Articles | Volume 21, issue 17
Atmos. Chem. Phys., 21, 13207–13225, 2021
https://doi.org/10.5194/acp-21-13207-2021
Atmos. Chem. Phys., 21, 13207–13225, 2021
https://doi.org/10.5194/acp-21-13207-2021
Research article
06 Sep 2021
Research article | 06 Sep 2021

Morning boundary layer conditions for shallow to deep convective cloud evolution during the dry season in the central Amazon

Alice Henkes et al.

Related authors

Smoke in the river: an Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) case study
Cyrille Flamant, Marco Gaetani, Jean-Pierre Chaboureau, Patrick Chazette, Juan Cuesta, Stuart John Piketh, and Paola Formenti
Atmos. Chem. Phys., 22, 5701–5724, https://doi.org/10.5194/acp-22-5701-2022,https://doi.org/10.5194/acp-22-5701-2022, 2022
Short summary
Acceleration of the southern African easterly jet driven by radiative effect of biomass burning aerosols and its impact on transport during AEROCLO-sA
Jean-Pierre Chaboureau, Laurent Labbouz, Cyrille Flamant, and Alma Hodzic
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-233,https://doi.org/10.5194/acp-2022-233, 2022
Preprint under review for ACP
Short summary
Occurrence and growth of sub-50 nm aerosol particles in the Amazonian boundary layer
Marco A. Franco, Florian Ditas, Leslie A. Kremper, Luiz A. T. Machado, Meinrat O. Andreae, Alessandro Araújo, Henrique M. J. Barbosa, Joel F. de Brito, Samara Carbone, Bruna A. Holanda, Fernando G. Morais, Janaína P. Nascimento, Mira L. Pöhlker, Luciana V. Rizzo, Marta Sá, Jorge Saturno, David Walter, Stefan Wolff, Ulrich Pöschl, Paulo Artaxo, and Christopher Pöhlker
Atmos. Chem. Phys., 22, 3469–3492, https://doi.org/10.5194/acp-22-3469-2022,https://doi.org/10.5194/acp-22-3469-2022, 2022
Short summary
How weather events modify aerosol particle size distributions in the Amazon boundary layer
Luiz A. T. Machado, Marco A. Franco, Leslie A. Kremper, Florian Ditas, Meinrat O. Andreae, Paulo Artaxo, Micael A. Cecchini, Bruna A. Holanda, Mira L. Pöhlker, Ivan Saraiva, Stefan Wolff, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 21, 18065–18086, https://doi.org/10.5194/acp-21-18065-2021,https://doi.org/10.5194/acp-21-18065-2021, 2021
Short summary
Cloud droplet formation at the base of tropical convective clouds: closure between modeling and measurement results of ACRIDICON–CHUVA
Ramon Campos Braga, Barbara Ervens, Daniel Rosenfeld, Meinrat O. Andreae, Jan-David Förster, Daniel Fütterer, Lianet Hernández Pardo, Bruna A. Holanda, Tina Jurkat-Witschas, Ovid O. Krüger, Oliver Lauer, Luiz A. T. Machado, Christopher Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Manfred Wendisch, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 17513–17528, https://doi.org/10.5194/acp-21-17513-2021,https://doi.org/10.5194/acp-21-17513-2021, 2021
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Measurement report: Introduction to the HyICE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the Hyytiälä boreal forest
Zoé Brasseur, Dimitri Castarède, Erik S. Thomson, Michael P. Adams, Saskia Drossaart van Dusseldorp, Paavo Heikkilä, Kimmo Korhonen, Janne Lampilahti, Mikhail Paramonov, Julia Schneider, Franziska Vogel, Yusheng Wu, Jonathan P. D. Abbatt, Nina S. Atanasova, Dennis H. Bamford, Barbara Bertozzi, Matthew Boyer, David Brus, Martin I. Daily, Romy Fösig, Ellen Gute, Alexander D. Harrison, Paula Hietala, Kristina Höhler, Zamin A. Kanji, Jorma Keskinen, Larissa Lacher, Markus Lampimäki, Janne Levula, Antti Manninen, Jens Nadolny, Maija Peltola, Grace C. E. Porter, Pyry Poutanen, Ulrike Proske, Tobias Schorr, Nsikanabasi Silas Umo, János Stenszky, Annele Virtanen, Dmitri Moisseev, Markku Kulmala, Benjamin J. Murray, Tuukka Petäjä, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 5117–5145, https://doi.org/10.5194/acp-22-5117-2022,https://doi.org/10.5194/acp-22-5117-2022, 2022
Short summary
North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Matthew D. Brown, Ewan C. Crosbie, Francesca Gallo, Johnathan W. Hair, Chris A. Hostetler, Carolyn E. Jordan, Claire E. Robinson, Amy Jo Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Luke D. Ziemba, Georges Saliba, Savannah L. Lewis, Lynn M. Russell, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Peter Gaube, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 22, 2795–2815, https://doi.org/10.5194/acp-22-2795-2022,https://doi.org/10.5194/acp-22-2795-2022, 2022
Short summary
Factors affecting precipitation formation and precipitation susceptibility of marine stratocumulus with variable above- and below-cloud aerosol concentrations over the Southeast Atlantic
Siddhant Gupta, Greg M. McFarquhar, Joseph R. O'Brien, Michael R. Poellot, David J. Delene, Rose M. Miller, and Jennifer D. Small Griswold
Atmos. Chem. Phys., 22, 2769–2793, https://doi.org/10.5194/acp-22-2769-2022,https://doi.org/10.5194/acp-22-2769-2022, 2022
Short summary
An assessment of macrophysical and microphysical cloud properties driving radiative forcing of shallow trade-wind clouds
Anna E. Luebke, André Ehrlich, Michael Schäfer, Kevin Wolf, and Manfred Wendisch
Atmos. Chem. Phys., 22, 2727–2744, https://doi.org/10.5194/acp-22-2727-2022,https://doi.org/10.5194/acp-22-2727-2022, 2022
Short summary
High concentrations of ice crystals in upper-tropospheric tropical clouds: is there a link to biomass and fossil fuel combustion?
Graciela B. Raga, Darrel Baumgardner, Blanca Rios, Yanet Díaz-Esteban, Alejandro Jaramillo, Martin Gallagher, Bastien Sauvage, Pawel Wolff, and Gary Lloyd
Atmos. Chem. Phys., 22, 2269–2292, https://doi.org/10.5194/acp-22-2269-2022,https://doi.org/10.5194/acp-22-2269-2022, 2022
Short summary

Cited articles

ARM (Atmospheric Radiation Measurement user facility): Boundary-layer height data with CEIL (CEILPBLHT), updated hourly, 2014-01-01 to 2015-11-30, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil, AMF1 (M1), compiled by: Morris, V. and Shi, Y., ARM Data Center [data set], https://doi.org/10.5439/1095593, last access: 24 July 2020, 2014a. a
ARM (Atmospheric Radiation Measurement user facility): Eddy Correlation Flux Measurement System (30ECOR), updated hourly, 2014-04-03 to 2015-12-01, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil, AMF1 (M1), compiled by: Sullivan, R., Cook, D., and Keeler, E., ARM Data Center [data set], https://doi.org/10.5439/1025039, last access: 24 July 2020, 2014b. a
ARM (Atmospheric Radiation Measurement user facility): Radiative Flux Analysis (RADFLUX1LONG), updated hourly, 2013-12-23 to 2015-12-01, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by: Long, C., Gaustad, K., and Riihimaki, L., ARM Data Center [data set], last access: 4 April 2019, https://doi.org/10.5439/1157585, 2014c. a
ARM (Atmospheric Radiation Measurement): Surface Energy Balance System (SEBS), 2014-01-01 to 2015-12-01, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by: Sullivan, R., Cook, D., and Keeler, E., ARM Data Center [data set], last access: 14 November 2020, https://doi.org/10.5439/1025274, 2014d. a
ARM (Atmospheric Radiation Measurement user facility): Mini Sound Detection and Ranging (SODAR), updated hourly, 2014-02-18 to 2015-12-01, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; MAOS (S1), compiled by: Coulter, R., Muradyan, P., and Martin, T., ARM Data Center [data set], last access: 20 October 2020, https://doi.org/10.5439/1150265, 2014e. a
Download
Short summary
The Amazonian boundary layer is investigated during the dry season in order to better understand the processes that occur between night and day until the stage where shallow cumulus clouds become deep. Observations show that shallow to deep clouds are characterized by a shorter morning transition stage (e.g., the time needed to eliminate the stable boundary layer inversion), while higher humidity above the boundary layer favors the evolution from shallow to deep cumulus clouds.
Altmetrics
Final-revised paper
Preprint