Articles | Volume 21, issue 17
https://doi.org/10.5194/acp-21-13207-2021
https://doi.org/10.5194/acp-21-13207-2021
Research article
 | 
06 Sep 2021
Research article |  | 06 Sep 2021

Morning boundary layer conditions for shallow to deep convective cloud evolution during the dry season in the central Amazon

Alice Henkes, Gilberto Fisch, Luiz A. T. Machado, and Jean-Pierre Chaboureau

Related authors

The radiative impact of biomass burning aerosols on dust emissions over Namibia and the long-range transport of smoke observed during the Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) campaign
Cyrille Flamant, Jean-Pierre Chaboureau, Marco Gaetani, Kerstin Schepanski, and Paola Formenti
Atmos. Chem. Phys., 24, 4265–4288, https://doi.org/10.5194/acp-24-4265-2024,https://doi.org/10.5194/acp-24-4265-2024, 2024
Short summary
Amazonian aerosol size distributions in a lognormal phase space: characteristics and trajectories
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024,https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Fractional solubility of iron in mineral dust aerosols over coastal Namibia: a link to marine biogenic emissions?
Karine Desboeufs, Paola Formenti, Raquel Torres-Sánchez, Kerstin Schepanski, Jean-Pierre Chaboureau, Hendrik Andersen, Jan Cermak, Stefanie Feuerstein, Benoit Laurent, Danitza Klopper, Andreas Namwoonde, Mathieu Cazaunau, Servanne Chevaillier, Anaïs Feron, Cécile Mirande-Bret, Sylvain Triquet, and Stuart J. Piketh
Atmos. Chem. Phys., 24, 1525–1541, https://doi.org/10.5194/acp-24-1525-2024,https://doi.org/10.5194/acp-24-1525-2024, 2024
Short summary
How Rainfall Events Modify Trace Gas Concentrations in Central Amazonia
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botia, Hella Van Asperen, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosa Ferreira, Hartwig Harder, Sam Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
EGUsphere, https://doi.org/10.5194/egusphere-2023-2901,https://doi.org/10.5194/egusphere-2023-2901, 2024
Short summary
Acceleration of the southern African easterly jet driven by the radiative effect of biomass burning aerosols and its impact on transport during AEROCLO-sA
Jean-Pierre Chaboureau, Laurent Labbouz, Cyrille Flamant, and Alma Hodzic
Atmos. Chem. Phys., 22, 8639–8658, https://doi.org/10.5194/acp-22-8639-2022,https://doi.org/10.5194/acp-22-8639-2022, 2022
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Lifecycle of updrafts and mass flux in isolated deep convection over the Amazon rainforest: insights from cell tracking
Siddhant Gupta, Dié Wang, Scott E. Giangrande, Thiago S. Biscaro, and Michael P. Jensen
Atmos. Chem. Phys., 24, 4487–4510, https://doi.org/10.5194/acp-24-4487-2024,https://doi.org/10.5194/acp-24-4487-2024, 2024
Short summary
Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)3: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses
Benjamin Kirbus, Imke Schirmacher, Marcus Klingebiel, Michael Schäfer, André Ehrlich, Nils Slättberg, Johannes Lucke, Manuel Moser, Hanno Müller, and Manfred Wendisch
Atmos. Chem. Phys., 24, 3883–3904, https://doi.org/10.5194/acp-24-3883-2024,https://doi.org/10.5194/acp-24-3883-2024, 2024
Short summary
Powering aircraft with 100 % sustainable aviation fuel reduces ice crystals in contrails
Raphael Satoru Märkl, Christiane Voigt, Daniel Sauer, Rebecca Katharina Dischl, Stefan Kaufmann, Theresa Harlaß, Valerian Hahn, Anke Roiger, Cornelius Weiß-Rehm, Ulrike Burkhardt, Ulrich Schumann, Andreas Marsing, Monika Scheibe, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Reetu Sallinen, Tobias Schripp, and Patrick Le Clercq
Atmos. Chem. Phys., 24, 3813–3837, https://doi.org/10.5194/acp-24-3813-2024,https://doi.org/10.5194/acp-24-3813-2024, 2024
Short summary
Measurement Report: Cloud and environmental properties associated with aggregated shallow marine cumulus and cumulus congestus
Ewan Crosbie, Luke Ziemba, Michael Shook, Taylor Shingler, Johnathan Hair, Armin Sorooshian, Richard Ferrare, Brian Cairns, Yonghoon Choi, Joshua DiGangi, Glenn Diskin, Chris Hostetler, Simon Kirschler, Richard Herbert Moore, David Painemal, Claire Robinson, Shane Seaman, Kenneth Thornhill, Christiane Voigt, and Edward Winstead
EGUsphere, https://doi.org/10.5194/egusphere-2024-148,https://doi.org/10.5194/egusphere-2024-148, 2024
Short summary
Supercooled liquid water clouds observed over Dome C, Antarctica: temperature sensitivity and cloud radiative forcing
Philippe Ricaud, Massimo Del Guasta, Angelo Lupi, Romain Roehrig, Eric Bazile, Pierre Durand, Jean-Luc Attié, Alessia Nicosia, and Paolo Grigioni
Atmos. Chem. Phys., 24, 613–630, https://doi.org/10.5194/acp-24-613-2024,https://doi.org/10.5194/acp-24-613-2024, 2024
Short summary

Cited articles

ARM (Atmospheric Radiation Measurement user facility): Boundary-layer height data with CEIL (CEILPBLHT), updated hourly, 2014-01-01 to 2015-11-30, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil, AMF1 (M1), compiled by: Morris, V. and Shi, Y., ARM Data Center [data set], https://doi.org/10.5439/1095593, last access: 24 July 2020, 2014a. a
ARM (Atmospheric Radiation Measurement user facility): Eddy Correlation Flux Measurement System (30ECOR), updated hourly, 2014-04-03 to 2015-12-01, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil, AMF1 (M1), compiled by: Sullivan, R., Cook, D., and Keeler, E., ARM Data Center [data set], https://doi.org/10.5439/1025039, last access: 24 July 2020, 2014b. a
ARM (Atmospheric Radiation Measurement user facility): Radiative Flux Analysis (RADFLUX1LONG), updated hourly, 2013-12-23 to 2015-12-01, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by: Long, C., Gaustad, K., and Riihimaki, L., ARM Data Center [data set], last access: 4 April 2019, https://doi.org/10.5439/1157585, 2014c. a
ARM (Atmospheric Radiation Measurement): Surface Energy Balance System (SEBS), 2014-01-01 to 2015-12-01, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by: Sullivan, R., Cook, D., and Keeler, E., ARM Data Center [data set], last access: 14 November 2020, https://doi.org/10.5439/1025274, 2014d. a
ARM (Atmospheric Radiation Measurement user facility): Mini Sound Detection and Ranging (SODAR), updated hourly, 2014-02-18 to 2015-12-01, ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; MAOS (S1), compiled by: Coulter, R., Muradyan, P., and Martin, T., ARM Data Center [data set], last access: 20 October 2020, https://doi.org/10.5439/1150265, 2014e. a
Download
Short summary
The Amazonian boundary layer is investigated during the dry season in order to better understand the processes that occur between night and day until the stage where shallow cumulus clouds become deep. Observations show that shallow to deep clouds are characterized by a shorter morning transition stage (e.g., the time needed to eliminate the stable boundary layer inversion), while higher humidity above the boundary layer favors the evolution from shallow to deep cumulus clouds.
Altmetrics
Final-revised paper
Preprint