemistry, University of Bath, South Building,
Soldier Down Ln, Claverton Down, BA2 7AX, Bath, UK
Nicholas J. Terrill
Diamond Light Source, Diamond House, Harwell Science and Innovation
Campus, OX11 0DE, Didcot, UK
Andrew D. Ward
Central Laser Facility, Rutherford Appleton Laboratory, Harwell
Campus, OX11 0QX, Didcot, UK
School of Geography, Earth and
Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
Department of Meteorology, University of Reading, Whiteknights,
Earley Gate, RG6 6BB, Reading, UK
Related authors
Rosalie H. Shepherd, Martin D. King, Andrew D. Ward, Edward J. Stuckey, Rebecca J. L. Welbourn, Neil Brough, Adam Milsom, Christian Pfrang, and Thomas Arnold
Atmos. Chem. Phys., 25, 2569–2588, https://doi.org/10.5194/acp-25-2569-2025, https://doi.org/10.5194/acp-25-2569-2025, 2025
Short summary
Short summary
Thin film formation at the air–water interface from material extracted from atmospheric aerosol was demonstrated, supporting the core–shell morphology. Film thicknesses were approximately 10 Å and 17 Å for urban and remote extracts, respectively. Exposure to gas-phase OH radicals showed fast reactions and short lifetimes of around 1 h. The effect on the Earth's radiative balance indicated that removing half of the film could significantly increase the top-of-atmosphere albedo for urban films.
Sophie A. Mills, Adam Milsom, Christian Pfrang, A. Rob MacKenzie, and Francis D. Pope
Atmos. Meas. Tech., 16, 4885–4898, https://doi.org/10.5194/amt-16-4885-2023, https://doi.org/10.5194/amt-16-4885-2023, 2023
Short summary
Short summary
Pollen grains are important components of the atmosphere and have the potential to impact upon cloud processes via their ability to help in the formation of rain droplets. This study investigates the hygroscopicity of two different pollen species using an acoustic levitator. Pollen grains are levitated, and their response to changes in relative humidity is investigated. A key advantage of this method is that it is possible study pollen shape under varying environmental conditions.
Adam Milsom, Shaojun Qi, Ashmi Mishra, Thomas Berkemeier, Zhenyu Zhang, and Christian Pfrang
Atmos. Chem. Phys., 23, 10835–10843, https://doi.org/10.5194/acp-23-10835-2023, https://doi.org/10.5194/acp-23-10835-2023, 2023
Short summary
Short summary
Aerosols and films are found indoors and outdoors. Our study measures and models reactions of a cooking aerosol proxy with the atmospheric oxidant ozone relying on a low-cost but sensitive technique based on mass changes and film rigidity. We found that film morphology changed and film rigidity increased with evidence of surface crust formation during ozone exposure. Our modelling results demonstrate clear potential to take this robust method to the field for reaction monitoring.
Adam Milsom, Amy Lees, Adam M. Squires, and Christian Pfrang
Geosci. Model Dev., 15, 7139–7151, https://doi.org/10.5194/gmd-15-7139-2022, https://doi.org/10.5194/gmd-15-7139-2022, 2022
Short summary
Short summary
MultilayerPy is a Python-based framework facilitating the creation, running and optimisation of state-of-the-art kinetic multi-layer models of aerosol and film processes. Models can be fit to data with local and global optimisation algorithms along with a statistical sampling algorithm, which quantifies the uncertainty in optimised model parameters. This “modelling study in a box” enables more reproducible and reliable results, with model code and outputs produced in a human-readable way.
Adam Milsom, Adam M. Squires, Andrew D. Ward, and Christian Pfrang
Atmos. Chem. Phys., 22, 4895–4907, https://doi.org/10.5194/acp-22-4895-2022, https://doi.org/10.5194/acp-22-4895-2022, 2022
Short summary
Short summary
Cooking emissions can self-organise into nanostructured lamellar bilayers, and this can influence reaction kinetics. We developed a kinetic multi-layer model-based description of decay data we obtained from laboratory experiments of the ozonolysis of coated films of such a self-organised system, demonstrating a decreased diffusivity for both oleic acid and ozone. Nanostructure formation can thus increase the reactive half-life of oleic acid by days under typical indoor and outdoor conditions.
Benjamin Woden, Maximilian W. A. Skoda, Adam Milsom, Curtis Gubb, Armando Maestro, James Tellam, and Christian Pfrang
Atmos. Chem. Phys., 21, 1325–1340, https://doi.org/10.5194/acp-21-1325-2021, https://doi.org/10.5194/acp-21-1325-2021, 2021
Short summary
Short summary
Atmospheric aerosols contain a large amount of organic compounds, whose oxidation affects their physical properties through a process known as ageing. We have simulated atmospheric ageing experimentally to elucidate the nature and behaviour of residual surface films. Our results show an increasing amount of residue at near-zero temperatures, demonstrating that an inert product film may build up during droplet ageing, even if only ordinarily short-lived reactive species are initially emitted.
Andrea Mazzeo, Christian Pfrang, and Zaheer Ahmad Nasir
EGUsphere, https://doi.org/10.5194/egusphere-2025-783, https://doi.org/10.5194/egusphere-2025-783, 2025
Short summary
Short summary
Indoor air pollution is a serious public health risk. There is an urgent need to understand how various sources contribute to air pollution over time in homes, workplaces, vehicles, and recreational areas. The InAPI tool is built on a database of indoor air pollutants in the UK. It organizes information about pollutants, environments, and activities, and provides data on indoor pollutant levels and their emission rates. This is crucial to guide future research in managing indoor air quality.
Rosalie H. Shepherd, Martin D. King, Andrew D. Ward, Edward J. Stuckey, Rebecca J. L. Welbourn, Neil Brough, Adam Milsom, Christian Pfrang, and Thomas Arnold
Atmos. Chem. Phys., 25, 2569–2588, https://doi.org/10.5194/acp-25-2569-2025, https://doi.org/10.5194/acp-25-2569-2025, 2025
Short summary
Short summary
Thin film formation at the air–water interface from material extracted from atmospheric aerosol was demonstrated, supporting the core–shell morphology. Film thicknesses were approximately 10 Å and 17 Å for urban and remote extracts, respectively. Exposure to gas-phase OH radicals showed fast reactions and short lifetimes of around 1 h. The effect on the Earth's radiative balance indicated that removing half of the film could significantly increase the top-of-atmosphere albedo for urban films.
Adam Milsom, Adam M. Squires, Ben Laurence, Ben Wōden, Andrew J. Smith, Andrew D. Ward, and Christian Pfrang
Atmos. Chem. Phys., 24, 13571–13586, https://doi.org/10.5194/acp-24-13571-2024, https://doi.org/10.5194/acp-24-13571-2024, 2024
Short summary
Short summary
We followed nano-structural changes in mixtures found in urban organic aerosol emissions (oleic acid, sodium oleate and fructose) during humidity change and ozone exposure. We demonstrate that self-assembly of fatty acid nanostructures can impact water uptake and chemical reactivity, affecting atmospheric lifetimes, urban air quality (preventing harmful emissions from degradation and enabling their long-range transport) and climate (affecting cloud formation), with implications for human health.
Sophie A. Mills, Adam Milsom, Christian Pfrang, A. Rob MacKenzie, and Francis D. Pope
Atmos. Meas. Tech., 16, 4885–4898, https://doi.org/10.5194/amt-16-4885-2023, https://doi.org/10.5194/amt-16-4885-2023, 2023
Short summary
Short summary
Pollen grains are important components of the atmosphere and have the potential to impact upon cloud processes via their ability to help in the formation of rain droplets. This study investigates the hygroscopicity of two different pollen species using an acoustic levitator. Pollen grains are levitated, and their response to changes in relative humidity is investigated. A key advantage of this method is that it is possible study pollen shape under varying environmental conditions.
Adam Milsom, Shaojun Qi, Ashmi Mishra, Thomas Berkemeier, Zhenyu Zhang, and Christian Pfrang
Atmos. Chem. Phys., 23, 10835–10843, https://doi.org/10.5194/acp-23-10835-2023, https://doi.org/10.5194/acp-23-10835-2023, 2023
Short summary
Short summary
Aerosols and films are found indoors and outdoors. Our study measures and models reactions of a cooking aerosol proxy with the atmospheric oxidant ozone relying on a low-cost but sensitive technique based on mass changes and film rigidity. We found that film morphology changed and film rigidity increased with evidence of surface crust formation during ozone exposure. Our modelling results demonstrate clear potential to take this robust method to the field for reaction monitoring.
Adam Milsom, Amy Lees, Adam M. Squires, and Christian Pfrang
Geosci. Model Dev., 15, 7139–7151, https://doi.org/10.5194/gmd-15-7139-2022, https://doi.org/10.5194/gmd-15-7139-2022, 2022
Short summary
Short summary
MultilayerPy is a Python-based framework facilitating the creation, running and optimisation of state-of-the-art kinetic multi-layer models of aerosol and film processes. Models can be fit to data with local and global optimisation algorithms along with a statistical sampling algorithm, which quantifies the uncertainty in optimised model parameters. This “modelling study in a box” enables more reproducible and reliable results, with model code and outputs produced in a human-readable way.
Adam Milsom, Adam M. Squires, Andrew D. Ward, and Christian Pfrang
Atmos. Chem. Phys., 22, 4895–4907, https://doi.org/10.5194/acp-22-4895-2022, https://doi.org/10.5194/acp-22-4895-2022, 2022
Short summary
Short summary
Cooking emissions can self-organise into nanostructured lamellar bilayers, and this can influence reaction kinetics. We developed a kinetic multi-layer model-based description of decay data we obtained from laboratory experiments of the ozonolysis of coated films of such a self-organised system, demonstrating a decreased diffusivity for both oleic acid and ozone. Nanostructure formation can thus increase the reactive half-life of oleic acid by days under typical indoor and outdoor conditions.
Benjamin Woden, Maximilian W. A. Skoda, Adam Milsom, Curtis Gubb, Armando Maestro, James Tellam, and Christian Pfrang
Atmos. Chem. Phys., 21, 1325–1340, https://doi.org/10.5194/acp-21-1325-2021, https://doi.org/10.5194/acp-21-1325-2021, 2021
Short summary
Short summary
Atmospheric aerosols contain a large amount of organic compounds, whose oxidation affects their physical properties through a process known as ageing. We have simulated atmospheric ageing experimentally to elucidate the nature and behaviour of residual surface films. Our results show an increasing amount of residue at near-zero temperatures, demonstrating that an inert product film may build up during droplet ageing, even if only ordinarily short-lived reactive species are initially emitted.
Mohammed S. Alam, Leigh R. Crilley, James D. Lee, Louisa J. Kramer, Christian Pfrang, Mónica Vázquez-Moreno, Milagros Ródenas, Amalia Muñoz, and William J. Bloss
Atmos. Meas. Tech., 13, 5977–5991, https://doi.org/10.5194/amt-13-5977-2020, https://doi.org/10.5194/amt-13-5977-2020, 2020
Short summary
Short summary
We report on the interference arising in measurements of nitrogen oxides (NOx) from the presence of a range of alkenes in sampled air when using the most widespread air quality monitoring technique for chemiluminescence detection. Interferences of up to 11 % are reported, depending upon the alkene present and conditions used. Such interferences may be of substantial importance for the interpretation of ambient NOx data, particularly for high volatile organic compound and low NOx environments.
Cited articles
Abbatt, J. P. D., Lee, A. K. Y., and Thornton, J. A.: Quantifying trace gas
uptake to tropospheric aerosol: Recent advances and remaining challenges,
Chem. Soc. Rev., 41, 6555–6581, https://doi.org/10.1039/c2cs35052a, 2012.
Al-Kindi, S. S., Pope, F. D., Beddows, D. C., Bloss, W. J., and Harrison, R. M.: Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions, Atmos. Chem. Phys., 16, 15561–15579, https://doi.org/10.5194/acp-16-15561-2016, 2016.
Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn, M. J., Lee, J., Nemitz, E., Phillips, G. J., Gallagher, M. W., and Coe, H.: Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities, Atmos. Chem. Phys., 10, 647–668, https://doi.org/10.5194/acp-10-647-2010, 2010.
Alves, C. A., Vicente, E. D., Evtyugina, M., Vicente, A. M., Nunes, T.,
Lucarelli, F., Calzolai, G., Nava, S., Calvo, A. I., Alegre, C. del B.,
Oduber, F., Castro, A., and Fraile, R.: Indoor and outdoor air quality: A
university cafeteria as a case study, Atmos. Pollut. Res., 11, 531–544,
https://doi.org/10.1016/j.apr.2019.12.002, 2020.
Ananthapadmanabhan, K. P. and Somasundaran, P.: Acid-soap formation in
aqueous oleate solutions, J. Colloid Interface Sci., 122, 104–109,
https://doi.org/10.1016/0021-9797(88)90293-7, 1988.
Athanasiadis, A., Fitzgerald, C., Davidson, N. M., Giorio, C., Botchway, S.
W., Ward, A. D., Kalberer, M., Pope, F. D., and Kuimova, M. K.: Dynamic
viscosity mapping of the oxidation of squalene aerosol particles, Phys.
Chem. Chem. Phys., 18, 30385–30393, https://doi.org/10.1039/c6cp05674a, 2016.
Bastelberger, S., Krieger, U. K., Luo, B. P., and Peter, T.: Time evolution
of steep diffusion fronts in highly viscous aerosol particles measured with
Mie resonance spectroscopy, J. Chem. Phys., 149, 244506,
https://doi.org/10.1063/1.5052216, 2018.
Berkemeier, T., Steimer, S. S., Krieger, U. K., Peter, T., Pöschl, U.,
Ammann, M., and Shiraiwa, M.: Ozone uptake on glassy, semi-solid and liquid
organic matter and the role of reactive oxygen intermediates in atmospheric
aerosol chemistry, Phys. Chem. Chem. Phys., 18, 12662–12674,
https://doi.org/10.1039/c6cp00634e, 2016.
Blöchliger, E., Blocher, M., Walde, P., and Luisi, P. L.: Matrix Effect
in the Size Distribution of Fatty Acid Vesicles, J. Phys. Chem. B, 102,
10383–10390, https://doi.org/10.1021/jp981234w, 1998.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in:
Climate Change 2013 the Physical Science Basis: Working Group I Contribution
to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 571–658, 2013.
Bzdek, B. R., Reid, J. P., Malila, J., and Prisle, N. L.: The surface tension
of surfactant-containing, finite volume droplets, P. Natl. Acad. Sci. USA, 117, 8335–8343, https://doi.org/10.1073/pnas.1915660117, 2020.
Chan, C. K. and Yao, X.: Air pollution in mega cities in China, Atmos.
Environ., 42, 1–42, https://doi.org/10.1016/j.atmosenv.2007.09.003, 2008.
Cheng, Y., Li, S. M., Leithead, A., Brickell, P. C., and Leaitch, W. R.:
Characterizations of cis-pinonic acid and n-fatty acids on fine aerosols in
the Lower Fraser Valley during Pacific 2001 Air Quality Study, Atmos.
Environ., 38, 5789–5800, https://doi.org/10.1016/j.atmosenv.2004.01.051, 2004.
Chu, S. N., Sands, S., Tomasik, M. R., Lee, P. S., and McNeill, V. F.: Ozone
oxidation of surface-adsorbed polycyclic aromatic hydrocarbons: Role of
PAH-surface interaction, J. Am. Chem. Soc., 132, 15968–15975,
https://doi.org/10.1021/ja1014772, 2010.
Cistola, D. P., Atkinson, D., Hamilton, J. A., and Small, D. M.: Phase
Behavior and Bilayer Properties of Fatty Acids: Hydrated 1:1 Acid-Soaps,
Biochemistry, 25, 2804–2812, https://doi.org/10.1021/bi00358a011, 1986.
Davies, J. F. and Wilson, K. R.: Raman Spectroscopy of Isotopic Water
Diffusion in Ultraviscous, Glassy, and Gel States in Aerosol by Use of
Optical Tweezers, Anal. Chem., 88, 2361–2366,
https://doi.org/10.1021/acs.analchem.5b04315, 2016.
Engblom, J., Engström, S. and Fontell, K.: The effect of the skin
penetration enhancer Azone® on fatty acid-sodium soap-water
mixtures, J. Control. Release, 33, 299–305,
https://doi.org/10.1016/0168-3659(94)00105-4, 1995.
Estillore, A. D., Trueblood, J. V., and Grassian, V. H.: Atmospheric
chemistry of bioaerosols: Heterogeneous and multiphase reactions with
atmospheric oxidants and other trace gases, Chem. Sci., 7, 6604–6616,
https://doi.org/10.1039/c6sc02353c, 2016.
Facchini, M. C., Mircea, M., Fuzzi, S., and Charlson, R. J.: Cloud albedo
enhancement by surface-active organic solutes in growing droplets, Nature,
401, 257–259, https://doi.org/10.1038/45758, 1999.
Facchini, M. C., Decesari, S., Mircea, M., Fuzzi, S., and Loglio, G.: Surface
tension of atmospheric wet aerosol and cloud/fog droplets in relation to
their organic carbon content and chemical composition, Atmos. Environ.,
34, 4853–4857, https://doi.org/10.1016/S1352-2310(00)00237-5, 2000.
Fitzgerald, C., Hosny, N. A., Tong, H., Seville, P. C., Gallimore, P. J.,
Davidson, N. M., Athanasiadis, A., Botchway, S. W., Ward, A. D., Kalberer,
M., Kuimova, M. K., and Pope, F. D.: Fluorescence lifetime imaging of
optically levitated aerosol: A technique to quantitatively map the viscosity
of suspended aerosol particles, Phys. Chem. Chem. Phys., 18,
21710–21719, https://doi.org/10.1039/c6cp03674k, 2016.
Freedman, M. A.: Phase separation in organic aerosol, Chem. Soc. Rev.,
46, 7694–7705, https://doi.org/10.1039/c6cs00783j, 2017.
Freedman, M. A.: Liquid–Liquid Phase Separation in Supermicrometer and
Submicrometer Aerosol Particles, Acc. Chem. Res., 53, 1102–1110,
https://doi.org/10.1021/acs.accounts.0c00093, 2020.
Fu, P. Q., Kawamura, K., Chen, J., Charrière, B., and Sempéré, R.: Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation, Biogeosciences, 10, 653–667, https://doi.org/10.5194/bg-10-653-2013, 2013.
Gallimore, P. J., Achakulwisut, P., Pope, F. D., Davies, J. F., Spring, D. R., and Kalberer, M.: Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol, Atmos. Chem. Phys., 11, 12181–12195, https://doi.org/10.5194/acp-11-12181-2011, 2011.
Gallimore, P. J., Griffiths, P. T., Pope, F. D., Reid, J. P., and Kalberer,
M.: Comprehensive modeling study of ozonolysis of oleic acid aerosol based
on real-time, online measurements of aerosol composition, J. Geophys. Res.,
122, 4364–4377, https://doi.org/10.1002/2016JD026221, 2017.
Guarnieri, M. and Balmes, J. R.: Outdoor air pollution and asthma, Lancet,
383, 1581–1592, https://doi.org/10.1016/S0140-6736(14)60617-6, 2014.
He, X., Leng, C., Pang, S., and Zhang, Y.: Kinetics study of heterogeneous
reactions of ozone with unsaturated fatty acid single droplets using
micro-FTIR spectroscopy, RSC Adv., 7, 3204–3213, https://doi.org/10.1039/C6RA25255A,
2017.
Hosny, N. A., Fitzgerald, C., Tong, C., Kalberer, M., Kuimova, M. K., and
Pope, F. D.: Fluorescent lifetime imaging of atmospheric aerosols: A direct
probe of aerosol viscosity, Faraday Discuss., 165, 343–356,
https://doi.org/10.1039/c3fd00041a, 2013.
Hosny, N. A., Fitzgerald, C., Vyšniauskas, A., Athanasiadis, A.,
Berkemeier, T., Uygur, N., Pöschl, U., Shiraiwa, M., Kalberer, M., Pope,
F. D., and Kuimova, M. K.: Direct imaging of changes in aerosol particle
viscosity upon hydration and chemical aging, Chem. Sci., 7, 1357–1367,
https://doi.org/10.1039/c5sc02959g, 2016.
Hung, H. M., Katrib, Y., and Martin, S. T.: Products and mechanisms of the
reaction of oleic acid with ozone and nitrate radical, J. Phys. Chem. A,
109, 4517–4530, https://doi.org/10.1021/jp0500900, 2005.
Ishimaru, M., Toyota, T., Takakura, K., Sugawara, T., and Sugawara, Y.:
Helical Aggregate of Oleic Acid and Its Dynamics in Water at pH 8, Chem.
Lett., 34, 46–47, https://doi.org/10.1246/cl.2005.46, 2005.
Iwahashi, M., Yamaguchi, Y., Kato, T., Horiuchi, T., Sakurai, I., and Suzuki,
M.: Temperature dependence of molecular conformation and liquid structure of
cis-9-octadecenoic acid, J. Phys. Chem., 95, 445–451,
https://doi.org/10.1021/j100154a078, 1991.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I.,
Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S.,
Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi,
T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K.,
Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M.,
Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the
Atmosphere, Science, 326, 1525–1529,
https://doi.org/10.1126/science.1180353, 2009.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, https://doi.org/10.5194/acp-5-1053-2005, 2005.
Kang, M., Yang, F., Ren, H., Zhao, W., Zhao, Y., Li, L., Yan, Y., Zhang, Y.,
Lai, S., Zhang, Y., Yang, Y., Wang, Z., Sun, Y. and Fu, P.: Influence of
continental organic aerosols to the marine atmosphere over the East China
Sea: Insights from lipids, PAHs and phthalates, Sci. Total Environ.,
607–608, 339–350, https://doi.org/10.1016/j.scitotenv.2017.06.214, 2017.
Keene, W. C., Pszenny, A. A. P., Maben, J. R., Stevenson, E., and Wall, A.:
Closure evaluation of size-resolved aerosol pH in the New England coastal
atmosphere during summer, J. Geophys. Res.-Atmos., 109, 1–16,
https://doi.org/10.1029/2004JD004801, 2004.
King, M. D., Thompson, K. C., and Ward, A. D.: Laser tweezers raman study of
optically trapped aerosol droplets of seawater and oleic acid reacting with
ozone: Implications for cloud-droplet properties, J. Am. Chem. Soc.,
126, 16710–16711, https://doi.org/10.1021/ja044717o, 2004.
King, M. D., Rennie, A. R., Thompson, K. C., Fisher, F. N., Dong, C. C.,
Thomas, R. K., Pfrang, C. and Hughes, A. V.: Oxidation of oleic acid at the
air-water interface and its potential effects on cloud critical
supersaturations, Phys. Chem. Chem. Phys., 11(35), 7699–7707,
https://doi.org/10.1039/b906517b, 2009.
King, M. D., Rennie, A. R., Pfrang, C., Hughes, A. V., and Thompson, K. C.:
Interaction of nitrogen dioxide (NO2) with a monolayer of oleic acid at the
air-water interface – A simple proxy for atmospheric aerosol, Atmos.
Environ., 44, 1822–1825, https://doi.org/10.1016/j.atmosenv.2010.01.031, 2010.
Kirpes, R. M., Bonanno, D., May, N. W., Fraund, M., Barget, A. J., Moffet,
R. C., Ault, A. P. and Pratt, K. A.: Wintertime Arctic Sea Spray Aerosol
Composition Controlled by Sea Ice Lead Microbiology, ACS Cent. Sci., 5(11),
1760–1767, https://doi.org/10.1021/acscentsci.9b00541, 2019.
Knopf, D. A., Anthony, L. M., and Bertram, A. K.: Reactive uptake of O3 by
multicomponent and multiphase mixtures containing oleic acid, J. Phys. Chem.
A, 109, 5579–5589, https://doi.org/10.1021/jp0512513, 2005.
Koop, T., Bookhold, J., Shiraiwa, M., and Pöschl, U.: Glass transition
and phase state of organic compounds: Dependency on molecular properties and
implications for secondary organic aerosols in the atmosphere, Phys. Chem.
Chem. Phys., 13, 19238–19255, https://doi.org/10.1039/c1cp22617g, 2011.
Laskin, A., Moffet, R. C., and Gilles, M. K.: Chemical Imaging of Atmospheric
Particles, Acc. Chem. Res., 52, 3419–3431,
https://doi.org/10.1021/acs.accounts.9b00396, 2019.
Last, D. J., Nájera, J. J., Wamsley, R., Hilton, G., McGillen, M.,
Percival, C. J., and Horn, A. B.: Ozonolysis of organic compounds and
mixtures in solution, Part I: Oleic, maleic, nonanoic and benzoic acids,
Phys. Chem. Chem. Phys., 11, 1427–1440, https://doi.org/10.1039/b815425b, 2009.
Lee, J. W. L., Carrascón, V., Gallimore, P. J., Fuller, S. J.,
Björkegren, A., Spring, D. R., Pope, F. D., and Kalberer, M.: The effect
of humidity on the ozonolysis of unsaturated compounds in aerosol particles,
Phys. Chem. Chem. Phys., 14, 8023–8031, https://doi.org/10.1039/c2cp24094g, 2012.
Liao, H., Seinfeld, J. H., Adams, P. J., and Mickley, L. J.: Global radiative
forcing of coupled tropospheric ozone and aerosols in a unified general
circulation model, J. Geophys. Res.-Atmos., 109, 1–33,
https://doi.org/10.1029/2003JD004456, 2004.
Lisiecki, I., André, P., Filankembo, A., Petit, C., Tanori, J.,
Gulik-Krzywicki, T., Ninham, B. W., and Pileni, M. P.: Mesostructured fluids,
1. Cu(AOT)2-H2O-isooctane in oil rich regions, J. Phys. Chem. B, 103,
9168–9175, https://doi.org/10.1021/jp991242s, 1999.
Liu, P., Song, M., Zhao, T., Gunthe, S. S., Ham, S., He, Y., Qin, Y. M.,
Gong, Z., Amorim, J. C., Bertram, A. K., and Martin, S. T.: Resolving the
mechanisms of hygroscopic growth and cloud condensation nuclei activity for
organic particulate matter, Nat. Commun., 9, 4076,
https://doi.org/10.1038/s41467-018-06622-2, 2018.
Lynch, M. L.: Acid-soaps, Curr. Opin. Colloid Interface Sci., 2,
495–500, https://doi.org/10.1016/S1359-0294(97)80097-0, 1997.
Lynch, M. L., Pan, Y., and Laughlin, R. G.: Spectroscopic and thermal
characterization of 1:2 sodium soap/fatty acid acid-soap crystals, J. Phys.
Chem., 100, 357–361, https://doi.org/10.1021/jp952124h, 1996.
Lynch, M. L., Wireko, F., Tarek, M., and Klein, M.: Intermolecular
Interactions and the Structure of Fatty Acid−Soap Crystals, J. Phys. Chem.
B, 105, 552–561, https://doi.org/10.1021/jp002602a, 2002.
Marshall, F. H., Miles, R. E. H., Song, Y., Ohm, P. B., Power, R. M., Reid,
J. P., and Dutcher, C. S.: Diffusion and reactivity in ultraviscous aerosol
and the correlation with particle viscosity, Chem. Sci., 7, 1298–1308,
https://doi.org/10.1039/c5sc03223g, 2016.
Mauersberger, K., Barnes, J., Hanson, D., and Morton, J.: Measurement of the
ozone absorption cross-section at the 253.7 nm mercury line, Geophys. Res.
Lett., 13, 671–673, https://doi.org/10.1029/GL013i007p00671, 1986.
Mele, S., Söderman, O., Ljusberg-Wahrén, H., Thuresson, K.,
Monduzzi, M., and Nylander, T.: Phase behavior in the biologically important
oleic acid/sodium oleate/water system, Chem. Phys. Lipids, 211, 30–36, https://doi.org/10.1016/j.chemphyslip.2017.11.017, 2018.
Mendez, M., Visez, N., Gosselin, S., Crenn, V., Riffault, V., and Petitprez,
D.: Reactive and nonreactive ozone uptake during aging of oleic acid
particles, J. Phys. Chem. A, 118, 9471–9481, https://doi.org/10.1021/jp503572c,
2014.
Mezzenga, R., Meyer, C., Servais, C., Romoscanu, A. I., Sagalowicz, L., and
Hayward, R. C.: Shear rheology of lyotropic liquid crystals: A case study,
Langmuir, 21, 3322–3333, https://doi.org/10.1021/la046964b, 2005.
Mikhailov, E., Vlasenko, S., Martin, S. T., Koop, T., and Pöschl, U.: Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations, Atmos. Chem. Phys., 9, 9491–9522, https://doi.org/10.5194/acp-9-9491-2009, 2009.
Milsom, A., Squires, A. M., Woden, B., Terrill, N. J., Ward, A. D., and
Pfrang, C.: The persistence of a proxy for cooking emissions in megacities:
a kinetic study of the ozonolysis of self-assembled films by simultaneous
small and wide angle X-ray scattering (SAXS/WAXS) and Raman microscopy,
Faraday Discuss., 226, 364–381, https://doi.org/10.1039/D0FD00088D, 2021a.
Milsom, A., Squires, A. M., Boswell, J., Terrill, N. J., Ward, A. D.,
Pfrang, C., Data supporting the study “An organic crystalline state in
ageing atmospheric aerosol proxies: spatially resolved structural changes in
levitated fatty acid particles” by Milsom et al. (2021), Zenodo [data set],
https://doi.org/10.5281/zenodo.5471408, 2021b.
Moise, T. and Rudich, Y.: Reactive uptake of ozone by aerosol-associated
unsaturated fatty acids: Kinetics, mechanism, and products, J. Phys. Chem.
A, 106, 6469–6476, https://doi.org/10.1021/jp025597e, 2002.
Morris, J. W., Davidovits, P., Jayne, J. T., Jimenez, J. L., Shi, Q., Kolb,
C. E., Worsnop, D. R., Barney, W. S., and Cass, G.: Kinetics of submicron
oleic acid aerosols with ozone: A novel aerosol mass spectrometric
technique, Geophys. Res. Lett., 29, 1357, https://doi.org/10.1029/2002gl014692,
2002.
Mu, Q., Shiraiwa, M., Octaviani, M., Ma, N., Ding, A., Su, H., Lammel, G.,
Pöschl, U., and Cheng, Y.: Temperature effect on phase state and
reactivity controls atmospheric multiphase chemistry and transport of PAHs,
Sci. Adv., 4, eaap7314, https://doi.org/10.1126/sciadv.aap7314, 2018.
Nájera, J. J., Percival, C. J., and Horn, A. B.: Infrared spectroscopic
evidence for a heterogeneous reaction between ozone and sodium oleate at the
gas-aerosol interface: Effect of relative humidity, Int. J. Chem. Kinet.,
47, 277–288, https://doi.org/10.1002/kin.20907, 2015.
Nikiforidis, C. V., Gilbert, E. P., and Scholten, E.: Organogel formation via
supramolecular assembly of oleic acid and sodium oleate, RSC Adv., 5,
47466–47475, https://doi.org/10.1039/c5ra05336f, 2015.
Osterroht, C.: Extraction of dissolved fatty acids from sea water,
Fresenius, J. Anal. Chem., 345, 773–779, https://doi.org/10.1007/BF00323009, 1993.
Ots, R., Vieno, M., Allan, J. D., Reis, S., Nemitz, E., Young, D. E., Coe, H., Di Marco, C., Detournay, A., Mackenzie, I. A., Green, D. C., and Heal, M. R.: Model simulations of cooking organic aerosol (COA) over the UK using estimates of emissions based on measurements at two sites in London, Atmos. Chem. Phys., 16, 13773–13789, https://doi.org/10.5194/acp-16-13773-2016, 2016.
Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., Roberts, G.,
Ceburnis, D., Decesari, S., Rinaldi, M., Hodas, N., Facchini, M. C.,
Seinfeld, J. H., and O'Dowd, C.: Surface tension prevails over solute effect
in organic-influenced cloud droplet activation, Nature, 546, 637–641,
https://doi.org/10.1038/nature22806, 2017.
Panich, N. M. and Ershov, B. G.: Solubility of Ozone in Organic Solvents,
Russ. J. Gen. Chem., 89, 185–189, https://doi.org/10.1134/S1070363219020026, 2019.
Paglione, M., Decesari, S., Rinaldi, M., Tarozzi, L., Manarini, F.,
Gilardoni, S., Facchini, M. C., Fuzzi, S., Bacco, D., Trentini, A., Pandis,
S. N., and Nenes, A.: Historical Changes in Seasonal Aerosol Acidity in the
Po Valley (Italy) as Inferred from Fog Water and Aerosol Measurements,
Environ. Sci. Technol., 55, 7307–7315, https://doi.org/10.1021/acs.est.1c00651, 2021.
Pfrang, C., Shiraiwa, M., and Pöschl, U.: Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles, Atmos. Chem. Phys., 11, 7343–7354, https://doi.org/10.5194/acp-11-7343-2011, 2011.
Pfrang, C., Sebastiani, F., Lucas, C. O. M., King, M. D., Hoare, I. D.,
Chang, D., and Campbell, R. A.: Ozonolysis of methyl oleate monolayers at the
air-water interface: Oxidation kinetics, reaction products and atmospheric
implications, Phys. Chem. Chem. Phys., 16, 13220–13228,
https://doi.org/10.1039/c4cp00775a, 2014.
Pfrang, C., Rastogi, K., Cabrera-Martinez, E. R., Seddon, A. M., Dicko, C.,
Labrador, A., Plivelic, T. S., Cowieson, N., and Squires, A. M.: Complex
three-dimensional self-assembly in proxies for atmospheric aerosols, Nat.
Commun., 8, 1724, https://doi.org/10.1038/s41467-017-01918-1, 2017.
Pöschl, U.: Atmospheric aerosols: Composition, transformation, climate
and health effects, Angew. Chemie Int. Ed., 44, 7520–7540,
https://doi.org/10.1002/anie.200501122, 2005.
Price, H. C., Mattsson, J., Zhang, Y., Bertram, A. K., Davies, J. F.,
Grayson, J. W., Martin, S. T., O'Sullivan, D., Reid, J. P., Rickards, A. M.
J., and Murray, B. J.: Water diffusion in atmospherically relevant α-pinene secondary organic material, Chem. Sci., 6, 4876–4883,
https://doi.org/10.1039/c5sc00685f, 2015.
Prisle, N. L., Asmi, A., Topping, D., Partanen, A.-I., Romakkaniemi, S., Dal
Maso, M., Kulmala, M., Laaksonen, A., Lehtinen, K. E. J., McFiggans, G., and
Kokkola, H.: Surfactant effects in global simulations of cloud droplet
activation, Geophys. Res. Lett., 39, L05802, https://doi.org/10.1029/2011GL050467,
2012.
Putnam, C. D., Hammel, M., Hura, G. L., and Tainer, J. A.: X-ray solution
scattering (SAXS) combined with crystallography and computation: defining
accurate macromolecular structures, conformations and assemblies in
solution, Q. Rev. Biophys., 40, 191–285, https://doi.org/10.1017/s0033583507004635,
2007.
Reid, J. P., Bertram, A. K., Topping, D. O., Laskin, A., Martin, S. T.,
Petters, M. D., Pope, F. D., and Rovelli, G.: The viscosity of
atmospherically relevant organic particles, Nat. Commun., 9, 1–14,
https://doi.org/10.1038/s41467-018-03027-z, 2018.
Renbaum-Wolff, L., Grayson, J. W., Bateman, A. P., Kuwata, M., Sellier, M.,
Murray, B. J., Shilling, J. E., Martin, S. T., and Bertram, A. K.: Viscosity
of a-pinene secondary organic material and implications for particle growth
and reactivity, P. Natl. Acad. Sci. USA, 110, 8014–8019,
https://doi.org/10.1073/pnas.1219548110, 2013.
Reynolds, J. C., Last, D. J., McGillen, M., Nijs, A., Horn, A. B., Percival,
C., Carpenter, L. J., and Lewis, A. C.: Structural analysis of oligomeric
molecules formed from the reaction products of oleic acid ozonolysis,
Environ. Sci. Technol., 40, 6674–6681, https://doi.org/10.1021/es060942p, 2006.
Robinson, A. L., Donahue, N. M., and Rogge, W. F.: Photochemical oxidation
and changes in molecular composition of organic aerosol in the regional
context, J. Geophys. Res. Atmos., 111, 1–15, https://doi.org/10.1029/2005JD006265,
2006.
Rudich, Y., Donahue, N. M., and Mentel, T. F.: Aging of Organic Aerosol:
Bridging the Gap Between Laboratory and Field Studies, Annu. Rev. Phys.
Chem., 58, 321–352, https://doi.org/10.1146/annurev.physchem.58.032806.104432, 2007.
Salentinig, S., Sagalowicz, L., and Glatter, O.: Self-Assembled Structures
and pKa Value of Oleic Acid in Systems of Biological Relevance, Langmuir,
26, 11670–11679, https://doi.org/10.1021/la101012a, 2010.
Schwier, A. N., Sareen, N., Lathem, T. L., Nenes, A., and McNeill, V. F.:
Ozone oxidation of oleic acid surface films decreases aerosol cloud
condensation nuclei activity, J. Geophys. Res.-Atmos., 116, D16202,
https://doi.org/10.1029/2010JD015520, 2011.
Sebastiani, F., Campbell, R. A., Rastogi, K., and Pfrang, C.: Nighttime oxidation of surfactants at the air–water interface: effects of chain length, head group and saturation, Atmos. Chem. Phys., 18, 3249–3268, https://doi.org/10.5194/acp-18-3249-2018, 2018.
Seddon, A. M., Richardson, S. J., Rastogi, K., Plivelic, T. S., Squires, A.
M., and Pfrang, C.: Control of Nanomaterial Self-Assembly in Ultrasonically
Levitated Droplets, J. Phys. Chem. Lett., 7, 1341–1345,
https://doi.org/10.1021/acs.jpclett.6b00449, 2016.
Seddon, J. M., Bartle, E. A., and Mingins, J.: Inverse cubic
liquid-crystalline phases of phospholipids and related lyotropic systems, J.
Phys. Condens. Matter, 2, 285–290, https://doi.org/10.1088/0953-8984/2/S/043, 1990.
Shiraiwa, M., Pfrang, C., and Pöschl, U.: Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): the influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone, Atmos. Chem. Phys., 10, 3673–3691, https://doi.org/10.5194/acp-10-3673-2010, 2010.
Shiraiwa, M., Ammann, M., Koop, T., and Poschl, U.: Gas uptake and chemical
aging of semisolid organic aerosol particles, P. Natl. Acad. Sci. USA, 108, 11003–11008, https://doi.org/10.1073/pnas.1103045108, 2011.
Shiraiwa, M., Li, Y., Tsimpidi, A. P., Karydis, V. A., Berkemeier, T.,
Pandis, S. N., Lelieveld, J., Koop, T., and Pöschl, U.: Global
distribution of particle phase state in atmospheric secondary organic
aerosols, Nat. Commun., 8, 1–7, https://doi.org/10.1038/ncomms15002, 2017.
Shrivastava, M., Lou, S., Zelenyuk, A., Easter, R. C., Corley, R. A.,
Thrall, B. D., Rasch, P. J., Fast, J. D., Simonich, S. L. M., Shen, H., and
Tao, S.: Global long-range transport and lung cancer risk from polycyclic
aromatic hydrocarbons shielded by coatings of organic aerosol, P. Natl. Acad. Sci. USA, 114, 1246–1251, https://doi.org/10.1073/pnas.1618475114, 2017.
Slade, J. H., Ault, A. P., Bui, A. T., Ditto, J. C., Lei, Z., Bondy, A. L.,
Olson, N. E., Cook, R. D., Desrochers, S. J., Harvey, R. M., Erickson, M.
H., Wallace, H. W., Alvarez, S. L., Flynn, J. H., Boor, B. E., Petrucci, G.
A., Gentner, D. R., Griffin, R. J., and Shepson, P. B.: Bouncier Particles at
Night: Biogenic Secondary Organic Aerosol Chemistry and Sulfate Drive Diel
Variations in the Aerosol Phase in a Mixed Forest, Environ. Sci. Technol.,
53, 4977–4987, https://doi.org/10.1021/acs.est.8b07319, 2019.
Smith, G. D., Woods, E., DeForest, C. L., Baer, T., and Miller, R. E.:
Reactive uptake of ozone by oleic acid aerosol particles: Application of
single-particle mass spectrometry to heterogeneous reaction kinetics, J.
Phys. Chem. A, 106, 8085–8095, https://doi.org/10.1021/jp020527t, 2002.
Stevens, B. and Feingold, G.: Untangling aerosol effects on clouds and
precipitation in a buffered system, Nature, 461, 607–613,
https://doi.org/10.1038/nature08281, 2009.
Tabazadeh, A.: Organic aggregate formation in aerosols and its impact on the
physicochemical properties of atmospheric particles, Atmos. Environ.,
39, 5472–5480, https://doi.org/10.1016/j.atmosenv.2005.05.045, 2005.
Tandon, P., Raudenkolb, S., Neubert, R. H. H., Rettig, W., and Wartewig, S.:
X-ray diffraction and spectroscopic studies of oleic acid-sodium oleate,
Chem. Phys. Lipids, 109, 37–45, https://doi.org/10.1016/S0009-3084(00)00207-3, 2001.
Tervahattu, H.: Identification of an organic coating on marine aerosol
particles by TOF-SIMS, J. Geophys. Res., 107, 4319,
https://doi.org/10.1029/2001JD001403, 2002.
Tervahattu, H., Juhanoja, J., Vaida, V., Tuck, A. F., Niemi, J. V.,
Kupiainen, K., Kulmala, M., and Vehkamäki, H.: Fatty acids on continental
sulfate aerosol particles, J. Geophys. Res.-Atmos., 110(6), 1–9,
https://doi.org/10.1029/2004JD005400, 2005.
Tiddy, G. J. T.: Surfactant-water liquid crystal phases, Phys. Rep., 57,
1–46, https://doi.org/10.1016/0370-1573(80)90041-1, 1980.
Tuckermann, R.: Surface tension of aqueous solutions of water-soluble
organic and inorganic compounds, Atmos. Environ., 41, 6265–6275,
https://doi.org/10.1016/j.atmosenv.2007.03.051, 2007.
Veghte, D. P., Altaf, M. B., and Freedman, M. A.: Size dependence of the
structure of organic aerosol, J. Am. Chem. Soc., 135, 16046–16049,
https://doi.org/10.1021/ja408903g, 2013.
Vesna, O., Sax, M., Kalberer, M., Gaschen, A., and Ammann, M.: Product study
of oleic acid ozonolysis as function of humidity, Atmos. Environ., 43,
3662–3669, https://doi.org/10.1016/j.atmosenv.2009.04.047, 2009.
Vicente, E. D., Vicente, A., Evtyugina, M., Carvalho, R., Tarelho, L. A. C.,
Oduber, F. I., and Alves, C.: Particulate and gaseous emissions from charcoal
combustion in barbecue grills, Fuel Process. Technol., 176, 296–306,
https://doi.org/10.1016/j.fuproc.2018.03.004, 2018.
Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirilä, P.,
Leskinen, J., Mäkelä, J. M., Holopainen, J. K., Pöschl, U.,
Kulmala, M., Worsnop, D. R., and Laaksonen, A.: An amorphous solid state of
biogenic secondary organic aerosol particles, Nature, 467, 824–827,
https://doi.org/10.1038/nature09455, 2010.
Wang, M., Yao, L., Zheng, J., Wang, X., Chen, J., Yang, X., Worsnop, D. R.,
Donahue, N. M., and Wang, L.: Reactions of Atmospheric Particulate Stabilized
Criegee Intermediates Lead to High-Molecular-Weight Aerosol Components,
Environ. Sci. Technol., 50, 5702–5710, https://doi.org/10.1021/acs.est.6b02114,
2016.
Woden, B., Skoda, M., Hagreen, M., and Pfrang, C.: Night-Time Oxidation of a
Monolayer Model for the Air–Water Interface of Marine Aerosols – A Study by
Simultaneous Neutron Reflectometry and in Situ Infra-Red Reflection
Absorption Spectroscopy (IRRAS), Atmosphere (Basel), 9, 471,
https://doi.org/10.3390/atmos9120471, 2018.
Woden, B., Skoda, M. W. A., Milsom, A., Gubb, C., Maestro, A., Tellam, J., and Pfrang, C.: Ozonolysis of fatty acid monolayers at the air–water interface: organic films may persist at the surface of atmospheric aerosols, Atmos. Chem. Phys., 21, 1325–1340, https://doi.org/10.5194/acp-21-1325-2021, 2021.
Zabara, A. and Mezzenga, R.: Controlling molecular transport and sustained
drug release in lipid-based liquid crystalline mesophases, J. Control.
Release, 188, 31–43, https://doi.org/10.1016/j.jconrel.2014.05.052, 2014.
Zahardis, J. and Petrucci, G. A.: The oleic acid-ozone heterogeneous reaction system: products, kinetics, secondary chemistry, and atmospheric implications of a model system – a review, Atmos. Chem. Phys., 7, 1237–1274, https://doi.org/10.5194/acp-7-1237-2007, 2007.
Zahardis, J., LaFranchi, B. W., and Petrucci, G. A.: Photoelectron resonance
capture ionization-aerosol mass spectrometry of the ozonolysis products of
oleic acid particles: Direct measure of higher molecular weight oxygenates,
J. Geophys. Res.-Atmos., 110, 1–10, https://doi.org/10.1029/2004JD005336, 2005.
Zahardis, J., LaFranchi, B. W., and Petrucci, G. A.: Direct observation of
polymerization in the oleic acid-ozone heterogeneous reaction system by
photoelectron resonance capture ionization aerosol mass spectrometry, Atmos.
Environ., 40, 1661–1670, https://doi.org/10.1016/j.atmosenv.2005.10.065, 2006.
Zhang, Q., Jimenez, J. L., Worsnop, D. R., and Canagaratna, M.: A case study
of urban particle acidity and its influence on secondary organic aerosol,
Environ. Sci. Technol., 41, 3213–3219, https://doi.org/10.1021/es061812j, 2007.
Zhao, X., Hu, Q., Wang, X., Ding, X., He, Q., Zhang, Z., Shen, R., Lü,
S., Liu, T., Fu, X., and Chen, L.: Composition profiles of organic aerosols
from Chinese residential cooking: Case study in urban Guangzhou, south
China, J. Atmos. Chem., 72, 1–18, https://doi.org/10.1007/s10874-015-9298-0, 2015.
Zhou, S., Hwang, B. C. H., Lakey, P. S. J., Zuend, A., Abbatt, J. P. D., and
Shiraiwa, M.: Multiphase reactivity of polycyclic aromatic hydrocarbons is
driven by phase separation and diffusion limitations, P. Natl. Acad. Sci. USA, 116, 11658–11663, https://doi.org/10.1073/pnas.1902517116, 2019.
Zobrist, B., Soonsin, V., Luo, B. P., Krieger, U. K., Marcolli, C., Peter,
T., and Koop, T.: Ultra-slow water diffusion in aqueous sucrose glasses,
Phys. Chem. Chem. Phys., 13, 3514–3526, https://doi.org/10.1039/c0cp01273d, 2011.
Short summary
Atmospheric aerosols can be solid, semi-solid or liquid. This phase state may impact key aerosol processes such as oxidation and water uptake, affecting cloud droplet formation and urban air pollution. We have observed a solid crystalline organic phase in a levitated proxy for cooking emissions, oleic acid. Spatially resolved structural changes were followed during ageing by X-ray scattering, revealing phase gradients, aggregate products and a markedly reduced ozonolysis reaction rate.
Atmospheric aerosols can be solid, semi-solid or liquid. This phase state may impact key aerosol...
Altmetrics
Final-revised paper
Preprint