Articles | Volume 21, issue 19
https://doi.org/10.5194/acp-21-15003-2021
https://doi.org/10.5194/acp-21-15003-2021
Research article
 | 
08 Oct 2021
Research article |  | 08 Oct 2021

An organic crystalline state in ageing atmospheric aerosol proxies: spatially resolved structural changes in levitated fatty acid particles

Adam Milsom, Adam M. Squires, Jacob A. Boswell, Nicholas J. Terrill, Andrew D. Ward, and Christian Pfrang

Related authors

Acoustic levitation of pollen and visualisation of hygroscopic behaviour
Sophie A. Mills, Adam Milsom, Christian Pfrang, A. Rob MacKenzie, and Francis D. Pope
EGUsphere, https://doi.org/10.5194/egusphere-2023-670,https://doi.org/10.5194/egusphere-2023-670, 2023
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
MultilayerPy (v1.0): a Python-based framework for building, running and optimising kinetic multi-layer models of aerosols and films
Adam Milsom, Amy Lees, Adam M. Squires, and Christian Pfrang
Geosci. Model Dev., 15, 7139–7151, https://doi.org/10.5194/gmd-15-7139-2022,https://doi.org/10.5194/gmd-15-7139-2022, 2022
Short summary
The impact of molecular self-organisation on the atmospheric fate of a cooking aerosol proxy
Adam Milsom, Adam M. Squires, Andrew D. Ward, and Christian Pfrang
Atmos. Chem. Phys., 22, 4895–4907, https://doi.org/10.5194/acp-22-4895-2022,https://doi.org/10.5194/acp-22-4895-2022, 2022
Short summary
Ozonolysis of fatty acid monolayers at the air–water interface: organic films may persist at the surface of atmospheric aerosols
Benjamin Woden, Maximilian W. A. Skoda, Adam Milsom, Curtis Gubb, Armando Maestro, James Tellam, and Christian Pfrang
Atmos. Chem. Phys., 21, 1325–1340, https://doi.org/10.5194/acp-21-1325-2021,https://doi.org/10.5194/acp-21-1325-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Simultaneous formation of sulfate and nitrate via co-uptake of SO2 and NO2 by aqueous NaCl droplets: combined effect of nitrate photolysis and chlorine chemistry
Ruifeng Zhang and Chak Keung Chan
Atmos. Chem. Phys., 23, 6113–6126, https://doi.org/10.5194/acp-23-6113-2023,https://doi.org/10.5194/acp-23-6113-2023, 2023
Short summary
Photo-induced shrinking of aqueous glycine aerosol droplets
Shinnosuke Ishizuka, Oliver Reich, Grégory David, and Ruth Signorell
Atmos. Chem. Phys., 23, 5393–5402, https://doi.org/10.5194/acp-23-5393-2023,https://doi.org/10.5194/acp-23-5393-2023, 2023
Short summary
Sulfate formation via aerosol-phase SO2 oxidation by model biomass burning photosensitizers: 3,4-dimethoxybenzaldehyde, vanillin and syringaldehyde using single-particle mixing-state analysis
Liyuan Zhou, Zhancong Liang, Beatrix Rosette Go Mabato, Rosemarie Ann Infante Cuevas, Rongzhi Tang, Mei Li, Chunlei Cheng, and Chak K. Chan
Atmos. Chem. Phys., 23, 5251–5261, https://doi.org/10.5194/acp-23-5251-2023,https://doi.org/10.5194/acp-23-5251-2023, 2023
Short summary
Yields and molecular composition of gas-phase and secondary organic aerosol from the photooxidation of the volatile consumer product benzyl alcohol: formation of highly oxygenated and hydroxy nitro-aromatic compounds
Mohammed Jaoui, Kenneth S. Docherty, Michael Lewandowski, and Tadeusz E. Kleindienst
Atmos. Chem. Phys., 23, 4637–4661, https://doi.org/10.5194/acp-23-4637-2023,https://doi.org/10.5194/acp-23-4637-2023, 2023
Short summary
Technical Note: Improved synthetic routes to cis- and trans-(2-Methyloxirane-2,3-diyl)dimethanol (cis- and trans-β-isoprene epoxydiol)
Molly Frauenheim, Jason D. Surratt, Zhenfa Zhang, and Avram Gold
EGUsphere, https://doi.org/10.5194/egusphere-2023-476,https://doi.org/10.5194/egusphere-2023-476, 2023
Short summary

Cited articles

Abbatt, J. P. D., Lee, A. K. Y., and Thornton, J. A.: Quantifying trace gas uptake to tropospheric aerosol: Recent advances and remaining challenges, Chem. Soc. Rev., 41, 6555–6581, https://doi.org/10.1039/c2cs35052a, 2012. 
Al-Kindi, S. S., Pope, F. D., Beddows, D. C., Bloss, W. J., and Harrison, R. M.: Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions, Atmos. Chem. Phys., 16, 15561–15579, https://doi.org/10.5194/acp-16-15561-2016, 2016. 
Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn, M. J., Lee, J., Nemitz, E., Phillips, G. J., Gallagher, M. W., and Coe, H.: Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities, Atmos. Chem. Phys., 10, 647–668, https://doi.org/10.5194/acp-10-647-2010, 2010. 
Alves, C. A., Vicente, E. D., Evtyugina, M., Vicente, A. M., Nunes, T., Lucarelli, F., Calzolai, G., Nava, S., Calvo, A. I., Alegre, C. del B., Oduber, F., Castro, A., and Fraile, R.: Indoor and outdoor air quality: A university cafeteria as a case study, Atmos. Pollut. Res., 11, 531–544, https://doi.org/10.1016/j.apr.2019.12.002, 2020. 
Ananthapadmanabhan, K. P. and Somasundaran, P.: Acid-soap formation in aqueous oleate solutions, J. Colloid Interface Sci., 122, 104–109, https://doi.org/10.1016/0021-9797(88)90293-7, 1988. 
Download
Short summary
Atmospheric aerosols can be solid, semi-solid or liquid. This phase state may impact key aerosol processes such as oxidation and water uptake, affecting cloud droplet formation and urban air pollution. We have observed a solid crystalline organic phase in a levitated proxy for cooking emissions, oleic acid. Spatially resolved structural changes were followed during ageing by X-ray scattering, revealing phase gradients, aggregate products and a markedly reduced ozonolysis reaction rate.
Altmetrics
Final-revised paper
Preprint