Articles | Volume 21, issue 13
https://doi.org/10.5194/acp-21-10799-2021
https://doi.org/10.5194/acp-21-10799-2021
Research article
 | 
16 Jul 2021
Research article |  | 16 Jul 2021

Molecular composition and volatility of multi-generation products formed from isoprene oxidation by nitrate radical

Rongrong Wu, Luc Vereecken, Epameinondas Tsiligiannis, Sungah Kang, Sascha R. Albrecht, Luisa Hantschke, Defeng Zhao, Anna Novelli, Hendrik Fuchs, Ralf Tillmann, Thorsten Hohaus, Philip T. M. Carlsson, Justin Shenolikar, François Bernard, John N. Crowley, Juliane L. Fry, Bellamy Brownwood, Joel A. Thornton, Steven S. Brown, Astrid Kiendler-Scharr, Andreas Wahner, Mattias Hallquist, and Thomas F. Mentel

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Thomas Mentel on behalf of the Authors (24 May 2021)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (04 Jun 2021) by Eliza Harris
AR by Thomas Mentel on behalf of the Authors (13 Jun 2021)  Manuscript 
Download
Short summary
Isoprene is the biogenic volatile organic compound with the largest emissions rates. The nighttime reaction of isoprene with the NO3 radical has a large potential to contribute to SOA. We classified isoprene nitrates into generations and proposed formation pathways. Considering the potential functionalization of the isoprene nitrates we propose that mainly isoprene dimers contribute to SOA formation from the isoprene NO3 reactions with at least a 5 % mass yield.
Altmetrics
Final-revised paper
Preprint