Articles | Volume 21, issue 14
https://doi.org/10.5194/acp-21-11041-2021
https://doi.org/10.5194/acp-21-11041-2021
Research article
 | 
21 Jul 2021
Research article |  | 21 Jul 2021

Effects of enhanced downwelling of NOx on Antarctic upper-stratospheric ozone in the 21st century

Ville Maliniemi, Hilde Nesse Tyssøy, Christine Smith-Johnsen, Pavle Arsenovic, and Daniel R. Marsh

Related authors

The influence of energetic particle precipitation on Antarctic stratospheric chlorine and ozone over the 20th century
Ville Maliniemi, Pavle Arsenovic, Annika Seppälä, and Hilde Nesse Tyssøy
Atmos. Chem. Phys., 22, 8137–8149, https://doi.org/10.5194/acp-22-8137-2022,https://doi.org/10.5194/acp-22-8137-2022, 2022
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Atmospheric impacts of chlorinated very short-lived substances over the recent past – Part 2: Impacts on ozone
Ewa M. Bednarz, Ryan Hossaini, and Martyn P. Chipperfield
Atmos. Chem. Phys., 23, 13701–13711, https://doi.org/10.5194/acp-23-13701-2023,https://doi.org/10.5194/acp-23-13701-2023, 2023
Short summary
N2O as a regression proxy for dynamical variability in stratospheric trace gas trends
Kimberlee Dubé, Susann Tegtmeier, Adam Bourassa, Daniel Zawada, Douglas Degenstein, Patrick E. Sheese, Kaley A. Walker, and William Randel
Atmos. Chem. Phys., 23, 13283–13300, https://doi.org/10.5194/acp-23-13283-2023,https://doi.org/10.5194/acp-23-13283-2023, 2023
Short summary
The influence of future changes in springtime Arctic ozone on stratospheric and surface climate
Gabriel Chiodo, Marina Friedel, Svenja Seeber, Daniela Domeisen, Andrea Stenke, Timofei Sukhodolov, and Franziska Zilker
Atmos. Chem. Phys., 23, 10451–10472, https://doi.org/10.5194/acp-23-10451-2023,https://doi.org/10.5194/acp-23-10451-2023, 2023
Short summary
Weakening of springtime Arctic ozone depletion with climate change
Marina Friedel, Gabriel Chiodo, Timofei Sukhodolov, James Keeble, Thomas Peter, Svenja Seeber, Andrea Stenke, Hideharu Akiyoshi, Eugene Rozanov, David Plummer, Patrick Jöckel, Guang Zeng, Olaf Morgenstern, and Béatrice Josse
Atmos. Chem. Phys., 23, 10235–10254, https://doi.org/10.5194/acp-23-10235-2023,https://doi.org/10.5194/acp-23-10235-2023, 2023
Short summary
The impact of an extreme solar event on the middle atmosphere: a case study
Thomas Reddmann, Miriam Sinnhuber, Jan Maik Wissing, Olesya Yakovchuk, and Ilya Usoskin
Atmos. Chem. Phys., 23, 6989–7000, https://doi.org/10.5194/acp-23-6989-2023,https://doi.org/10.5194/acp-23-6989-2023, 2023
Short summary

Cited articles

Anderson, J. G., Toohey, D. W., and Brune, W. H.: Free radicals within the Antarctic vortex: the role of CFCs in Antarctic ozone loss, Science, 251, 39–46, https://doi.org/10.1126/science.251.4989.39, 1991. a
Andersson, M. E., Verronen, P. T., Marsh, D. R., Seppälä, A., Päivärinta, S., Rodger, C. J., Clilverd, M. A., Kalakoski, N., and van de Kamp, M.: Polar ozone response to energetic particle precipitation over decadal time ccales: the role of medium-energy electrons, J. Geophys. Res.-Atmos., 123, 607–622, https://doi.org/10.1002/2017JD027605, 2018. a
Arsenovic, P., Rozanov, E., Stenke, A., Funke, B., Wissing, J. M., Mursula, K., Tummon, F., and Peter, F.: The influence of middle range energy electrons on atmospheric chemistry and regional climate, J. Atmos. Sol.-Terr. Phy., 149, 180–190, https://doi.org/10.1016/j.jastp.2016.04.008, 2016. a
Asikainen, T., Salminen, A., Maliniemi, V., and Mursula, K.: Influence of enhanced planetary wave activity on the polar vortex enhancement related to energetic electron precipitation, J. Geophys. Res.-Atmos., 125, e2019JD032137, https://doi.org/10.1029/2019JD032137, 2020. a
Baumgaertner, A. J. G., Jöckel, P., Dameris, M., and Crutzen, P. J.: Will climate change increase ozone depletion from low-energy-electron precipitation?, Atmos. Chem. Phys., 10, 9647–9656, https://doi.org/10.5194/acp-10-9647-2010, 2010. a
Download
Short summary
We simulate ozone variability over the 21st century with different greenhouse gas scenarios. Our results highlight a novel mechanism of additional reactive nitrogen species descending to the Antarctic stratosphere from the thermosphere/upper mesosphere due to the accelerated residual circulation under climate change. This excess descending NOx can potentially prevent a super recovery of ozone in the Antarctic upper stratosphere.
Altmetrics
Final-revised paper
Preprint