

1 Molecular composition and volatility of multi-generation 2 products formed from isoprene oxidation by nitrate radical

3 Rongrong Wu^{1,2}, Luc Vereecken¹, Epameinondas Tsiligiannis³, Sungah Kang¹, Sascha R.
4 Albrecht^{1,a}, Luisa Hantschke¹, Defeng Zhao⁴, Anna Novelli¹, Hendrik Fuchs¹, Ralf Tillmann¹,
5 Thorsten Hohaus¹, Philip T.M. Carlsson¹, Justin Shenolikar⁵, François Bernard⁶, John N.
6 Crowley⁵, Juliane L. Fry⁷, Bellamy Brownwood⁷, Joel A. Thornton⁸, Steven S. Brown^{9,10},
7 Astrid Kiendler-Scharr¹, Andreas Wahner¹, Mattias Hallquist³, Thomas F. Mentel^{1*}

8 ¹Institute of Energy and Climate Research, Troposphere (IEK-8), Forschungszentrum Jülich GmbH, 52428
9 Jülich, Germany

10 ²College of Environmental Sciences and Engineering, State Key Joint Laboratory of Environmental Simulation
11 and Pollution Control, Peking University, 100871, Beijing, China

12 ³Department of Chemistry and Molecular Biology, University of Gothenburg, 41296, Gothenburg, Sweden

13 ⁴Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University,
14 200438, Shanghai, China

15 ⁵Atmospheric Chemistry Department, Max Planck Institut für Chemie, 55128 Mainz, Germany

16 ⁶Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), UPR CNRS, 45071 Orléans,
17 France

18 ⁷Department of Chemistry, Reed College, Portland, OR 97202, USA

19 ⁸Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA

20 ⁹NOAA Chemical Sciences Laboratory, Boulder, CO 80305, USA

21 ¹⁰Department of Chemistry, University of Colorado, Boulder, CO 80309, USA

22 ^apresent address: SOLIDpower GmbH, 52525 Heinsberg, Germany

23 *Correspondence to: Thomas F. Mentel (t.mentel@fz-juelich.de)

24 **Abstract**

25 Isoprene oxidation by nitrate radical (NO_3) is a potentially important source of secondary organic aerosol (SOA).
26 It is suggested that the second or later-generation products are the more substantial contributors to SOA.
27 However, there are few studies investigating the multi-generation chemistry of isoprene- NO_3 reaction, and
28 information about the volatility of different isoprene nitrates, which is essential to evaluate their potential to
29 form SOA and determine their atmospheric fate, is rare. In this work, we studied the reaction between isoprene
30 and NO_3 in the SAPHIR chamber (Jülich) under near atmospheric conditions. Various oxidation products were
31 measured by a high-resolution time-of-flight chemical ionization mass spectrometer using Br^- as the reagent ion.
32 Most of the products detected are organic nitrates, and they are grouped into monomers (C_4 - and C_5 -products),
33 and dimers (C_{10} -products) with 1–3 nitrate groups according to their chemical composition. Most of the
34 observed products match expected termination products observed in previous studies, but some compounds such
35 as monomers and dimers with three nitrogen atoms were rarely reported in the literature as gas-phase products
36 from isoprene oxidation by NO_3 . Possible formation mechanisms for these compounds are proposed. The multi-
37 generation chemistry of isoprene and NO_3 is characterized by taking advantages of the time behavior of
38 different products. In addition, the vapor pressures of diverse isoprene nitrates are calculated by different
39 parametrization methods. An estimation of the vapor pressure is also derived from their condensation behavior.
40 According to our results, isoprene monomers belong to intermediate volatility or semi-volatile organic
41 compounds and thus have little effect on SOA formation. In contrast, the dimers are expected to have low or
42

43 extremely low volatility, indicating that they are potentially substantial contributors to SOA. However, the
44 monomers constitute 80% of the total explained signals on average, while the dimers contribute less than 2%,
45 suggesting that the contribution of isoprene NO_3 oxidation to SOA by condensation should be low under
46 atmospheric conditions. We expect a SOA mass yield of about 5 % from the wall loss and dilution corrected
47 mass concentrations, assuming that all of the isoprene dimers in the low- or extremely low-volatility organic
48 compound (LVOC or ELVOC) range will condense completely.

49 **1. Introduction**

50 Atmospheric submicron aerosols have an adverse effect on air quality, human health and climate (Jimenez et al.,
51 2009; Pöschl, 2005). Secondary organic aerosol (SOA), which is formed from oxidation of volatile organic
52 compounds (VOC) followed by gas-to-particle partitioning, comprise a large fraction (20-90%) of the
53 submicron aerosol mass (Jimenez et al., 2009; Zhang et al., 2007). It is confirmed that a significant proportion of
54 SOA arises from biogenic VOC (BVOC) oxidation (Hallquist et al., 2009; Spracklen et al., 2011).

55 Isoprene is globally the most abundant non-methane volatile organic compound originating from
56 vegetation, with emissions estimated to be 440-660 Tg yr⁻¹ (Guenther et al., 2012). Due to its high abundance, as
57 well as its high reactivity with atmospheric oxidants, isoprene plays a significant role in tropospheric chemistry,
58 and its chemistry affects the global aerosol burden and distribution (Carlton et al., 2009; Fry et al., 2018; Ng et
59 al., 2008, 2017; Surratt et al., 2010), although its SOA yield is much lower than those of monoterpenes and
60 sesquiterpenes (Friedman and Farmer, 2018; Kim et al., 2015; Marais et al., 2016; , McFiggans, et al. 2019;
61 Mutzel et al., 2016; Ng et al., 2007, 2008; Surratt et al., 2010; Thornton et al., 2020). Recent model simulations
62 suggested the isoprene-derived SOA production is 56.7 Tg C yr⁻¹, contributing up to 41% of global SOA
63 (Stadtler et al., 2018). Observations in southeastern United States suggested that isoprene-derived SOA makes
64 up 17- 48% of total organic aerosol (Hu et al., 2015; Kim et al., 2015; Marais et al., 2016). As a consequence, it
65 is essential to fully characterize the potential of isoprene to form condensable products and its contribution to
66 SOA formation (Carlton et al., 2009).

67 Although the majority of isoprene emissions is emitted by plants and is light-dependent, isoprene emitted
68 in the day can persist in the boundary layer after sunset, and its mixing ratio can remain as high as several ppb
69 (Brown et al., 2009; Starn et al., 1998; Stroud et al., 2002; Warneke et al., 2004). During the daytime, isoprene
70 is primarily oxidized by the hydroxyl radical (OH) and somewhat by ozone (O₃), but its main oxidizers shift to
71 nitrate radical (NO₃) and O₃ in the nighttime (Wennberg et al., 2018). Due to the higher reactivity of NO₃ with
72 isoprene ($k_{NO_3} = 6.5 \times 10^{-13}$ cm³ molecules⁻¹s⁻¹ and $k_{O_3} = 1.28 \times 10^{-17}$ cm³ molecules⁻¹s⁻¹ at 298 K, respectively,
73 IUPAC), a considerable fraction of the residual isoprene would be oxidized by NO₃ at night, and therefore
74 nocturnal nitrate radical chemistry is typically thought to be of significant importance for isoprene, especially in
75 regions where sufficient nitrogen oxides are available (Brown et al., 2009; Fry et al., 2018; Ng et al., 2017;
76 Wennberg et al., 2018). Although reaction with NO₃ only represents ~ 5-6% of isoprene loss, it accounts for a
77 large proportion of organic nitrates derived from isoprene oxidation (~ 40-50%) (Wennberg et al., 2018).
78 Therefore, reaction of isoprene with NO₃ is a potential source of SOA. In addition, it is found from both
79 laboratory and chamber experiments that the SOA yield of isoprene from NO₃ oxidation is higher than that from
80 OH or O₃ oxidation, which is typically less than 5% (Carlton et al., 2009; Dommen et al., 2009; Kleindienst et
81 al., 2007; Kroll et al., 2006). For example, Ng et al. (2008) concluded the isoprene SOA yield from NO₃ was in
82 the range of 4.3% to 23.8%, depending on RO₂ fate (higher SOA yield when the experiments were dominated
83 by RO₂+RO₂ rather than RO₂+NO₃ reaction). Rollins et al. (2009) also observed a high SOA yield from
84 isoprene (14%) when both of its double bonds were oxidized by NO₃. In an aircraft study in the southeastern
85 United States, Fry et al. (2018) derived an isoprene-NO₃ SOA yield as large as 27% on average under high NO_x
86 conditions, although their mass yield estimation was indirect, and based on a molar yield determination of 9 ±
87 5%. In light of the relatively high SOA yield from NO₃ oxidation, even though only a minor fraction of isoprene

88 is oxidized by NO_3 , the SOA formed at nighttime would still probably be comparable to that produced at
89 daytime (Brown et al., 2009; Fry et al., 2018).

90 However, isoprene- NO_3 chemistry (Wennberg et al. 2018, Vereecken et al. 2021) has received less
91 attention than the extensively studied OH- or O_3 -initiated oxidation (Barber et al., 2018; Novelli et al., 2020;
92 Peeters et al., 2014; Wang et al., 2018; Wennberg et al., 2018; Whalley et al., 2012). It has been recognized that
93 later-generation oxidation of isoprene by NO_3 makes more significant contribution to SOA formation (Carlton et
94 al., 2009; Fry et al., 2018; Rollins et al., 2009). Nevertheless, although the importance of multi-generation NO_3
95 oxidation of isoprene to SOA formation has been recognized, few studies extended the investigation beyond the
96 first-generation oxidation, and details of isoprene- NO_3 multi-generation chemistry are still lacking.

97 Organic compounds, especially highly oxygenated organic molecules (HOM) that have low or extremely
98 low volatility, contribute significantly to SOA formation by condensation, or even form new particles (Bianchi
99 et al., 2019; Ehn et al., 2014; Kirkby et al., 2016, Tröstl et al., 2016). Previous studies have confirmed that low-
100 volatility products from isoprene- NO_3 reaction are the major precursors to SOA (Ng et al., 2008; Rollins et al.,
101 2009; Schwantes et al., 2019). Here the low-volatility compounds refer to gas phase products that allow
102 fractions to exist in particle-phase, and may include the groups of organic compounds with intermediate
103 volatility (IVOC, $300 < \text{C}^* < 3 \times 10^6 \mu\text{g m}^{-3}$), semi-volatility (SVOC, $0.3 < \text{C}^* < 300 \mu\text{g m}^{-3}$), low volatility (LVOC,
104 $3 \times 10^{-5} < \text{C}^* < 0.3 \mu\text{g m}^{-3}$) and extremely low volatility (ELVOC, $\text{C}^* < 3 \times 10^{-5} \mu\text{g m}^{-3}$) as proposed by Donahue et al.
105 (2012). In general, SVOC, LVOC and ELVOC can contribute to the SOA formation (Jimenez et al., 2009). In
106 order to evaluate the potential of oxygenated products to form SOA, information about their vapor pressures is
107 essential. However, due to the high degree of functionalization, low or extremely low volatility, as well as
108 uncertainties in quantification and molecular structures, it is challenging to determine the exact vapor pressure
109 of highly oxidized products. Detailed information on the volatilities of different generation products is lacking,
110 which impedes the assessment of their contribution to SOA formation.

111 In this work, we present the results of chamber experiments on isoprene oxidation by NO_3 under near
112 atmospheric conditions, where NO_3 was produced in situ by O_3 reaction with NO_2 . Subsequent characteristics of
113 multi-generation chemistry of isoprene with NO_3 are investigated. By examining the time evolution of various
114 gas-phase products, we propose possible reaction mechanisms that help to get the possible functionalization of
115 the products. Saturation vapor pressures of the major gas-phase products observed by HR-ToF-CIMS are
116 predicted by using different parameterization methods that are widely-used or state-of-the-art in literature. In
117 addition, we estimate the vapor pressure derived from equilibrium partitioning coefficient according to the
118 condensation behavior of different products in experiments with and without seed aerosols. Based on these
119 results, the volatility of the major oxidation products stemming from isoprene- NO_3 reaction and their potential
120 to form SOA are evaluated.

121 2. Experimental and methods

122 2.1 Atmospheric simulation chamber SAPHIR

123 All the data presented here were measured in the atmospheric simulation chamber SAPHIR (Simulation of
124 Atmospheric PHotochemical In a large Reaction Chamber) at Forschungszentrum Jülich, Germany, which is
125 designed to investigate the oxidation processes of both biogenic and anthropogenic trace gases and formation of

secondary particles and pollutants under near atmospheric conditions. The SAPHIR chamber is a double-walled Teflon (FEP) cylinder with a volume of 270 m³ (5 meters in diameter and 18 meters in length). The large volume-to-surface ratio (1 m) allows experiments to be conducted under natural conditions and reduces interference from the chamber walls. The chamber is equipped with a shutter system which can be opened to admit sunlight for photochemical experiments or closed to mimic nighttime conditions. There are two fans inside the chamber to ensure good mixing of trace gases (within 2 minutes). The chamber is filled with synthetic air made from mixing of ultrapure nitrogen and oxygen (Linde, purity $\geq 99.99990\%$) and is slightly over-pressured (~ 35 Pa) to prevent intrusion of outside air into the chamber. Due to small leakage (~ 7 m³ h⁻¹) and gas consumption by instrument sampling, a replenishment flow is provided by a flow control, which leads to a dilution rate of 4%–7% per hour. A more detailed description of the chamber set-up and its characterization can be found elsewhere (Rohrer et al., 2005).

2.2 Experiment description

A series of experiments investigating the oxidation of isoprene by NO₃ were conducted in the SAPHIR chamber in August 2018 (ISOPNO₃ campaign) under different chemical conditions. In this work, we primarily focus on an experiment conducted on 08 August 2018 that examined the fast oxidation of isoprene by NO₃ (up to ~ 130 pptv) without seed aerosols. The experiment was performed under dry (RH < 5%) and dark condition, and employed injections of O₃ and NO₂ as source of NO₃, where O₃ was generated by a silent discharge ozoniser (O3onia), and high-purity NO₂ was introduced from a gas bottle (Linde, purity >99%).

Before the experiment, the chamber was flushed overnight with a total amount of ~ 1800 m³ synthetic air to minimize any remaining contamination. At the beginning of the experiment, the chamber air was slightly humidified (RH < 0.1%) by flushing water vapor from boiling Milli-Q® water into the chamber. Thereafter, O₃ and NO₂ were added to the chamber in succession, and their concentrations in the chamber after injection were approximately 100 and 25 ppbv, respectively, as shown in Fig. 1. After that, ~ 10 ppbv of isoprene was injected using a GC syringe, initiating the reaction with NO₃. The period between the first and second injection is defined as “step I”, as so on for the other three periods. The second injection was done when isoprene from the first injection was almost completely consumed, to reach concentrations of O₃, NO₂, and isoprene in the chamber of ~ 100 , 30, and 10 ppbv, respectively. About 1.5 hours later, the chemistry was further accelerated by a third injection of precursors, and accordingly the concentrations of O₃, NO₂, and isoprene reached ~ 100 , 25, and 10 ppbv, respectively. Two hours later, the fourth addition was made and the concentrations of O₃ and NO₂ increased to approximately 115 ppbv and 30 ppbv, respectively, aiming to promote further oxidation of early generation products. In total the system was kept running for about 7.5 h. Calculation from measurements of isoprene, O₃, OH, NO₃ and dilution indicates that NO₃ contributed for more than 90% of the chemical losses of isoprene, as shown in Fig. S1, with reaction with O₃ being a minor pathway in our system. The reaction of isoprene with OH was not considered as OH concentration was below the detection limit of the instrument in this study (Fig. S2). Thus, losses due to reaction with OH could not be quantified from the measurement, but have been determined to contribute about 10% of the isoprene losses according to a recently published modelling work based on the same campaign, with the contribution of the NO₃ reaction accounting for up to 80% accordingly (Vereecken et al., 2021).

164 A complementary experiment was conducted on 14 August 2018 under similar conditions but with seed
165 aerosols. Approximately 60 $\mu\text{g m}^{-3}$ of ammonium sulfate aerosol was added at the beginning of the experiment.
166 Thereafter, approximate 100 and 20 ppbv of O_3 and NO_2 were introduced to the chamber to produce NO_3 ,
167 followed by addition of \sim 10 ppbv of isoprene in about 30 minutes later (see Fig. S3). Another 6 ppbv of NO_2
168 and 10 ppbv of isoprene were added about one hour later to accelerate the reaction. At the last injection, only O_3
169 (\sim 50 ppbv) and NO_2 (\sim 7 ppbv) were added, similar as for the experiment without seeds. The experiment lasted
170 for about 8 h. The results were used to investigate the condensation behavior of various gas-phase products from
171 isoprene oxidation, aiming to estimate equilibrium partitioning coefficients and vapor pressures.

172 **2.3 Instrumentation**

173 A high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS, Aerodyne Research
174 Inc., hereafter CIMS) was used to continuously measure the gas-phase products from isoprene oxidation by NO_3 .
175 The ToF-MS was operated in ‘V’ mode with the mass resolution power between 3000–4000 Th/Th. In order to
176 reduce the losses of HO_2 radicals and HOM on the tubing, a customized inlet (Albrecht et al., 2019) was directly
177 connected to the chamber. The CIMS was operated in negative ion mode using Br^- as the reagent ion, which is
178 selective to polar species such as acids, hydroxy or nitrooxy carbonyls, as well as HO_2 radicals (Albrecht et al.,
179 2019; Ng et al., 2008; Rissanen et al., 2019; Riva et al., 2019).

180 Bromide ions were generated by passing a mixture of 10 standard cubic centimeters per minute of 0.4%
181 CF_3Br in nitrogen and 2 standard liter per minute nitrogen through a 370 MBq ^{210}Po source (Type P-2021-5000,
182 NDR Static Control LLC, USA), resulting in \sim 10⁵ ion counts per second (Albrecht et al., 2019). In our system,
183 on average, about 190 ions were identified for each mass spectrum on average, most of which were detected as
184 adducts with Br^- , while some acidic compounds (\sim 7% of the total) like nitric acid (HNO_3), glycolic acid
185 ($\text{C}_2\text{H}_4\text{O}_3$), and malonic acid ($\text{C}_3\text{H}_4\text{O}_4$) were also detected as deprotonated ions. In addition, there were some ions
186 (\sim 10% of the total) identified as adducts with NO_3^- . The isotope distribution of ^{79}Br and ^{81}Br is approximately
187 1:1, therefore two signals appear at m/z = MW+79 and m/z = MW+81 with MW being the molecular mass of the
188 molecule that is detected as cluster with Br^- . In this work, we will use Thomson (Th) as the unit for mass-to-
189 charge (m/z), and the m/z of molecules discussed in following include the mass contribution from Br^- (m/z 79) if
190 there is no other annotation.

191 In order to have an indicator of the CIMS performance, perfluoropentanoic acid (PFPA, $\text{C}_5\text{F}_9\text{HO}_2$) was
192 used as an internal standard. For m/z calibration, five isolated peaks were used, including Br^- (m/z 79), H_2OBr^-
193 (m/z 97), HNO_3Br^- (m/z 142), $\text{C}_5\text{F}_9\text{O}_2^-$ (m/z 263), and $\text{C}_5\text{F}_9\text{HO}_2\text{Br}^-$ (m/z 343), covering the mass range of
194 dominant products. The averaged accuracies of all five calibrated masses were below 5 ppm over the whole
195 measurement period. However, due to the low signal intensity, the PFPA cluster ($\text{C}_{10}\text{F}_{18}\text{O}_4\text{H}^-$, m/z 527) was not
196 suited for mass calibration, and there were no other suitable masses with sufficient intensity and high accuracy
197 that could be used to calibrate the higher mass range. Therefore, peak fitting in the mass range between 300 to
198 500+ Th might have higher uncertainties. The CIMS was optimized to gain a maximum signal of $[\text{HO}_2^*\text{Br}]^-$
199 isotopes, which are weakly bounded clusters. This was achieved by adjusting step by step the electrostatic field
200 in the transfer stage to minimize fragmentation. During the campaign, the settings of CIMS were kept
201 unchanged to keep a similar performance. However, the signal of reagent ion Br^- decreased by about 65% (from
202 \sim 100,000 to 34,000 counts s^{-1}) over the campaign duration of four weeks. In order to minimize the effect of

203 drift in performance, we used the normalized (by the sum of the total ion counts) signals for analysis. The
204 sensitivity for total carbon was calculated by determining the slope of wall-loss corrected total carbon signals
205 detected by CIMS (only the identified peaks were considered) versus isoprene consumed. As illustrated in Fig.
206 S4a, the CIMS sensitivities were roughly identical in two experiments (0.026 ± 0.002 norm. count s^{-1} ppbv $^{-1}$ on
207 08 August, and 0.022 ± 0.001 norm. count s^{-1} ppbv $^{-1}$ on 14 August), indicating that different experimental
208 conditions over two days had an insignificant impact on CIMS sensitivity for total carbon and thus the data from
209 these days are comparable. In addition, an inter-comparison of measurements by Br $^-$ CIMS and I $^-$ CIMS were
210 made. As shown in Fig. S4b, the measurements of C₅H₆N₂O₈ from the two instruments are well linearly
211 correlated with each other at the early oxidation stages. However, the correlation coefficients of measurements
212 from two instruments deviated from experiment to experiment. This is probably related to different experimental
213 conditions, which might lead to different chemical processes and thus formation of isomers. Since CIMS with
214 different reagent ions might have different sensitivities to isomers, and may be selective for different
215 compounds, the correlation coefficients of measurements from Br $^-$ and I $^-$ CIMS may differ from day to day.
216 Moreover, the Br $^-$ CIMS was not tuned during the campaign while the I $^-$ CIMS was optimized from time to time.
217 In general, the performance of Br $^-$ CIMS was stable and the data taken by it are reliable.

218 The mass spectra data were processed using the software “Tofware” embedded in Igor as provided by
219 Aerodyne Research Inc. (<https://www.tofwerk.com/software/toftware/?cn-reloaded=1>). Peaks detected in the
220 mass spectra could be isolated and identified according to their exact mass, and molecular formulas and the
221 corresponding intensities were obtained by high-resolution peak fitting. Due to a lack of authentic standards for
222 the products, it is difficult to quantitatively determine their individual absolute concentrations, but we have
223 calculated the bulk sensitivity for organonitrates by using the sum of organic nitrate signals from Br $^-$ CIMS
224 divided by measurements of the total alkyl nitrates from a thermal dissociation-cavity ring-down spectrometer
225 during the experiment. The estimated bulk sensitivities for organonitrates are 0.016 ± 0.001 and 0.022 ± 0.001
226 norm. count s^{-1} ppbv $^{-1}$ on 08 August and 14 August, respectively, as shown in Fig. S4c, comparable to the
227 sensitivity for total carbon, but smaller than the sensitivity for salicylic acid determined by an independent
228 calibration (163 norm. count μg^{-1} on average as shown in Fig. S4d, equal to 0.07 norm. count s^{-1} ppbv $^{-1}$). The
229 bulk sensitivity for organonitrates enables estimation of the absolute concentrations of products assuming that
230 they have identical sensitivity. In this study we use the normalized signals instead of absolute concentrations for
231 analysis. This is sufficient here because our analysis focuses on the time evolution of signals and the relative
232 changes of intensities, so the absolute concentrations are not necessarily needed. The sensitivity derived above is
233 only used to convert the signals of dimers to concentrations in order to estimate the SOA yield.

234 Isoprene was measured by a Vocus proton transfer reaction time-of-flight mass spectrometer (Aerodyne
235 Research Inc., hereafter Vocus), which has a higher mass resolving power (nominal 10000 Th/Th) and less inlet
236 wall losses and sampling delays compared to traditional PTR-MS (Krechmer et al., 2018). The mixing ratio of
237 O₃ was monitored by an UV absorption instrument, and that of NO₂ was monitored by a chemiluminescence
238 instrument and a custom-built cavity ring-down spectrometer (CRDS). The concentrations of NO₃ and N₂O₅
239 were detected by two custom-built CRDS instruments (Dubé et al., 2006; Sobanski et al., 2016). In addition,
240 temperature and pressure inside the chamber were monitored by an ultra-sonic anemometer and a pressure
241 sensor, respectively. The relative humidity was primarily detected as water mixing ratio by a Picarro CRDS
242 instrument (Crosson, 2008).

243 The particle number concentrations and their size distributions were measured by a condensation particle
244 counter (TSI 3783, hereafter CPC) and a scan mobility particle sizer (TSI 3081 electrostatic classifier combined
245 with TSI 3025 CPC, hereafter SMPS). The aerosol chemical composition was identified by a high-resolution
246 time of flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Research Inc., hereafter AMS). The
247 ionization efficiency of AMS was determined by using the monodisperse aerosol generated from NH_4NO_3 and
248 $(\text{NH}_4)_2\text{SO}_4$ solutions. The collection efficiency (CE) could be estimated based on the particle mass concentration
249 yielded from AMS and that derived from SMPS. In this study, the average CE value of 0.5 is used for correction.

250 **2.4 Methods to estimate saturation vapor pressure**

251 The pure liquid saturation vapor pressure is a thermodynamic metric relevant for the partitioning equilibrium of
252 organic molecules, which determines their propensity to form SOA (Compernolle et al., 2011; O'Meara et al.,
253 2014; Pankow and Asher, 2008). Due to their complex functionalities and low or extremely low volatility, it is
254 challenging to determine the vapor pressures of highly oxidized molecules. As a result, theoretical and
255 semiempirical methods are usually used for vapor pressure estimation. Commonly used semiempirical methods
256 include composition-activity (CA), group-contribution (GC), and structure-activity (SA) methods. The CA
257 methods are the easiest to use, as they only require information on molecular composition for estimation. They
258 are widely applied in context of the two-dimensional volatility basis set (2D-VBS) (Donahue et al., 2011). For
259 GC methods, the exact functional groups are required to calculate the saturation vapor pressure. The SIMPOL.1
260 (Pankow and Asher, 2008), the parameterization as described by Nannoolal et al. (2008), and EVAPORATION
261 (Compernolle et al., 2011) are three widely used GC methods. Structure-activity methods can provide more
262 accurate estimates with sophisticated treatments of intramolecular interactions like intramolecular hydrogen-
263 bonding (Bilde et al., 2015). However, detailed molecular properties such as boiling point and evaporation
264 enthalpy are required for estimation, which are generally obtained by complex and time-consuming quantum
265 chemical calculations. Therefore, SA methods are not applied for vapor pressure estimation in this study.

266 Saturation concentration (C^* , mass based) is related to saturation vapor pressure and can be calculated
267 following Eq. (1) (Donahue et al., 2006). The $\log_{10}(C^*)$ is a metric used in the 2D-VBS method to evaluate the
268 volatility of organic molecules.

$$269 C_i^* = \frac{M_i 10^6 \zeta_i p_i^\circ}{RT} \quad (1)$$

270 where R ($8.206 \times 10^{-5} \text{ m}^3 \text{ atm K}^{-1} \text{ mol}^{-1}$) is the gas constant, T (K) is the temperature, M_i (g mol^{-1}) is the molecular
271 weight of compound i , ζ_i is the activity coefficient of compound i and here is assumed to be 1 (Donahue et al.,
272 2006), p_i° (atm) is the pure liquid saturation vapor pressure at temperature T (298 K).

273 In this study, different CA methods are applied to calculate the saturation vapor pressures of various
274 oxidation products from isoprene reaction with NO_3 . These include parameterizations that were constrained by
275 chamber measurements as proposed by Donahue et al. (2011), Mohr et al. (2019), and Peräkylä et al. (2019). All
276 of these three parameterization methods have included the effect of the presence of nitrate groups on vapor-
277 pressure estimation. Further we test the GC methods proposed by Nannoolal et al. (2008), Pankow and Asher
278 (2008, SIMPOL.1), and Compernolle et al. (2011, EVAPORATION). All the methods used in this study are
279 summarized in Table 1. The calculations of EVAPORATION and the Nannool method were done via the online
280 molecular and multiphase property prediction facility UManSysProp

281 (http://umansysprop.seaes.manchester.ac.uk/tool/vapour_pressure). For the latter the boiling point
282 parameterization method needs to be predefined, and that from Nannoolal et al. (2004) was adopted as
283 recommended by O'Meara et al. (2014). The information about molecular structures needed for the calculation
284 is inferred from mechanistic information, which is described in detail in Sect. 2.5.

285 In addition, we take advantage of the measurements in this study to calculate the gas-particle equilibrium
286 partitioning coefficient (K) by comparing experiments with and without seed aerosols. The partitioning
287 coefficient K can be converted to saturation concentration C^* by Eq. (2).

$$288 K_i = \frac{C_{i,p}}{C_{i,g} \times C_{OA}} = \frac{1}{C_i^*} \quad (2)$$

289 where $C_{i,g}$ and $C_{i,p}$ are the gas- and particle-phase concentrations ($\mu\text{g m}^{-3}$) of species i , respectively, and C_{OA} is
290 the organic aerosol concentration ($\mu\text{g m}^{-3}$). In this study, $C_{i,g}$ is signal of species i from CIMS in the experiment
291 with seeds, and $C_{i,p}$ is the difference of signals between experiment without and with seeds (under the same
292 isoprene consumption condition). The C_{OA} in the experiment with seeds is in a range of 1-4 $\mu\text{g m}^{-3}$.

293 2.5 Pathways to the multifunctional oxidation products

294 2.5.1 Basic peroxy and alkoxy radical chemistry

295 As mentioned before, information about molecular structures (at least functional groups) is required to calculate
296 vapor pressures by using GC methods. Although the high-resolution ToF-CIMS allows for determining
297 chemical composition of the detected ions, it is unable to provide information about molecular structures, so that
298 the constitutional or configurational isomers with the same mass cannot be distinguished without additional
299 information. Fortunately, knowledge of detailed chemical formation mechanisms can help inferring the
300 molecular structure information. However, the development of a comprehensive, multi-generational kinetic
301 mechanism for NO_3 -initiated oxidation of isoprene is outside the scope of the current paper. Instead, in order to
302 link the observed mass peaks to representative molecular structures, we developed a framework tracing the
303 chemical oxidation mechanisms by taking well-known oxidation steps to predict the most likely isomeric forms
304 of the functionalized products formed in the isoprene oxidation. For this purpose, we rely on the extensive
305 literature on isoprene, alkylperoxy radical, and alkoxy radical chemistry (Atkinson, 2007; Atkinson and Arey,
306 2003; Bianchi et al., 2019; Crounse et al., 2013; Ehn et al., 2014; Jenkin et al., 2015; Jenkin et al., 2019; Kwan
307 et al., 2012; Mentel et al., 2015; Ng et al., 2008; Noveli et al., 2021; Orlando et al., 2003; Orlando and Tyndall,
308 2012; Rollins et al., 2009; Schwantes et al., 2015; Vereecken and Francisco, 2012; Vereecken and Peeters, 2009,
309 2010; Vereecken et al., 2021; Wennberg et al., 2018; Ziemann and Atkinson, 2012). This framework is depicted
310 in the supporting information and will be discussed in more detail in Sect. 2.5.2 and Sect. 2.5.3. They are based
311 on the following main reactivity trends.

312 Generally, RO_2 radicals can react with other RO_2 and HO_2 radicals. There are three major channels for the
313 reaction between two RO_2 radicals, leading to alkoxy radicals (RO) (Reaction R1a), as well as termination
314 products like alcohols, aldehydes or ketones (Reaction R1b) and accretion products (Reaction R1c). These
315 reactions should take place with the first-generation peroxy radicals, as well as with the higher generation RO_2
316 radicals formed in the later oxidation steps. Hydroperoxides can be formed from the reaction of RO_2 with HO_2
317 radicals (Reaction R2a). This reaction can also yield alkoxy radicals (Reaction R2b).

323 In the presence of NO_x , RO_2 radicals can also react with NO and NO_2 , leading to the formation of alkoxy
324 radicals (R3a), organic nitrates (R3b), and peroxy nitrates (R4) (including peroxyacetyl nitrates, PANs, if $\text{R} = \text{R}'\text{C}(\text{O})-$). The channel that results in RO radicals is the major pathway for the reaction of RO_2 radicals with NO
325 (Ziemann and Atkinson, 2012). However, reactions of RO_2 radicals with NO (Reaction R3a and R3b) can be
326 neglected in this study due to the high O_3 concentration, which results in rapid conversion of NO to NO_2 . The
327 peroxy nitrates formed from the reaction of RO_2 with NO_2 will undergo rapid thermal decomposition under our
328 experimental conditions, with exception of PANs. The reaction of RO_2 with NO_3 radicals mainly forms NO_2 and
329 alkoxy radicals (Reaction R5), which will continue the radical chains (Reaction R7).

335 In addition to bimolecular reactions, intramolecular rearrangement (H-migration) is a competitive reaction
336 pathway for RO_2 radicals. RO_2 radicals can undergo H-migration to form a hydroperoxy functionality ($-\text{OOH}$)
337 and a radical site that can subsequently recombine with an O_2 molecule, leading to the formation of a new, more
338 oxidized substituted RO_2 (Reaction R6). This process is the so-called “autoxidation” path and has been
339 confirmed as a significantly important way for SOA formation (Crounse et al., 2013; Ehn et al., 2014; Mentel et
340 al., 2015; Praske et al., 2018; Rissanen et al., 2014). The rates of RO_2 H-migration are strongly dependent on the
341 structure of RO_2 radicals, and the most likely routes can be derived based on the structure-activity relationship
342 proposed by Vereecken and Nozière (2020).

344 The RO radicals formed in the reaction of $\text{RO}_2 + \text{RO}_2$ typically have three accessible pathways,
345 including isomerization by H-migration (Reaction R7a), fragmentation (Reaction R7b) and less important here,
346 reaction with O_2 (Reaction R7c). Like H-migration in RO_2 , rearrangement by H-shift in RO radicals leads to the
347 formation of more oxidized RO_2 radicals. Fragmentation leads to smaller carbon chains, and this becomes more
348 important for alkoxy radicals with a higher number of (oxygen-bearing) substituents (Vereecken and Peeters,
349 2009, 2010).

353 In addition to the above general reaction pathways, we include a number of other reactions in the
354 framework, such as fragmentation of peroxy radicals, epoxidation of β -OOH alkyl radicals, and unimolecular
355 termination of nitrooxy or hydroperoxyl peroxy radicals. Details can be found in the supporting information.

356 **2.5.2 Formation of first-generation products**

357 Here “first-generation products” refers to the closed-shell compounds from the first attack of NO_3 at the
358 isoprene double bonds, while “second-generation products” follow an addition of NO_3 to the remaining double
359 bond (or any other oxidation reaction) of a first-generation product. Addition of a NO_3 radical to one of isoprene
360 double bonds and subsequent addition of O_2 to the resulting (delocalized) radical sites leads to the formation of
361 nitrooxy alkylperoxy radicals (INO_2 , $\text{C}_5\text{H}_8\text{NO}_3$). Since isoprene contains two double bonds, NO_3 can attack any
362 of the four positions on the conjugated carbon bonds, resulting in eight possible INO_2 isomers (including six
363 constitutional and two conformational isomers), as shown in Scheme S1. However, both theoretical and
364 experimental studies suggest that the addition occurs preferably at the primary and terminal carbons, wherein C1
365 addition seems to be preferred over C4 addition (Schwantes et al., 2015; Suh et al., 2001; Wennberg et al., 2018).
366 As the GC methods have limited or no ability to distinguish between positional isomers (Kurten et al., 2016), we
367 take exemplarily the products following the C1 addition for the vapor pressure analysis in this study.

368 The initial peroxy radicals ($\text{C}_5\text{H}_8\text{NO}_3$) can undergo rearrangement by H shift from C–H bonds with
369 subsequent O_2 addition, yielding new –OOH functionalized peroxy radicals (Reaction R6). Repeating this
370 process can lead to the formation of a series of peroxy radicals and termination products with stepwise
371 increasing number of oxygen atoms by 2, as shown in the conceptual scheme Scheme S2. This is the RO_2
372 autoxidation channel and the molecular formula of peroxy radicals formed via consecutive O_2 additions can be
373 represented as $\text{C}_5\text{H}_8\text{NO}_{(3+2n)}$ ($n \geq 1$, number of autoxidation steps). The autoxidation chain can be terminated
374 when the H-shift occurs at a carbon with an –OOH or – ONO_2 group attached, leading to carbonyl formation
375 with OH or NO_2 loss (Anglada et al., 2016; Bianchi et al., 2019; Vereecken, 2008; Vereecken et al., 2004). The
376 closed-shell products formed in these termination steps have the general molecular formula $\text{C}_5\text{H}_7\text{NO}_{(5+2n-1)}$ (OH
377 loss channel) or $\text{C}_5\text{H}_8\text{O}_{(3+2n-2)}$ (NO_2 loss channel).

378 The $\text{C}_5\text{H}_8\text{NO}_{(3+2n)}$ peroxy radicals can also react with HO_2 radicals to form –OOH functionalized
379 termination products with the general molecular formula $\text{C}_5\text{H}_9\text{NO}_{(3+2n)}$ (Reaction R2a), or yielding the alkoxy
380 radicals $\text{C}_5\text{H}_8\text{NO}_{(3+2n-1)}$ (Reaction R2b). In addition, the $\text{C}_5\text{H}_8\text{NO}_{(3+2n)}$ peroxy radicals can react with other RO_2
381 radicals (Reaction R1a-R1c). The reaction R1a leads to the formation of alkoxy radicals ($\text{C}_5\text{H}_8\text{NO}_{(3+2n-1)}$) while
382 R1b forms closed-shell products either with a carbonyl group ($\text{C}_5\text{H}_7\text{NO}_{(3+2n-1)}$) or a hydroxyl group
383 ($\text{C}_5\text{H}_9\text{NO}_{(5+2n-1)}$). Alternatively, dimers can be formed following Reaction R1c, which have then two – ONO_2
384 groups and at least 8 oxygen atoms depending on the formula of RO_2 radicals involved, as shown in Table S1.

385 The alkoxy radicals from reactions R1a and R2b can undergo unimolecular rearrangement by H shift with
386 subsequent O_2 addition, similar to the RO_2 radicals, forming new RO_2 radicals with a –OH group (Reaction
387 R7a). As mentioned above, when the H-shift occurs at a carbon with an –OOH or – ONO_2 group attached, the
388 resulting intermediates tend to lose an OH group or NO_2 (Bianchi et al., 2019), yielding the closed-shell
389 carbonyl products with general formulas $\text{C}_5\text{H}_7\text{NO}_{(5+2n-2)}$ or $\text{C}_5\text{H}_8\text{O}_{(3+2n-3)}$ respectively, as shown in the conceptual
390 scheme Scheme S3. The newly-formed RO_2 radicals from alkoxy H-shift channel can follow the peroxy
391 pathways (Reaction R1-R6) like other RO_2 radicals, leading to a diversity of compounds like hydroperoxides

392 (Reaction R2a, $C_5H_9NO_{(3+2n+1)}$), alcohols (Reaction R1b, $C_5H_9NO_{(3+2n)}$), aldehydes (Reaction R1b, $C_5H_7NO_{(3+2n)}$)
393 as well as accretion products (Reaction R1c, $C_{10}H_{16}N_2O_x$), as depicted in Scheme S3. Alternatively, they can
394 also yield alkoxy radicals again following reactions R1a and R2b and continue so on. Furthermore, the alkoxy
395 radicals can break apart into two fragments according to Reaction R7b.

396 In general, the alkoxy reaction pathways diversify the parity of the oxygen number of the products from the
397 reaction of isoprene with NO_3 , and the compounds formed via these reactions generally have one less or one
398 more oxygen atom compared to those formed from straight peroxy reaction pathways. With help of the
399 mechanistic framework described above, we can infer the functionality of first-generation products. This is
400 exemplified in Scheme S5 and S6 for the major first-generation C_5 products. In addition, the reaction pathways
401 and their corresponding structures of the first-generation C_{10} dimers ($C_{10}H_{16}N_2O_x$) are summarized in Scheme
402 S13.

403 **2.5.3 Formation of second-generation products**

404 Nitrate radicals can oxidize the first-generation products once again at the double bond remaining ($k_{NO_3}(298K) \sim$
405 $3-11 \times 10^{14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, Wennberg et al., 2018). This leads eventually to “second-generation” products that
406 contain at least two nitrogen atoms. Addition of NO_3 radical to the remaining double bond of the first-generation
407 products results in the formation of dinitrooxy peroxy radicals. We assume that dinitrooxy peroxy radicals can
408 undergo unimolecular and bimolecular reactions (Reaction R1–R6) in analogy to nitrooxy peroxy radicals,
409 which lead to secondary products containing two or more nitrogen atoms, as summarized in the conceptual
410 scheme Scheme S4.

411 The reaction of first-generation nitrooxy peroxy radicals with NO_2 can also yield 2N-compounds (Reaction
412 R4), however these 2N-compounds ought to be under first-generation products by definition. Such species are
413 not discussed in detail here but will be covered to catch the diversity of the functionalities for the vapor pressure
414 estimation. With the help of this secondary reaction framework, we can propose functional groups for the major
415 second-generation products. Scheme S8 – S10 depict the detailed (possible) reaction pathways that lead to the
416 formation of detected C_5 dinitrates, as well as their possible structures. Furthermore, the proposed formation
417 mechanism and their structures for C_5 trinitrates are shown in Scheme S12, while those for the second-
418 generation C_{10} dimers ($C_{10}H_{17}N_3O_x$ and $C_{10}H_{18}N_4O_x$) are depicted in Scheme S13.

419 **2.5.4 Formation of fragmentation products**

420 In addition to the multigenerational C_5 and C_{10} products, fragmentation products can be formed from the
421 reaction of isoprene with NO_3 . As mentioned above, the alkoxy radicals can undergo C–C bond scission,
422 producing a carbonyl compound and an alkyl fragment (Reaction R7b). As shown in Scheme S7, when the
423 secondary nitrooxy alkoxy radicals from the further oxidation of C_5 carbonyl compounds ($C_5H_8O_2$ and $C_5H_8O_3$
424 here) undergo unimolecular decomposition, C_4 carbonyl products ($C_4H_7NO_5$ and $C_4H_7NO_6$, respectively) are
425 formed as well as formyl radicals. Since the bond fission can occur at different positions, the generation of more
426 reactive C_2 and C_3 carbonyl compounds are possible. In addition, the C_4 carbonyl compounds are possibly
427 generated through peroxy radical arrangement by 1,4 H-shift and subsequent acyl radical bond scission reactions
428 (see Scheme S7). The C_4 dinitrates can be formed following similar chemistry, as depicted in Scheme S11.

429 **2.5.5 Candidate structures for vapor pressure estimation**

430 Among all gas-phase products detected by CIMS, we selected 32 major representative organonitrates formed
431 from isoprene oxidation by NO_3 radicals. Their structures are rationalized by the corresponding molecular
432 formulas and proposed formation mechanisms in the reaction framework. Table S2 summarizes all the
433 exemplified structures used for vapor pressure estimation. The functional groups covered in the selected
434 structures include nitrate, hydroxyl, ketone, aldehyde, carboxylic acid, peroxide, hydroperoxide, hydroperoxy
435 acid, peroxy nitrate, peroxyacetyl nitrate and epoxide. The structural information allows calculation of the
436 saturation vapor pressure by GC methods.

437 **3. Results and discussion**

438 **3.1 Chemical composition of oxidation products**

439 Figure 2 illustrates the average mass spectra of the whole experiment measured by BrCIMS for isoprene- NO_3
440 reaction. Chemical sum formulas were attributed to most of the detected ions. The gas-phase products were
441 separated into two major groups according to their chemical composition, including monomers comprising C_5
442 compounds and dimers containing C_{10} compounds. There were also products from decomposition reactions with
443 $\text{C}_{<5}$, which were merged into monomers. The monomers and dimers were further classified into five subgroups
444 as follows. Monomers consisting of compounds with one nitrogen atom (hereafter 1N-monomers) and two or
445 three N atoms (2N- or 3N-monomers) mainly accumulate in m/z 220–280 Th, m/z 300–340 Th and 350–390 Th,
446 respectively, while dimers containing compounds with two N atoms (2N-dimers) and three N atoms (3N-dimers)
447 appear in m/z 370–440 Th and 450–520 Th, respectively. As shown in Fig. 2, the signal intensities decrease
448 from 1N-monomers, 2N-monomers, 2N-dimers to 3N-monomers and 3N-dimers. Many of the compounds
449 detected in this work were also observed in previous isoprene- NO_3 systems (Kwan et al., 2012; Ng et al., 2008;
450 Schwantes et al., 2015). In this work, only closed-shell products are considered for analysis.

451 The 1N-monomer $\text{C}_5\text{H}_9\text{NO}_5$ at m/z 242 is the dominant product formed from the NO_3 -induced isoprene
452 oxidation in our experiment, followed by the 1N-decomposition product $\text{C}_4\text{H}_7\text{NO}_5$ at m/z 228. In addition to
453 $\text{C}_5\text{H}_9\text{NO}_5$, several analogues with molecular formulas $\text{C}_5\text{H}_7\text{NO}_{4.7}$ and $\text{C}_5\text{H}_9\text{NO}_4$ are in relatively high abundance.
454 $\text{C}_5\text{H}_{8.10}\text{N}_2\text{O}_{8.9}$ and $\text{C}_5\text{H}_9\text{N}_3\text{O}_{10-12}$ are the major 2N- and 3N-monomers. Their signal intensities are one to two
455 orders of magnitude lower than those of 1N-monomers. According to the chemical composition, the 1N-
456 monomers are likely to be the first-generation products from NO_3 oxidation of isoprene, while the 2N- and 3N-
457 monomers probably arise from the further oxidation of 1N-monomers by NO_3 , which therefore should be
458 second- or later-generation products. As mentioned before, the reaction of nitrooxy alkylperoxy radicals with
459 NO_2 can lead to the formation of peroxy nitrates (for the special case peroxyacetyl nitrates, PAN-like) containing
460 two N atoms. The peroxy nitrates will decompose rapidly under experimental conditions, whereas the PAN-like
461 compounds are more stable (with lifetimes ranging from minutes to weeks at 298K and ambient temperature).
462 Such C_5 PAN-like compounds are isomers of aforementioned 2N-monomers, but ought to be first-generation
463 products. In addition to C_5 -2N-monomers, we observe some C_4 -2N-monomers with relatively high intensity,
464 such as $\text{C}_4\text{H}_6\text{N}_2\text{O}_7$ at m/z 273 and $\text{C}_4\text{H}_8\text{N}_2\text{O}_8$ at m/z 291. It is proposed that such C_4 dinitrates originate from the
465 further oxidation of C_5 carbonyl compounds followed by unimolecular decomposition (Schwantes et al., 2015;
466 Wennberg et al., 2018), as shown in Scheme S11.

2N-Dimers are C_{10} compounds with 8–12 oxygen atoms ($C_{10}H_{16}N_2O_{8-12}$), and their signal intensities are relatively low compared to that of monomers, approximately three orders of magnitude lower. They might be ROOR products from the self or cross reaction of two nitrooxy peroxy radicals (Berndt et al., 2018). 3N-Dimers are molecules consisting of 12–16 oxygen atoms ($C_{10}H_{17}N_3O_{12-16}$). They are probably formed from further oxidation of 2N-dimers or from the cross reaction of a nitrooxy peroxy radical with a dinitrooxy peroxy radicals.

3.2 Multi-generation chemistry

3.2.1 Molecular composition for each step

As mentioned in Sect. 2.2, there were four injections during the experiment on 8 August (denoted as step I, II, III, IV in Fig. 3), wherein in the first three injections all components, O_3 , NO_2 , and isoprene, were added, while in the last step only O_3 and NO_2 were injected to promote the further oxidation of early-generation products. The extended oxidation time with reinjection of oxidants provides the opportunity to investigate the multi-generation oxidation chemistry of isoprene- NO_3 system. The mass spectra show only slow changes in the concentrations during the last period of each step, indicating weak chemical evolution. Therefore, we use integrated mass spectra over the last 10 minutes of each step for further analysis. Due to the similarity of the integrated mass spectra for step II and step III, the latter is omitted in Fig. 3.

As shown in Fig. 3a, large amounts of 1N-monomers were formed from NO_3 oxidation of isoprene in step I, wherein $C_5H_9NO_5$, $C_5H_9NO_6$, and $C_4H_7NO_5$ are the most abundant compounds in signal. The 2N-monomers, which are expected from further oxidation of 1N-monomers, are much less compared to 1N-monomers, accounting for 5.0% of the total organic signals, with the 3N-monomers even less (0.04%). The low contributions of second-generation products probably results from the relatively high concentration of isoprene in step I, reducing the possibility for further oxidation of first-generation products. These results indicate that the system is dominated by first-generation chemistry at the early stage and therefore the oxidation state of products is low. In addition to monomers, some 2N- and 3N-dimers are observed. They contribute 1.7% and 0.2%, respectively, to the total organic signals, as shown in Fig. 3b. The low signal intensity of dimers probably results from their small yield under our experimental conditions. In this case their contribution to SOA formation might be small. However, a part of the dimers condense onto chamber wall due to their low volatility, so only a smaller portion exists in the gas phase (compare Table S3 and Fig. S5).

In step II, the secondary chemistry was accelerated by further addition of O_3 and NO_2 , but the primary chemistry was also maintained by isoprene injection. As a result, more 1N-monomers (e.g. $C_5H_9NO_{4,5,6}$) were formed compared to step I, as well as dimers (e.g., $C_{10}H_{16}N_2O_{8,9,10}$ and $C_{10}H_{17}N_3O_{12,13}$), as shown in Fig. 3a. The signals of 2N-monomers almost double in this period compared to those in step I, and their relative contribution increase from 5.0% to 7.4%. This is attributed to the further oxidation of first-generation products formed in step I. The relative contributions of different chemical groups exhibited in Fig. 3b clearly show that, although NO_3 produced from the second addition of NO_2 and O_3 still primarily reacted with newly-injected isoprene, reaction of NO_3 with the first-generation oxidation products retaining a double bond was inevitable, leading to more second-generation 2N- or 3N-products compared to step I. The visibly increasing fraction of 2N-monomers indicates that the second-generation chemistry started to play a more important role than that in the early stage. In step III, the chemical process proceeded similarly, and thus is not further discussed here.

505 Due to the favorable conditions for further oxidation, the signals of 1N-monomers (such as C₅H₉NO₄,
506 C₅H₉NO₅, and C₅H₉NO₆), as well as 2N- and 3N-dimers, dropped dramatically in step IV, with their relative
507 contributions decreasing to 58.1%, 0.5%, and 0.15%, respectively. The decrease in signals of dimers is primarily
508 ascribed to lack of isoprene, as there were less peroxy radicals under this condition, and hence less dimers were
509 formed. In addition, their condensation on the wall and dilution also contributed to the decreasing signals.
510 Furthermore, dimers with 2 or 3 nitrogen atoms possess at least one double bond in their molecular structures
511 and can thus be further oxidized under high NO₃ condition to form 4N- or 5N-dimers. However, only few 4N-
512 dimers and no 5N-dimers were detected by CIMS, suggesting that the 4N- and 5N-dimers were either not
513 formed, or if present, with lower absolute concentrations below the detection limit (approximately 5×10⁷ and
514 5×10⁵ molecules cm⁻³ for salicylic acid and acetic acid, for an integration time of 60 s). condensed on the wall
515 due to their low volatilities. In contrast, 2N- and 3N-monomers increase significantly, with their relative
516 contributions ascending to 20.0% and 0.29%, respectively. This indicates that 2N- and 3N-monomers might be
517 second- or later-generation products that are formed from the further oxidation of first-generation products.
518 Additionally, unlike the C₅ monomers, the signal of C₄H₇NO₅ increased in step IV, indicating that there is a new
519 formation pathway for C₄H₇NO₅ under excess NO₃ condition. No double bond can remain in such products, as
520 otherwise they would be oxidized and their signal should decay instead.

521 In summary, above findings confirm that multi-generation chemistry happened during the NO₃-initiated
522 isoprene oxidation, and that the later generation oxidation was promoted by “excess” NO₃ radicals.

523 **3.2.2 Carbon oxidation state (\overline{OS}_C)**

524 The oxidation state of carbon (\overline{OS}_C) is defined as the charge a carbon atom takes with assumption that it loses
525 completely all electrons in bonds to more electronegative atoms and vice versa (Kroll et al., 2011). This quantity
526 is a metric for the degree of oxidation and will increase with oxidation. Moreover, \overline{OS}_C together with carbon
527 number can be used to constrain the composition of organic mixtures and provide insights into their evolutions.
528 The carbon oxidation state of a species is determined by the relative abundances and oxidation states of non-
529 carbon atoms in the compound. Since we observed nitrate groups in the products, \overline{OS}_C is defined by Eq. (3). In
530 this study, the group-averaged \overline{OS}_C is the signal-weighted mean average carbon oxidation state of compounds
531 with the same carbon number, and the bulk-averaged \overline{OS}_C is the signal-weighted mean average carbon oxidation
532 state of all detected compounds in the system.

$$533 \overline{OS}_C = \frac{2 \times n_O - n_H - 5 \times n_N}{n_C} \quad (3)$$

534 wherein, n_O , n_H , and n_N are the number of the respective atoms in the molecular formula.

535 Figure 4 shows the distribution of gas-phase products from the isoprene-NO₃ system in the oxidation state
536 versus carbon number (OS_C vs n_C) space. The bulk-averaged \overline{OS}_C is -0.35 in step I, wherein the smaller
537 molecules ($C_{\leq 4}$) have higher oxidation states than the larger molecules. The group-averaged oxidation state of
538 C₅ compounds is relatively low ($OS_{C=5} = -0.66$), indicating that both of the oxidation and autoxidation degree of
539 isoprene are quite low during this period. This is consistent with the conclusion made previously from mass
540 spectra results that at the early stage isoprene-NO₃ oxidation was dominated by first-generation chemistry.

541 The system $\overline{OS_C}$ increases to -0.26 in step II, confirming that first-generation products were further
542 oxidized after the second injection. During this step, the $\overline{OS_C}$ of most compound groups increase only weakly,
543 except for that of the C_5 compounds. The group-averaged $\overline{OS_C}$ of C_5 compounds increases to -0.60 in step II,
544 which is the major contributor to the increase of $\overline{OS_C}$ of the whole system. The increase of $\overline{OS_C}$ of C_5
545 compounds is largely attributed to the formation of 2N-monomers expected from further oxidation of existing
546 1N-products formed in step I. This is confirmed by the detectable increase of 2N- and 3N-monomers in the mass
547 spectra and their higher relative contributions to total signals (see Fig. 3). In addition to C_5 compounds, the $\overline{OS_C}$
548 of C_3 and C_6 products increase significantly in step II.

549 In step IV, the secondary oxidation was largely accelerated by reinjection of O_3 and NO_2 , and hence the
550 system oxidation degree increases, with the bulk-averaged $\overline{OS_C}$ growing substantially to 0.09. Similarly, the
551 significant increase of system $\overline{OS_C}$ is mainly attributed to the C_5 compounds, with their group-averaged $\overline{OS_C}$
552 increasing to -0.31. In addition, the $\overline{OS_C}$ of C_{10} compounds increased evidently despite their decreasing signals,
553 suggesting C_{10} dimers were further oxidized as well in step IV. It is worth noting that the average carbon
554 number decreases step by step with increasing $\overline{OS_C}$. This is the case because fewer C_{10} products, but more
555 fragments were formed with the reaction proceeding, as shown in Fig.4 by the decreasing peak areas of larger
556 molecules but converse trend for smaller molecules. One conceivable explanation for the decreasing dimers but
557 increasing fragments with the increasing $\overline{OS_C}$ is that, with more highly oxidized RO_2 formed under high NO_3^-
558 condition, the prevailing fate of RO_2 changes from dimerization to forming alkoxy radicals, which would
559 undergo unimolecular decomposition rapidly, especially when there is a neighboring oxygen-containing
560 functional group (Molteni et al., 2019).

561 In the oxidation system, the increase in $\overline{OS_C}$ is attributed to the formation of bonds between carbon and
562 oxygen as well as other electronegative atoms, and/ or the breaking of bonds between carbon and hydrogen and
563 other electropositive atoms (Kroll et al., 2011). The $-ONO_2$ group has an oxidation state of -1, which means that
564 addition of a $-ONO_2$ group to isoprene will increase its OS_C by 0.2. According to our estimates, the values of
565 system $\overline{OS_C}$ increased by 1.25 (step I), 0.09 (step II), and 0.35 (step IV), indicating that the increases in $\overline{OS_C}$ are
566 not only due to addition of $-ONO_2$ group(s) but also to other oxygen-containing functionalities. In addition to
567 functionalization, it is possible that other reactions such as fragmentation and oligomerization which can
568 increase or reduce the oxidation state were involved during the reaction.

569 As mentioned above, the average carbon oxidation state of a mixture of molecules largely depends on its
570 chemical composition. Therefore, for different oxidation systems, their $\overline{OS_C}$ may differ due to different
571 precursors and oxidation conditions. In our study, the $\overline{OS_C}$ of NO_3^- -initiated isoprene oxidation system increased
572 from -0.35 to 0.09 with further oxidation. For OH^- and O_3 -initiated systems, the average oxidation state of
573 laboratory-generated isoprene SOA are reported to range from -1.3 to -0.2, as listed in Table S4. It seems that
574 the SOA generated from chloride-initiated oxidation of isoprene is more oxidized compared to other isoprene
575 oxidation systems, for which the $\overline{OS_C}$ can be as high as +1.8 according to limited studies (Wang and Ruiz, 2017).
576 With regard to ambient measurements, the calculated $\overline{OS_C}$ values of organic aerosol and aerosol fractions fell
577 into a wider range between -2 to +2, depending on the site position and the corresponding oxidation
578 environment of that site (Table S4).

579

580 In summary, isoprene and its products undergo further oxidation by NO_3 , leading to an increase in degree
 581 of oxidation of products as the reaction proceeds. The increasing bulk $\overline{\text{OS}_\text{C}}$ is largely governed by the highly
 582 oxidized C_5 compounds. In addition, more fragments but fewer dimers are formed as the $\overline{\text{OS}_\text{C}}$ increases, which
 583 can be probably explained by the change of RO_2 fate from prevailing dimerization to fragmentation through the
 584 alkoxy radical channel.

585 **3.2.3 Characteristics of different-generation products**

586 **(1) 1N-monomers**

587 To illustrate the multi-generation chemistry involved in the isoprene- NO_3 reaction system, Fig. 5 shows the time
 588 evolution of the major gas-phase products. The signal of the most abundant compounds, $\text{C}_5\text{H}_9\text{NO}_5$, increases
 589 rapidly as soon as the reaction was initiated, reaching a maximum when its chemical production rate matches its
 590 loss rate (including chemical destruction, wall loss, dilution, etc.), and decreases slowly thereafter. Its time
 591 behavior in the first three steps is similar. In step IV, however, the injection of O_3 and NO_2 resulted in a strong
 592 decay of $\text{C}_5\text{H}_9\text{NO}_5$, owing to the occurrence of further oxidation by NO_3 . The time behavior suggests that
 593 $\text{C}_5\text{H}_9\text{NO}_5$ signal is dominated by first-generation oxidation products, and the same conclusion can be made for
 594 $\text{C}_5\text{H}_9\text{NO}_4$ and $\text{C}_5\text{H}_9\text{NO}_6$. According to the mechanistic framework developed above, the $\text{C}_5\text{H}_9\text{NO}_4$, $\text{C}_5\text{H}_9\text{NO}_5$,
 595 and $\text{C}_5\text{H}_9\text{NO}_6$ compounds most likely correspond to hydroxyl nitrates, nitrooxy hydroperoxides, and hydroxy
 596 hydroperoxy nitrates, respectively, but other constitutional isomers are possible. They were already observed in
 597 previous studies and were proposed to form through reactions of INO_2 radicals with RO_2 , HO_2 , and
 598 unimolecular rearrangement, as shown in Scheme S5 (Ng et al., 2008; Kwan et al., 2012; Schwantes et al., 2015;
 599 Wennberg et al., 2018).

600 As shown in Fig. 5b, the temporal evolution of $\text{C}_5\text{H}_9\text{NO}_7$ (m/z 274) is different to $\text{C}_5\text{H}_9\text{NO}_{4-6}$ compounds,
 601 suggesting that it has a completely different formation pathway. Specifically, the formation rate of $\text{C}_5\text{H}_9\text{NO}_7$ is
 602 initially much slower than that of $\text{C}_5\text{H}_9\text{NO}_{4-6}$ but accelerates to become comparable to them later as the
 603 experiment proceeds, i.e. when a multitude of first-generation products are accumulated. This implies that
 604 $\text{C}_5\text{H}_9\text{NO}_7$ is produced from the further oxidation of first-generation products, and its signal is dominated by
 605 second-generation products. Based on its molecular composition, $\text{C}_5\text{H}_9\text{NO}_7$ could be the dihydroperoxy nitrate
 606 as shown in Scheme S5, but its formation through the reaction of HO_2 with nitrooxy hydroperoxy radical from
 607 INO_2 autoxidation suggests it should be first-generation products, not in accordance with the time behavior we
 608 actually observe. Consequently, we can conclude that it is not the major formation pathway that contributed to
 609 $\text{C}_5\text{H}_9\text{NO}_7$ observed in this study. As shown in Scheme S7, the first-generation C_5 hydroxy carbonyl ($\text{C}_5\text{H}_8\text{O}_2$,
 610 m/z 179) can be further oxidized by NO_3 and the resulting alkyl radical would rapidly recombine with O_2 ,
 611 producing a new peroxy radical, which then reacts with HO_2 radicals to form $\text{C}_5\text{H}_9\text{NO}_7$ (hydroxy hydroperoxy
 612 carbonyl nitrate). Similarly, the C_5 hydroperoxy carbonyl ($\text{C}_5\text{H}_8\text{O}_3$, m/z 195) can also lead to the formation of
 613 such $\text{C}_5\text{H}_9\text{NO}_7$ (isomer of that formed through $\text{C}_5\text{H}_8\text{O}_2$ channel) through further oxidation (see Scheme S7).
 614 According to above two mechanisms, $\text{C}_5\text{H}_9\text{NO}_7$ formed following such reaction pathways should be second-
 615 generation products, better consistent with its time behavior.

616 Considering its similar time behavior to $\text{C}_5\text{H}_9\text{NO}_7$, the observed $\text{C}_4\text{H}_7\text{NO}_5$ (m/z 228) signal is likewise
 617 thought to be dominated by second-generation products. Schwantes et al. (2015) proposed such a C_4 product

618 based on OH-initiated chemistry, but as the OH concentration in our system was below the detection limit
619 during the experiment (see Fig. S2), this formation pathway cannot apply in our situation. Instead, we suggest
620 that $C_4H_7NO_5$ is formed through the unimolecular decomposition of the C_5 alkoxy or acyl radicals, which result
621 from further oxidation of the C_5 hydroxy carbonyl ($C_5H_8O_2$, m/z 179), as shown in Scheme S7. It should be
622 pointed out here that there may be reaction pathways forming $C_4H_7NO_5$ as first-generation products that are not
623 considered here, whereas it is no doubt that the second-generation chemistry played a dominant role in $C_4H_7NO_5$
624 formation according to its time evolution measured by CIMS.

625 Although $C_4H_7NO_5$ and $C_5H_9NO_7$ show similar time behaviors in the first three steps, it seems that they
626 followed fairly different reaction pathways when the concentration of NO_3 in the chamber increased
627 dramatically in step IV. As shown in Fig. 5b, the signal of $C_4H_7NO_5$ drops immediately after the injection of O_3
628 and NO_2 , while that of $C_5H_9NO_7$ continues to increase, although its formation rate becomes slightly lower with
629 increasing NO_3 concentration. The decay of $C_4H_7NO_5$ signal can be explained by more chemical destruction or
630 less production under high NO_3 condition, wherein the latter seems more sensible in terms of its structure (no
631 double bond remaining). As shown in Scheme S7, the second-generation $C_4H_7NO_5$ and $C_5H_9NO_7$ compounds
632 share the same precursor in the $C_5H_8O_2$ channel. Consequently, the production of $C_5H_9NO_7$ through this
633 pathway would be interrupted immediately after the injection of O_3 and NO_2 like $C_4H_7NO_5$. In reality, its signal
634 might decay even faster due to the larger reaction rate of RO_2 H-shift (leading to the formation of $C_4H_7NO_5$)
635 than that of RO_2 reacting with HO_2 (leading to the formation of $C_5H_9NO_7$). As presented by Vereecken and
636 Nozière (2020), the rate coefficient of aldehydic H-shift is $\geq 0.5\text{ s}^{-1}$ (298 K), while the pseudo first order rate
637 coefficient of RO_2 reacting with HO_2 is $\sim 10^{-3}\text{ s}^{-1}$ (k (298 K) = $5 \times 10^{-12}\text{ cm}^3\text{ molecules}^{-1}\text{s}^{-1}$ (Atkinson, 2007), and
638 $[HO_2] \sim 4 \times 10^8\text{ molecules cm}^{-3}$), about two orders of magnitude smaller. This result implies that the increasing
639 $C_5H_9NO_7$ observed is contributed to by other formation pathways. As mentioned before, $C_5H_9NO_7$ can also be
640 produced by $C_5H_8O_3$ oxidation. We find that the signal of $C_4H_7NO_6$ (m/z 244), which results from $C_5H_8O_3$
641 oxidation as well, remains increasing after the injection of O_3 and NO_2 . This tentatively confirms that the
642 production of $C_5H_9NO_7$ in step IV is mainly from $C_5H_8O_3$ oxidation channel. More experimental or theoretical
643 studies are needed to provide insights into these differences.

644 (2) 2N- and 3N-monomers

645 As shown in Fig. 5c, 2N-monomers formed much slower than 1N-monomers in the early stage, but their
646 formation rates were accelerated in step II and step III, probably due to the accumulation of first-generation
647 products. According to our mechanistic framework, 2N-monomers are second-generation products resulting
648 from the further oxidation of 1N-monomers by NO_3 , which is consistent with their time behaviors detected by
649 CIMS.

650 Like $C_4H_7NO_5$ and $C_5H_9NO_7$, different 2N-monomers have similar behavior in the first three steps, but they
651 are obviously different in step IV when the concentration of NO_3 increased drastically in the chamber. For
652 instance, the signals of $C_5H_8N_2O_8$, $C_5H_8N_2O_9$ and $C_5H_{10}N_2O_8$ continue to increase after the injection of O_3 and
653 NO_2 , while that of $C_5H_{10}N_2O_9$ drops immediately. This is related to their detailed formation mechanisms which
654 are outside the scope of this study. Furthermore, $C_5H_8N_2O_9$ and $C_5H_{10}N_2O_9$ decay a little bit faster than
655 $C_5H_8N_2O_8$ and $C_5H_{10}N_2O_8$, which might be related to their volatility and will be further discussed in next section.

656 Different from other 2N-monomers, the signals of $C_5H_6N_2O_8$ (*m/z* 301) increases continuously under high
657 NO_3 condition, although its net formation rate is almost zero at the end of step IV. The characteristics of
658 $C_5H_6N_2O_8$ under high NO_3 condition reflects its different formation pathways from other dinitrates, and without
659 having a comprehensive knowledge of its chemical mechanism, we are unable to tell what exactly leads to the
660 differences. In the Master Chemical Mechanism (MCM v3.3.1), $C_5H_6N_2O_8$ is proposed to be a PAN-like
661 compound stemming from the C_5 nitrooxy carbonyl ($C_5H_7NO_4$)
662 (<http://mcm.leeds.ac.uk/MCM/browse.htm?species=NC4CHO>). Such $C_5H_6N_2O_8$ compound would react with
663 NO_3 radicals due to the remaining double bond, and hence this cannot be the predominant formation pathway of
664 the $C_5H_6N_2O_8$ observed in this study. Based on the formation mechanism of dinitrooxyepoxides ($C_5H_8N_2O_7$)
665 proposed by Kwan et al. (2012), we suggest that $C_5H_6N_2O_8$ can also be a dinitrooxyepoxide resulting from
666 cyclization of specific hydroperoxy alkyl radicals, as shown in Scheme S10. Alternatively, the C_5 hydroxy
667 nitrate ($C_5H_9NO_4$) can be oxidized by NO_3 and then react with NO_3 radicals again, forming $C_5H_6N_2O_8$ with two
668 aldehyde groups ultimately (see Scheme S10). According to the proposed mechanisms above, $C_5H_6N_2O_8$ formed
669 through the first two pathways are second-generation products, while those from the third channel are third-
670 generation products, in accordance with its time behavior measured by CIMS.

671 In addition to C_5 -2N-monomers, we observe some C_4 dinitrates such as $C_4H_6N_2O_7$ (*m/z* 273) and $C_4H_8N_2O_8$
672 (*m/z* 291), and the signal intensity of $C_4H_6N_2O_7$ is comparable to the major C_5 -2N-monomers. C_4 dinitrates have
673 rarely been mentioned in previous isoprene- NO_3 studies. As shown in Fig. 5c, $C_4H_6N_2O_7$ has similar time
674 behavior to C_5 -2N-monomers, and hence is thought to be second-generation products. Wennberg et al. (2018)
675 proposed that such a C_4 dinitrate was generated from OH-initiated further oxidation of $C_5H_7NO_4$. However, this
676 is not applicable here due to a lack of OH radicals in our system. Instead, we propose that the $C_4H_6N_2O_7$
677 observed in this study is dinitrooxy carbonyl compound resulting from NO_3 oxidation of $C_5H_7NO_4$ with
678 subsequent unimolecular decomposition (see Scheme S11 for details).

679 As shown in Fig. 5d, 3N-monomers are generated more slowly than 1N-monomers, but their signals grow
680 gradually as the experiment proceeds, with a significant increase especially for $C_5H_9N_3O_{10}$ in the last step.
681 Furthermore, we can see from Fig. 5c and Fig. 5d that the signals of C_5 trinitrates in step IV appear
682 anticorrelated to that of $C_5H_{10}N_2O_8$ and $C_5H_{10}N_2O_8$. The gas-phase 3N-monomers have rarely been reported in
683 previous literature. Ng et al. (2008) observed $C_5H_9N_3O_{10}$ compound in the particle-phase and assumed that it
684 was produced from NO_3 oxidation of the C_5 hydroxy nitrate ($C_5H_9NO_4$). Similarly, $C_5H_9N_3O_{11}$ and $C_5H_9N_3O_{12}$
685 can be formed through NO_3 reacting with dinitrooxy peroxy radicals, which result from corresponding first-
686 generation nitrooxy compounds (C_5 hydroperoxy nitrate, $C_5H_9NO_5$ or C_5 hydroxy hydroperoxy nitrate, $C_5H_9NO_6$)
687 oxidation by NO_3 radicals, as shown in Scheme S12. 3N-Monomers formed following such pathways are
688 second-generation products by definition. Regarding the rising signals of 3N-monomers in step IV, one
689 explanation is that although the reaction of dinitrooxy peroxy radicals with NO_3 is not an oxidation process,
690 their formation can be significantly facilitated by increasing NO_3 concentration. It is also possible that 3N-
691 monomers are formed through H-abstraction of 2N-monomers. NO_3 radicals can abstract the hydrogen of
692 dihydroxy dinitrate ($C_5H_{10}N_2O_8$) or hydroxyl hydroperoxy dinitrate ($C_5H_{10}N_2O_9$) from the carbon with an $-OH$,
693 $-OOH$ or $-ONO_2$ group attached, leading to alkyl radicals that can subsequently recombine with O_2 and then
694 react with NO_2 or NO_3 , yielding trinitrates or peroxytrinitrates containing three nitrogen atoms. 3N-Monomers
695 stemming from such reactions ought to be third-generation products. However, we should point out that 3N-

monomers formed following H-abstraction pathway are less likely because abstracting hydrogen from the hydroxyl, hydroperoxy or nitrooxy carbon would lead to fragmentation at most cases (Bianchi et al., 2019).

In addition, it is interesting to note that the signal of $C_5H_9N_3O_{10}$ increases continuously throughout step IV, whereas that of $C_5H_9N_3O_{11}$ and $C_5H_9N_3O_{12}$ drop after a short period of growth. Meanwhile, the production of $C_5H_9N_3O_{10}$ is facilitated by the increasing NO_3 concentration compared to that of $C_5H_9N_3O_{12}$ and $C_5H_9N_3O_{11}$. Currently, we cannot explain what exactly causes these differences, but we suspect that there may be different chemical pathways forming different 3N-monomers that are not covered here and may also be related to their different physical properties, such as vapor pressures.

(3) 2N- and 3N-dimers

As shown in Fig. 5e, 2N-dimers (except for $C_{10}H_{16}N_2O_{11}$) display very similar time behavior to 1N-monomer, which form rapidly after each injection, indicating that the signals of 2N-dimers are dominated by first-generation products like most 1N-monomers. It is noted that the time behavior of $C_{10}H_{16}N_2O_{11}$ (*m/z* 419) is completely different from that of other 2N-dimers. As illustrated in Fig. 5e, the production rate of $C_{10}H_{16}N_2O_{11}$ is initially much slower compared to other dimers. Besides, its signal increases monotonically in the first two oxidation stages, whereas that of the others always increase first, approaching the maximum as its chemical production competes against the losses, and decrease gradually thereafter. The special time behavior of $C_{10}H_{16}N_2O_{11}$ suggests that it has a different formation pathway from other 2N-dimers, and its signal is most likely dominated by secondary products. In addition, we find that the signal of $C_{10}H_{16}N_2O_{12}$ always starts to decay earlier than that of $C_{10}H_{16}N_2O_8$ and $C_{10}H_{16}N_2O_9$. If we assume that their production rates have the same order of magnitude (confirming by their formation rates after each injection), then it can be concluded that $C_{10}H_{16}N_2O_{12}$ had additional chemical destruction, or its volatility is much lower than $C_{10}H_{16}N_2O_8$ and $C_{10}H_{16}N_2O_9$ and hence has more rapid lost on the wall. It seems the second hypothesis is more likely when comparing its signal with and without dilution and wall-loss corrections (see Fig. S5). More detailed discussion about volatilities of different isoprene organonitrates will be provided in the next section.

It is proposed that dimers ($ROOR'$) are likely formed through the self- or cross-reaction of two peroxy radicals (Berndt et al. 2018). Consequently, the generation number of dimers depends only on how the involved peroxy radicals are formed. Table S1 summarizes the possible permutation scheme of 2N-dimers from $RO_2 + RO_2'$ reactions, and their structural information can be found in Scheme S13. For example, self-reaction of two C_5 nitrooxy peroxy radicals ($C_5H_8NO_5$) leads to the formation of $C_{10}H_{16}N_2O_8$ compound, while recombination of two C_5 nitrooxy hydroxyl peroxy radicals ($C_5H_8NO_6$) or a C_5 nitrooxy peroxy radical ($C_5H_8NO_5$) with a C_5 nitrooxy hydroperoxy peroxy radical ($C_5H_8NO_7$) results in $C_{10}H_{16}N_2O_{10}$ compound. According to their time behavior, 2N-dimers (except for $C_{10}H_{16}N_2O_{11}$) are thought to be first-generation products, and from this fact we can infer that the peroxy radicals contributing to dimer formation are dominated by first-generation intermediates. With regard to $C_{10}H_{16}N_2O_{11}$, we conclude that it is most likely a secondary product considering its typical second-generation behavior. In other words, at least one of the two C_5 nitrooxy peroxy radicals involved in formation of $C_{10}H_{16}N_2O_{11}$ must be a secondary intermediate. As listed in Table S1, $C_{10}H_{16}N_2O_{11}$ can be formed through $C_5H_8NO_6 + C_5H_8NO_7$ or $C_5H_8NO_6 + C_5H_8NO_7$ reactions, wherein $C_5H_8NO_7$ and $C_5H_8NO_8$ would be secondary peroxy radicals if they are formed through NO_3 further oxidation of the C_5 hydroxy carbonyl compounds ($C_5H_8O_2$ or $C_5H_8O_3$), as shown in Scheme S7. In addition, it is possible that $C_{10}H_{16}N_2O_{11}$ is

735 formed from a C₅ hydroxy peroxy radical C₅H₉O₃ reacting with a C₅ dinitrooxy hydroxy carbonyl peroxy radical
736 C₅H₇N₂O₁₀ (from C₅H₇NO₅ oxidation by NO₃), as we observe high abundant C₅H₁₀O₃ during the experiment,
737 although C₅H₁₀O₃ is assumed to be the major product of the OH-initiated chemistry.

738 Apart from 2N-dimers, we observe detectable signals at *m/z* 450, 466, 482, 498 and 514, which are
739 identified as 3N-dimers with molecular formulas C₁₀H₁₇N₃O₁₂₋₁₆. C₁₀H₁₇N₃O₁₂ and C₁₀H₁₇N₃O₁₃ were detected
740 in the particle-phase in previous study, suggesting that they have low volatility and can contribute to SOA
741 formation (Ng et al., 2008). As shown in Fig. 5f, 3N-dimers form much slower than 2N-dimers, but their
742 productions are accelerated as the experiment proceeds. This is similar to the characteristics of second-
743 generation 2N- and 3N-monomers to some degree, suggesting that the signals of 3N-dimers we observed are
744 most likely dominated by secondary or even later-generation compounds.

745 It is worth noting that C₁₀H₁₇N₃O₁₂₋₁₄ and C₁₀H₁₇N₃O_{15,16} have two completely different types of time
746 behavior. The signals of C₁₀H₁₇N₃O₁₂, C₁₀H₁₇N₃O₁₃ and C₁₀H₁₇N₃O₁₄ more or less increase in the first three
747 oxidation steps and start to decline in the late of step III with increasing NO₃ concentration. As depicted in
748 Scheme S13, 3N-dimers can result from further oxidation of 2N-dimers or the cross-reaction of a first-
749 generation nitrooxy peroxy radical with a secondary dinitrooxy peroxy radical. Accordingly, such 3N-dimers are
750 thought to be second-generation products, and they would further react with NO₃ due to the remaining double
751 bond in their molecular structure, leading to severe chemical destruction of these compounds under high NO₃
752 condition. This is consistent with the time behavior of C₁₀H₁₇N₃O₁₂, C₁₀H₁₇N₃O₁₃ and C₁₀H₁₇N₃O₁₄. In contrast,
753 C₁₀H₁₇N₃O₁₅ and C₁₀H₁₇N₃O₁₆ are formed even more slowly, and their production in the first four hours is close
754 to zero. However, their signals start to climb in the late of step III, during which that of C₁₀H₁₇N₃O₁₂,
755 C₁₀H₁₇N₃O₁₃ and C₁₀H₁₇N₃O₁₄ decline. This suggests that C₁₀H₁₇N₃O₁₅ and C₁₀H₁₇N₃O₁₆ formed under high NO₃
756 condition probably result from further reactions of C₁₀H₁₇N₃O₁₂₋₁₄. However, this assumption is highly uncertain
757 and more experimental and theoretical studies are needed to substantiate it. In terms of their time behavior,
758 C₁₀H₁₇N₃O₁₅ and C₁₀H₁₇N₃O₁₆ are thought to be third- or even later-generation products.

759 **3.3 Volatility distribution of isoprene nitrates**

760 **3.3.1 C* estimated by experimental methods**

761 Detailed information about the volatility of organic molecules is essential to evaluate their potential to form
762 SOA. In order to investigate the potential contribution of various isoprene oxidation products to SOA formation,
763 we use our (limited) experimental data to estimate the vapor pressure of different isoprene organonitrates on the
764 basis of their condensation behavior. Figure 6 shows how the signals of gas-phase products change in
765 experiments with and without seed aerosols (ammonium sulfate). Please note that while the two experiments
766 were conducted under similar conditions, the procedures could not be kept fully identical as aerosol seeding
767 required specific measures and the oxidation chemistry might be slightly altered (e.g., due to initiation of
768 heterogeneous reactions).

769 As shown in Fig. 6, the signals of most of the selected compounds decline when there are seed aerosols in
770 the chamber, indicating that part of the condensable vapors is partitioned to the particle-phase due to the
771 introduction of condensation sinks. The decrease in signal differs for different products, mostly depending on
772 their vapor pressures. As expected, the lower volatility of a compound the higher the fraction that condenses.
773 For instance, the signal of C₅H₉NO₇ decreases by more than 70% in experiment with seed aerosols, compared to

774 less than 40% on average for other less-oxidized 1N-monomers. In some cases (e.g., $C_5H_9NO_4$ and $C_5H_9NO_5$)
775 however, the product signals in experiment with seed aerosols are higher than that without seeds after the
776 consumed isoprene exceeding a certain level. In addition, the signal of $C_5H_6N_2O_8$ in the experiment with seeds
777 is always higher compared to that without seeds. One explanation for this phenomenon is the effect of
778 heterogeneous reactions. It is likely that some condensed compound (denoted as A) can react on the particle
779 surface to form new products with the molecular composition of compound B, or alternatively forming a
780 precursor of B. When they evaporate back to the gas phase, it can result in an increase in signal of compound B.
781 That's why a higher signal was observed for such compounds in experiment with seeds than that without seeds,
782 as observed for $C_5H_6N_2O_8$ in this case.

783 Based on the observed condensation behavior of different products, we can derive their vapor pressures
784 from the gas-particle equilibrium partitioning coefficients by Eq. (2). As depicted in Fig. 7, the saturation
785 concentrations of different organonitrates show a decreasing tendency from 1N-, 2N-monomer and 3N-
786 monomers to 2N- and 3N-dimers, suggesting that dimers have a higher propensity of condensation and
787 contribute to SOA formation. This is partly related to their molecular weight, as larger molecules generally have
788 lower vapor pressures. However, it cannot explain all the features of the volatility distribution. For example,
789 $C_5H_9NO_6$ (corresponding to No.8 in Fig.7) has higher mass than $C_5H_9NO_5$ (corresponding to No.7 in Fig.7) but
790 is predicted to have higher vapor pressure. In general, chemical composition and functionalities have significant
791 effects on vapor pressure. For instance, the 2D-VBS composition-activity relationship suggests that each carbon
792 and oxygen decrease C^* by 0.475 and 1.75 decades, respectively (Donahue et al., 2011). Different functional
793 groups also have very different effect on volatility. For example, each hydroxyl group ($-OH$) or hydroperoxy
794 group ($-OOH$) typically reduces the volatility by 2.4 to 2.5 decades, while the less polar carbonyl group ($=O$)
795 reduces the volatility by 1 decade (Pankow and Asher 2008, Donahue et al., 2011). The nitrooxy group ($-ONO_2$)
796 has a similar reductive effect on vapor pressure, which typically reduces C^* by 2.5 orders of magnitude (Pankow
797 and Asher, 2008). Here, the irregularly high vapor pressure of $C_5H_9NO_6$ is most likely attributed to the
798 functional groups it contains. As listed in Table S2, $C_5H_9NO_6$ is proposed to be nitrooxy hydroxy hydroperoxyl
799 compound, which consists of two highly polar functional groups $-OH$ and $-OOH$, contributing to formation of
800 intramolecular H-bonding that can significantly increase the vapor pressure (Bilde et al., 2015; Kurten et al.,
801 2016), while $C_5H_9NO_5$ only contains a $-OOH$ group and hence cannot form intramolecular H-bonding. This
802 explanation is also valid for $C_5H_9N_3O_{10}$ and $C_5H_9N_3O_{12}$. In summary, these findings underline that the
803 constitutional and configurational information of a molecule is critical for vapor-pressure estimation.

804 3.3.2 C^* estimated by different parametrization methods

805 For comparison, we also adopt different parameterization methods to estimate the saturation vapor pressures of
806 isoprene oxidation products based on their molecular composition and the proposed structures, with the results
807 depicted in Fig. 7. In general, the saturation concentrations calculated by different parameterization methods
808 show a similar volatility distribution to that calculated by experimental method, with C^* of 1N-, 2N- and 3N-
809 monomers, 2N- and 3N-dimers decreasing in turn. However, different parameterization methods lead to the
810 predicted vapor concentrations with a variability of several orders of magnitude for the same compound, and the
811 discrepancies become larger and larger with more complicated molecules. In addition, C^* of structural isomers
812 calculated by the same method could span several decades.

As shown in Fig. 7, the Donahue et al. parameterization mostly provides lower C^* compared to the three GC methods, with a maximum discrepancy up to 12 orders of magnitude for dimers. With regard to smaller and less oxidized 1N-monomers, predicted C^* values from different methods are in relatively good agreement with each other, whereas the disagreement increases to 11 orders of magnitude for 2N- and 3N-monomers. This is mainly the case because the organic molecules were regarded as a mixture of =O and –OH functional groups in the Donahue et al. parameterization, and their relative abundance was assumed to be 1:1 (Donahue et al., 2011). In consequence, the –OOH functional group in peroxides is treated as two –OH groups when adapting the method proposed by Donahue et al. (2011). However, it is demonstrated that the extra oxygen in peroxy moieties has little contribution to reduce vapor pressure (Pankow and Asher et al., 2008), hence treating –OOH equivalent to two –OH functional groups would underestimate the vapor pressures of hydroperoxyl compounds. Furthermore, organic compounds consisting of multiple polar functional groups (such as hydroperoxy, peroxy acid, and peroxide functional groups) tend to form intramolecular H-bonding, which would increase the vapor pressure (Bilde et al., 2015; Kurten et al., 2016). All these issues contribute to an underestimation of the vapor pressures of multifunctional products when using the Donahue et al. parameterization. Mohr et al. (2019) improved the parameterization for vapor-pressure estimation by taking the presence of –OOH functional groups in HOM explicitly into consideration and revising the parameters to reduce the effect of –OOH on depressing C^* . Consequently, the Mohr et al. parameterization effectively reduces the discrepancy between its estimates and those predicted by the GC methods, with the differences within 6 orders of magnitude. Nevertheless, there is a slight tendency to underestimate the vapor pressures of 3N-monomers and dimers. The Peräkylä et al. parameterization method, which was derived from measurements of the condensation behavior of HOM produced from α -pinene ozonolysis, predicts similar C^* to Donahue et al. method for 1N-monomers, but higher C^* for 2N- and 3N-monomers like the Mohr et al. method. As for dimers, especially for the 3N-dimers containing more multifunctional groups, the Peräkylä et al. method even predicts higher C^* than the GC methods in most cases.

Three GC methods predict similar saturation vapor pressures for different isoprene nitrates in this work, with the differences within 5 orders of magnitudes. Generally, the SIMPOL.1 method always provides higher C^* compared to another two methods, and the disagreement between methods becomes larger for molecules containing multifunctional groups. For instance, the vapor-pressure discrepancy between SIMPOL.1 and another two GC methods are both 2 orders of magnitude for $C_5H_9NO_{4,5}$ and $C_{10}H_{17}N_3O_{12-14}$, but it increased up to 4 and 5 orders of magnitude, respectively, for $C_5H_9NO_{6,7}$ and $C_{10}H_{17}N_3O_{15,16}$.

It is worth noting that the Nannoolal et al. method is able to distinguish between positional isomers (e.g., the estimated C^* for two $C_5H_{10}N_2O_9$ isomers are 0.858 and 0.333 $\mu\text{g m}^{-3}$, respectively), whereas such capacity of EVAPORATION method is limited (e.g., it is able to distinguish between the position isomers of $C_5H_{10}N_2O_9$, but it predicts identical C^* for $C_{10}H_{16}N_2O_{11}$ isomers). In this respect, the SIMPOL.1 method cannot distinguish between positional isomers at all. Moreover, SIMPOL.1 method predicts smaller differences between functional group isomers for 1N-monomers and 3N-dimers compared to the Nannoolal et al. method and the EVAPORATION, but there is no such regular pattern for 2N-monomers and 2N-dimers.

By comparing the results calculated by experimental method with those by different parameterization methods, we can see that the GC methods predict high saturation concentrations for 1N-monomers than the experimental method, while the Donahue et al. and Peräkylä et al. method provide similar C^* values. With

853 regard to 2N-monomers, the GC methods predict higher vapor pressures compared to the experimental method,
854 but the discrepancy decreases with decreasing saturation concentration. The disagreement of C^* for 2N-
855 monomers estimated by experimental method and the Mohr et al. or Peräkylä et al. method are within 2 orders
856 of magnitude. In terms of low-volatility dimers, however, the vapor pressures calculated by the experimental
857 method were 1–3 orders of magnitude larger than that predicted by the parameterization methods except for the
858 Peräkylä et al. method. The Peräkylä et al. method provides the most similar predictions to the experimental
859 method for isoprene oxidation products in the full volatility range, with the disagreement within 1 order of
860 magnitude.

861 In general, the vapor pressures estimated experimentally in this study are very close to that calculated by
862 Peräkylä et al. method for which the estimation parameters were also derived experimentally. The discrepancy
863 between the experimental and the GC methods spans several orders of magnitude depending on different
864 compounds, with the GC methods predicting higher C^* for less-functionalized 1N-monomers, approximate C^*
865 for 2N-monomers, but lower C^* for highly functionalized dimers. It is difficult to tell which method is more
866 reliable without any measured saturation vapor pressure data on such multifunctional organic nitrates. However,
867 considering the fact that the existing GC methods tend to underestimate saturation vapor pressures of the highly
868 functionalized organic molecules due to their limited capability to deal with intramolecular interactions (e.g. the
869 intramolecular hydrogen bonding formed among polar functional groups), and the well consistent results of two
870 experimentally derived methods, we suggest that the experimental method might be a good choice to determine
871 the volatility of highly oxidized compounds accurately.

872 **3.3.3 Volatility distribution of isoprene nitrates and expected SOA yields.**

873 Although the vapor pressures calculated by different methods show a variability of several orders of magnitude,
874 the predicted volatility distributions of different organic groups are consistent. To eliminate the discrepancy
875 caused by methods and get an average trend of the volatility distribution of various isoprene nitrates, we use the
876 median value of C^* calculated by different methods as the estimator of the vapor pressure for each nitrate
877 compound.

878 The average carbon oxidation state is plotted against $\log_{10}(C^*)$ in Fig. 8 to describe the volatility
879 distribution of organic nitrates formed from isoprene oxidation by NO_3 . Generally, the volatility of measured
880 gas-phase products spans a wide range from IVOC to ELVOC, wherein all of the 1N-monomers fall in the
881 IVOC or SVOC range, suggesting that 1N-monomers have low potential to form SOA by simple condensation
882 as long as the organic aerosol load is less than $200 \mu\text{g m}^{-3}$. The addition of a second or third $-\text{NO}_3$ functional
883 group decreases C^* of most 2N- and 3N-monomers by 2-3 decades compared with 1N-monomers, and most of
884 them belong to SVOC. They will start to condense in significant fractions if the organic aerosol load is in a
885 range of $1\text{--}10 \mu\text{g m}^{-3}$, which means 2N- and 3N-monomers with $\text{OS}_c > -0.8$ may contribute to SOA formation
886 under atmospheric conditions. With regard to dimers, all 3N-dimers and 2N-dimers (except for $\text{C}_{10}\text{H}_{16}\text{N}_2\text{O}_{8.9}$)
887 are in LVOC or even ELVOC range, indicating isoprene dimers had high propensity to form SOA even at
888 organic aerosol loads $<< 1 \mu\text{g/m}^3$. However, we would like to emphasize here that the signals of 2N- and 3N-
889 dimers only account for less than 2% on average of the total assigned signals, as shown in Fig. S6. This suggests
890 that the SOA yield of isoprene from NO_3 oxidation by condensation should be low under atmospheric
891 conditions.

892 The fate of RO₂ determines the product distribution directly and hence could substantially affect SOA
893 yields and aerosol physicochemical properties (Boyd et al., 2015; Fry et al., 2018; Ng et al., 2008; Schwantes et
894 al., 2015; Ziemann and Atkinson, 2012). Consequently, it would be helpful to provide SOA yields together with
895 the fate of RO₂. In our experiment, reactions with HO₂ and NO₃ the dominant loss channels for the initially
896 formed RO₂ from isoprene oxidation by NO₃, contributing for ~ 53% and ~ 30% of overall RO₂ loss; RO₂ + RO₂
897 reactions contributed a minor fraction (~ 13%) followed by unimolecular reactions with a contribution of ~ 5%,
898 according to modelling results (Brownwood et al., 2021). More details about the modelling and the results can
899 be found elsewhere (Brownwood et al., 2021; Vereecken et al., 2021).

900 In polluted urban regions, the fate of RO₂ is typically dominated by RO₂ + NO₃, while in the more pristine
901 environment, the RO₂ + HO₂ reaction will dominate RO₂ fate (Bianchi et al., 2019; Boyd et al., 2015; Brown
902 and Stutz, 2012). RO₂ + HO₂ was more important in the chamber than that in ambient and enhanced RO₂ + HO₂
903 would potentially lead to less dimer formation by RO₂ + RO₂ reactions and hence reducing SOA yields.
904 However, a recent work from Brownwood et al. (2021) based on the same campaign as this study pointed out
905 that the bulk aerosol composition and SOA yields were largely independent of RO₂ fate. Similarly, Boyd et al.
906 (2015) found for β -pinene-NO₃ system that RO₂ fate (“RO₂ + NO₃ dominant” vs “RO₂ + HO₂ dominant”) had
907 only few effects on SOA formation. Therefore, the SOA yield estimated in this study is expected to be
908 comparable to that in the atmosphere.

909 Assuming that the dimers in the LVOC or ELVOC range will condense onto particles, we estimated a SOA
910 mass yield for condensation of isoprene organic nitrates of about 5 % \pm 2 %. This value is based on an averaged
911 bulk organonitrate sensitivity of 0.019 norm. count s⁻¹ ppbv⁻¹ and has been corrected for wall loss and dilution
912 (see Fig. S7, with uncorrected SOA mass yield of about 2 %). The estimated SOA mass yield is within the range
913 of those reported in the literature, but at the lower end (4.3% to 23.8% depending on RO₂ fate, Ng et al., 2008;
914 0.7% for first generation oxidation and 14% after oxidation of both double bonds, Rollins et al., 2009; 27% on
915 average for ambient measurements, Fry et al., 2018). The SOA yield will probably become somewhat higher if
916 taking the contribution of SVOCs (including C₁₀H₁₆N₂O₈, C₁₀H₁₆N₂O₉ and some other monomers, as shown in
917 Fig. 8) into consideration. Our finding is commensurable with the SOA yield for isoprene organic nitrates of 2-6%
918 derived from HR-AMS measurements in the same campaign (Brownwood et al., 2021).

919 In addition, Br⁻ adduct ionization CIMS is selective for HO₂ and less oxidized organic compounds
920 (Albrecht et al., 2019; Rissanen et al., 2019), so it is reasonable to assume that there were more highly oxidized
921 products that were not detected by Br⁻ CIMS. This assumption is confirmed by measurements with a NO₃⁻ CIMS
922 performed in another isoprene-NO₃ experiment in SAPHIR (Zhao et al., 2021). Zhao et al. (2021) observed a
923 higher fraction of dimers and more highly oxidized monomers and dimers, as well as trimers (C₁₅ compounds).
924 As a consequence, the SOA yields derived from NO₃⁻ CIMS measurements is slightly higher.

925 From these points of view our yield is more a lower limit. However, even if we assume an error of a factor
926 of 2, the SOA yield of isoprene organic nitrates by condensation is more likely in a range of about 10% or less
927 than in the higher range of 20-30% published in the literature. Of course, by our method we cannot cover any
928 liquid phase processes that would lead to additional SOA beyond the condensation of the target compounds.

929 **4. Conclusions and implication**

930 In this work, a gas-phase experiment conducted in the SAPHIR chamber under near atmospheric conditions in
931 the dark was analyzed to primarily investigate the multi-generation chemistry of isoprene-NO₃ system. The
932 characteristics of a diversity of isoprene nitrates were measured by the CIMS using Br⁻ as the reagent ion.
933 Isoprene 1N-, 2N-, and 3N-monomers and 2N- and 3N-dimers have different time behaviors, indicating the
934 occurrence of multi-generation oxidation during this process. Based on their specific time behaviors as well as
935 the general knowledge of isoprene and radical chemistry, the possible formation mechanisms of these
936 compounds are proposed.

937 In order to evaluate the potential contribution of various isoprene nitrates to SOA formation, different
938 composition-activity and group-contribution methods were used to estimate their saturation vapor pressures. We
939 also calculated the vapor pressures of isoprene oxidation products based on the gas-particle equilibrium
940 coefficients derived from condensation measurements. The vapor pressures estimated by different methods
941 spans several orders of magnitude, and the discrepancies increase as the compounds become highly
942 functionalized. It shows that existing composition-activity methods (especially the Donahue et al. method)
943 seriously underestimate the saturation vapor pressure of multifunctional low-volatility molecules compared to
944 the experimental methods. The group-contribution methods seem to have a better performance than the CA
945 methods on this aspect, but they still have a tendency to underestimate the vapor pressures of multifunctional
946 molecules. We suggest that experimental methods is a good choice to estimate the volatility of highly oxidized
947 compounds accurately.

948 According to our results, 1N-monomers and most 2N and 3N-nitrates fall in the IVOC or SVOC range.
949 Therefore, they have, with a few exceptions, low potential to form SOA at atmospheric organic aerosol loads. In
950 contrast, 2N- and 3N-dimers are estimated to have low or extremely low volatility, indicating that they are
951 significant contributors to SOA formation, although dimers constitute less than 2% of the total explained signals.
952 In this study, no new particle formation events were observed. Assuming that the dimers in the LVOC or
953 ELVOC range will condense onto particles completely, we estimate a SOA mass yield of about 5 % ± 2 %,
954 which is a lower limit if one takes a possible contribution of the minor dimer products as well as SVOC species
955 into consideration. Both the volatility distribution and calculated SOA yields indicate that isoprene dimers
956 formed from NO₃ oxidation are the major contributors to SOA formation.

957 **Data availability**

958 All data given in figures can be displayed in tables or in digital form. This includes the data given in the
959 Supplement. Please send all requests for data to t.mentel@fz-juelich.de and r.wu@fz-juelich.de.
960 The data used in this work are available on the EUROCHAMP data base (<https://data.eurochamp.org/data-access/chamber-experiments/>, EUROCHAMP, 2020) under <https://doi.org/10.25326/JTYK-5V47> and
962 <https://doi.org/10.25326/0SPZ-BN30>.

963 **Author contributions**

964 HF, JNC, JLF, SSB, AW, and AKS designed the study. Instrument deployment and data analysis were carried
965 out by RW, ET, SK, SRA, LH, AN, HF, RT, TH, PTMC, JS, FB, BB, JAT. RW, LV, ET, DZ, JAT, MH, TFM
966 interpreted the compiled data set. RW, TFM, LV wrote the manuscript. All co-authors discussed the results and
967 commented on the manuscript.

968 **Competing interests**

969 The authors declare that they have no conflict of interest.

970 **Acknowledgements**

971 This work has received funding from the European Research Council (ERC) and European Commission (EC)
972 under the European Union's Horizon 2020 research and innovation program (SARLEP grant agreement No.
973 681529, Eurochamp 2020 grant agreement No. 730997 and FORCeS, grant No.821205). R.Wu gratefully
974 acknowledges the fellowship from Helmholtz-OCPC (Office of China Postdoc Council) Postdoc Program for
975 research support. M. Hallquist, E. Tsiligiannis and Th. F. Mentel acknowledge support by the Swedish Research
976 Council (grant numbers 2014-05332 and 2018-04430) and FORMAS (grant numbers 2015-1537 and 2019-586).

977 **References**

978 Albrecht, S. R., Novelli, A., Hofzumahaus, A., Kang, S., Baker, Y., Mentel, T., Wahner, A., and Fuchs, H.:
979 Measurements of hydroperoxy radicals (HO₂) at atmospheric concentrations using bromide chemical
980 ionisation mass spectrometry, *Atmos. Meas. Tech.*, 12, 891-902, 10.5194/amt-12-891-2019, 2019.

981 Anglada, J. M., Crehuet, R., and Francisco, J. S.: The Stability of α -Hydroperoxyalkyl Radicals, *Chem. Eur. J.*,
982 22, 18092-18100, 2016.

983 Atkinson, R., and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review,
984 *Atmos. Environ.*, 37, 197-219, 10.1016/S1352-2310(03)00391-1, 2003.

985 Atkinson, R.: Gas-phase tropospheric chemistry of organic compounds: a review, *Atmos. Environ.*, 41, 200-240,
986 10.1016/j.atmosenv.2007.10.068, 2007.

987 Barber, V. P., Pandit, S., Green, A. M., Trongsirivat, N., Walsh, P. J., Klippenstein, S. J., and Lester, M. I.:
988 Four-carbon Criegee intermediate from isoprene ozonolysis: Methyl vinyl ketone oxide synthesis, infrared
989 spectrum, and OH production, *J. Am. Chem. Soc.*, 140, 10866-10880, 2018.

990 Berndt, T., Mentler, B., Scholz, W., Fischer, L., Herrmann, H., Kulmala, M., and Hansel, A.: Accretion Product
991 Formation from Ozonolysis and OH Radical Reaction of alpha-Pinene: Mechanistic Insight and the
992 Influence of Isoprene and Ethylene, *Environ. Sci. Technol.*, 52, 11069-11077, 10.1021/acs.est.8b02210,
993 2018.

994 Bianchi, F., Kurten, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J. D., Wennberg, P.
995 O., Mentel, T. F., Wildt, J., Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R., Thornton, J. A.,
996 Donahue, N., Kjaergaard, H. G., and Ehn, M.: Highly Oxygenated Organic Molecules (HOM) from Gas-

997 Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol, *Chem. Rev.*,
998 119, 3472-3509, 10.1021/acs.chemrev.8b00395, 2019.

999 Bilde, M., Barsanti, K., Booth, M., Cappa, C. D., Donahue, N. M., Emanuelsson, E. U., McFiggans, G., Krieger,
1000 U. K., Marcolli, C., Topping, D., Ziemann, P., Barley, M., Clegg, S., Dennis-Smither, B., Hallquist, M.,
1001 Hallquist, A. M., Khlystov, A., Kulmala, M., Mogensen, D., Percival, C. J., Pope, F., Reid, J. P., Ribeiro da
1002 Silva, M. A., Rosenoern, T., Salo, K., Soonsin, V. P., Yli-Juuti, T., Prisle, N. L., Pagels, J., Rarey, J.,
1003 Zardini, A. A., and Riipinen, I.: Saturation vapor pressures and transition enthalpies of low-volatility
1004 organic molecules of atmospheric relevance: from dicarboxylic acids to complex mixtures, *Chem. Rev.*,
1005 115, 4115-4156, 10.1021/cr5005502, 2015.

1006 Brown, S., Degouw, J., Warneke, C., Ryerson, T., Dubé, W., Atlas, E., Weber, R., Peltier, R., Neuman, J., and
1007 Roberts, J.: Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on
1008 reactive nitrogen partitioning and secondary organic aerosol, *Atmos. Chem. Phys.*, 9, 3027-3042,
1009 10.5194/acp-9-3027-2009, 2009.

1010 Brown, S. S., and Stutz, J.: Nighttime radical observations and chemistry, *Chem. Soc. Rev.*, 41, 6405-6447,
1011 2012.

1012 Brownwood, B., Turdziladze, A., Hohaus, T., Wu, R., Mentel, T. F., Carlsson, P. T., Tsiligiannis, E., Hallquist,
1013 M., Andres, S., and Hantschke, L.: Gas-particle partitioning and SOA yields of organonitrate products from
1014 NO₃-initiated oxidation of isoprene under varied chemical regimes, *ACS Earth Space Chem.*, 2021.

1015 Boyd, C., Sanchez, J., Xu, L., Eugene, A. J., Nah, T., Tuet, W., Guzman, M. I., and Ng, N.: Secondary organic
1016 aerosol formation from the β -pinene+ NO₃ system: effect of humidity and peroxy radical fate, *Atmos.*
1017 *Chem. Phys.*, 15, 7497-7522, 2015.

1018 Carlton, A. G., Wiedinmyer, C., and Kroll, J. H.: A review of Secondary Organic Aerosol (SOA) formation
1019 from isoprene, *Atmos. Chem. Phys.*, 9, 4987-5005, 10.5194/acp-9-4987-2009, 2009.

1020 Compernolle, S., Ceulemans, K., and Müller, J. F.: EVAPORATION: a new vapour pressure estimation
1021 method for organic molecules including non-additivity and intramolecular interactions, *Atmos. Chem. Phys.*,
1022 11, 9431-9450, 10.5194/acp-11-9431-2011, 2011.

1023 Crosson, E.: A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and
1024 water vapor, *Appl. Phys. B*, 92, 403-408, 10.1007/s00340-008-3135-y, 2008.

1025 Crounse, J. D., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., and Wennberg, P. O.: Autoxidation of Organic
1026 Compounds in the Atmosphere, *J. Phys. Chem. Lett.*, 4, 3513-3520, 10.1021/jz4019207, 2013.

1027 Dommen, J., Hellen, H., Saurer, M., Jaeggi, M., Siegwolf, R., Metzger, A., Duplissy, J., Fierz, M., and
1028 Baltensperger, U.: Determination of the aerosol yield of isoprene in the presence of an organic seed with
1029 carbon isotope analysis, *Environ. Sci. Technol.*, 43, 6697-6702, 2009.

1030 Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled partitioning, dilution, and chemical
1031 aging of semivolatile organics, *Environ. Sci. Technol.*, 40, 2635-2643, 10.1021/es052297c, 2006.

1032 Donahue, N. M., Epstein, S. A., Pandis, S. N., and Robinson, A. L.: A two-dimensional volatility basis set: 1.
1033 organic-aerosol mixing thermodynamics, *Atmos. Chem. Phys.*, 11, 3303-3318, 10.5194/acp-11-3303-2011,
1034 2011.

1035 Donahue, N. M., Kroll, J. H., Pandis, S. N., and Robinson, A. L.: A two-dimensional volatility basis set – Part 2:
1036 Diagnostics of organic-aerosol evolution, *Atmos. Chem. Phys.*, 12, 615-634, 10.5194/acp-12-615-2012,
1037 2012.

1038 Dubé, W. P., Brown, S. S., Osthoff, H. D., Nunley, M. R., Ciciora, S. J., Paris, M. W., McLaughlin, R. J., and
1039 Ravishankara, A.: Aircraft instrument for simultaneous, in situ measurement of NO₃ and N₂O₅ via
1040 pulsed cavity ring-down spectroscopy, *Rev. Sci. Instrum.*, 77, 034101, 10.1063/1.2176058, 2006.

1041 Ehn, M., Thornton, J. A., Kleist, E., Sipila, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R.,
1042 Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I. H., Rissanen, M., Jokinen, T., Schobesberger, S.,
1043 Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurten, T., Nielsen, L. B., Jorgensen, S., Kjaergaard, H. G.,
1044 Canagaratna, M., Maso, M. D., Berndt, T., Petaja, T., Wahner, A., Kerminen, V. M., Kulmala, M.,
1045 Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source of low-volatility secondary organic aerosol,
1046 *Nature*, 506, 476-479, 10.1038/nature13032, 2014.

1047 Friedman, B., and Farmer, D. K.: SOA and gas phase organic acid yields from the sequential photooxidation of
1048 seven monoterpenes, *Atmos. Environ.*, 187, 335-345, 10.1016/j.atmosenv.2018.06.003, 2018.

1049 Fry, J. L., Brown, S. S., Middlebrook, A. M., Edwards, P. M., Campuzano-Jost, P., Day, D. A., Jimenez, J. L.,
1050 Allen, H. M., Ryerson, T. B., Pollack, I., Graus, M., Warneke, C., de Gouw, J. A., Brock, C. A., Gilman, J.,
1051 Lerner, B. M., Dubé, W. P., Liao, J., and Welti, A.: Secondary organic aerosol (SOA) yields from
1052 NO₃ radical + isoprene based on nighttime aircraft power plant plume transects, *Atmos.*
1053 *Chem. Phys.*, 18, 11663-11682, 10.5194/acp-18-11663-2018, 2018.

1054 Guenther, A., Jiang, X., Heald, C., Sakulyanontvittaya, T., Duhl, T., Emmons, L., and Wang, X.: The Model of
1055 Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2. 1): an extended and updated
1056 framework for modeling biogenic emissions, *Geosci. Model Dev.*, 5, 1471–1492, 10.5194/gmd-5-1471-
1057 2012, 2012. .

1058 Hallquist, M., Wenger, J., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N.,
1059 George, C., and Goldstein, A.: The formation, properties and impact of secondary organic aerosol: current
1060 and emerging issues, *Atmos. Chem. Phys.*, 9, 5155–5236, 10.5194/acp-9-5155-2009, 2009 .

1061 Hu, J., Wu, L., Zheng, B., Zhang, Q., He, K., Chang, Q., Li, X., Yang, F., Ying, Q., and Zhang, H.: Source
1062 contributions and regional transport of primary particulate matter in China, *Environ. Pollut.*, 207, 31-42,
1063 10.1016/j.envpol.2015.08.037, 2015.

1064 Jenkin, M. E., Valorso, R., Aumont, B., and Rickard, A. R.: Estimation of rate coefficients and branching ratios
1065 for reactions of organic peroxy radicals for use in automated mechanism construction, *Atmos. Chem. Phys.*,
1066 19, 7691–7717, <https://doi.org/10.5194/acp-19-7691-2019>, 2019.

1067 Jenkin, M., Young, J., and Rickard, A.: The MCM v3. 3.1 degradation scheme for isoprene, *Atmos. Chem.*
1068 *Phys.*, 15, 11433–11459, 10.5194/acp-15-11433-2015, 2015.

1069 Jimenez, J. L., Canagaratna, M., Donahue, N., Prevot, A., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D.,
1070 Coe, H., and Ng, N.: Evolution of organic aerosols in the atmosphere, *science*, 326, 1525-1529,
1071 10.1126/science.1180353, 2009.

1072 Kim, P. S., Jacob, D. J., Fisher, J. A., Travis, K., Yu, K., Zhu, L., Yantosca, R. M., Sulprizio, M. P., Jimenez, J.
1073 L., Campuzano-Jost, P., Froyd, K. D., Liao, J., Hair, J. W., Fenn, M. A., Butler, C. F., Wagner, N. L.,
1074 Gordon, T. D., Welti, A., Wennberg, P. O., Crounse, J. D., St. Clair, J. M., Teng, A. P., Millet, D. B.,
1075 Schwarz, J. P., Markovic, M. Z., and Perring, A. E.: Sources, seasonality, and trends of southeast US

1076 aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem
1077 chemical transport model, *Atmos. Chem. Phys.*, 15, 10411-10433, 10.5194/acp-15-10411-2015, 2015.

1078 Kirkby, J., Duplissy, J., Sengupta, K., Frege, C., Gordon, H., Williamson, C., Heinritzi, M., Simon, M., Yan, C.,
1079 Almeida, J., Trostl, J., Nieminen, T., Ortega, I. K., Wagner, R., Adamov, A., Amorim, A., Bernhammer, A.
1080 K., Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X., Craven, J., Dias, A., Ehrhart, S., Flagan, R. C.,
1081 Franchin, A., Fuchs, C., Guida, R., Hakala, J., Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J.,
1082 Kim, J., Krapf, M., Kurten, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S., Molteni, U.,
1083 Onnela, A., Perakyla, O., Piel, F., Petaja, T., Praplan, A. P., Pringle, K., Rap, A., Richards, N. A., Riipinen,
1084 I., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld, J. H., Sipila, M.,
1085 Steiner, G., Stozhkov, Y., Stratmann, F., Tome, A., Virtanen, A., Vogel, A. L., Wagner, A. C., Wagner, P.
1086 E., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Zhang, X., Hansel, A., Dommen, J., Donahue, N.
1087 M., Worsnop, D. R., Baltensperger, U., Kulmala, M., Carslaw, K. S., and Curtius, J.: Ion-induced
1088 nucleation of pure biogenic particles, *Nature*, 533, 521-526, 10.1038/nature17953, 2016.

1089 Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., Jaoui, M., and Edney, E. O.: Ozone-isoprene reaction:
1090 Re-examination of the formation of secondary organic aerosol, *Geophys. Res. Lett.*, 34,
1091 10.1029/2006GL027485, 2007.

1092 Krechmer, J., Lopez-Hilfiker, F., Koss, A., Hutterli, M., Stoermer, C., Deming, B., Kimmel, J., Warneke, C.,
1093 Holzinger, R., Jayne, J., Worsnop, D., Fuhrer, K., Gonin, M., and de Gouw, J.: Evaluation of a New
1094 Reagent-Ion Source and Focusing Ion-Molecule Reactor for Use in Proton-Transfer-Reaction Mass
1095 Spectrometry, *Anal. Chem.*, 90, 12011-12018, 10.1021/acs.analchem.8b02641, 2018.

1096 Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation
1097 from isoprene photooxidation, *Environ. Sci. Technol.*, 40, 1869-1877, 10.1021/es0524301, 2006.

1098 Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R., Wilson, K. R., Altieri, K. E.,
1099 Mazzoleni, L. R., Wozniak, A. S., Bluhm, H., Mysak, E. R., Smith, J. D., Kolb, C. E., and Worsnop, D. R.:
1100 Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol, *Nat. Chem.*,
1101 3, 133-139, 10.1038/nchem.948, 2011.

1102 Kurten, T., Tiusanen, K., Roldin, P., Rissanen, M., Luy, J.-N., Boy, M., Ehn, M., and Donahue, N.: α -Pinene
1103 autoxidation products may not have extremely low saturation vapor pressures despite high O: C ratios, *J.
1104 Phys. Chem. A*, 120, 2569-2582, 10.1021/acs.jpca.6b02196, 2016.

1105 Kwan, A., Chan, A., Ng, N., Kjærgaard, H. G., Seinfeld, J., and Wennberg, P.: Peroxy radical chemistry and OH
1106 radical production during the NO₃-initiated oxidation of isoprene, *Atmos. Chem. Phys.*, 12, 7499–7515,
1107 10.5194/acp-12-7499-2012, 2012.

1108 Marais, E. A., Jacob, D. J., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W., Krechmer, J., Zhu, L., Kim,
1109 P. S., Miller, C. C., Fisher, J. A., Travis, K., Yu, K., Hanisco, T. F., Wolfe, G. M., Arkinson, H. L., Pye, H.
1110 O. T., Froyd, K. D., Liao, J., and McNeill, V. F.: Aqueous-phase mechanism for secondary organic aerosol
1111 formation from isoprene: application to the southeast United States and co-benefit of SO₂ emission
1112 controls, *Atmos. Chem. Phys.*, 16, 1603-1618, 10.5194/acp-16-1603-2016, 2016.

1113 McFiggans, G., Mentel, T. F., Wildt, J. r., Pullinen, I., Kang, S., Kleist, E., Schmitt, S., Springer, M., Tillmann,
1114 R., Wu, C., Zhao, D., Hallquist, M., Faxon, C., Le Breton, M., Hallquist, A. s. M., Simpson, D., Bergström,
1115 R., Jenkin, M. E., Ehn, M., Thornton, J. A., Alfarra, M. R., Bannan, T. J., Percival, C. J., Priestley, M.,

1116 Topping, D., and Kiendler-Scharr, A.: Secondary organic aerosol reduced by mixture of atmospheric
1117 vapours, *Nature*, 565, 587-593, 10.1038/s41586-018-0871-y, 2019.

1118 Mentel, T. F., Springer, M., Ehn, M., Kleist, E., Pullinen, I., Kurtén, T., Rissanen, M., Wahner, A., and Wildt, J.:
1119 Formation of highly oxidized multifunctional compounds: autoxidation of peroxy radicals formed in the
1120 ozonolysis of alkenes – deduced from structure–product relationships, *Atmos. Chem. Phys.*, 15, 6745-6765,
1121 10.5194/acp-15-6745-2015, 2015.

1122 Mohr, C., Thornton, J. A., Heitto, A., Lopez-Hilfiker, F. D., Lutz, A., Riipinen, I., Hong, J., Donahue, N. M.,
1123 Hallquist, M., Petaja, T., Kulmala, M., and Yli-Juuti, T.: Molecular identification of organic vapors driving
1124 atmospheric nanoparticle growth, *Nat. Commun.*, 10, 4442, 10.1038/s41467-019-12473-2, 2019.

1125 Molteni, U., Simon, M., Heinritzi, M., Hoyle, C. R., Bernhammer, A.-K., Bianchi, F., Breitenlechner, M., Brilke,
1126 S., Dias, A., Duplissy, J., Frege, C., Gordon, H., Heyn, C., Jokinen, T., Kürten, A., Lehtipalo, K.,
1127 Makhmutov, V., Petäjä, T., Pieber, S. M., Praplan, A. P., Schobesberger, S., Steiner, G., Stozhkov, Y.,
1128 Tomé, A., Tröstl, J., Wagner, A. C., Wagner, R., Williamson, C., Yan, C., Baltensperger, U., Curtius, J.,
1129 Donahue, N. M., Hansel, A., Kirkby, J., Kulmala, M., Worsnop, D. R., and Dommen, J.: Formation of
1130 Highly Oxygenated Organic Molecules from α -Pinene Ozonolysis: Chemical Characteristics, Mechanism,
1131 and Kinetic Model Development, *ACS Earth Space Chem.*, 3, 873-883,
1132 10.1021/acsearthspacechem.9b00035, 2019.

1133 Mutzel, A., Rodigast, M., Iinuma, Y., Böge, O., and Herrmann, H.: Monoterpene SOA – Contribution of first-
1134 generation oxidation products to formation and chemical composition, *Atmos. Environ.*, 130, 136-144,
1135 10.1016/j.atmosenv.2015.10.080, 2016.

1136 Nannoolal, Y., Rarey, J., Ramjugernath, D., and Cordes, W.: Estimation of pure component properties: Part 1.
1137 Estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and
1138 group interactions, *Fluid Phase Equilib.*, 226, 45-63, 10.1016/j.fluid.2004.09.001, 2004.

1139 Nannoolal, Y., Rarey, J., and Ramjugernath, D.: Estimation of pure component properties: Part 3. Estimation of
1140 the vapor pressure of non-electrolyte organic compounds via group contributions and group interactions,
1141 *Fluid Phase Equilib.*, 269, 117-133, 10.1016/j.fluid.2008.04.020, 2008.

1142 Ng, N., Kwan, A., Surratt, J., Chan, A., Chhabra, P., Sorooshian, A., Pye, H. O., Crounse, J., Wennberg, P., and
1143 Flagan, R.: Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals
1144 (NO_3), *Atmos. Chem. Phys.*, 8, 4117–4140, 10.5194/acp-8-4117-2008, 2008.

1145 Ng, N. L., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Kroll, J. H., Kwan, A. J., McCabe, D. C., Wennberg, P.
1146 O., Sorooshian, A., Murphy, S. M., Dalleska, N. F., Flagan, R. C., and Seinfeld, J. H.: Effect of
1147 NO_{x} level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes,
1148 *Atmos. Chem. Phys.*, 7, 5159-5174, 10.5194/acp-7-5159-2007, 2007.

1149 Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N. M.,
1150 Fry, J. L., Fuchs, H., Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J. L.,
1151 Kiendler-Scharr, A., Lee, B. H., Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H. D., Ouyang,
1152 B., Picquet-Varrault, B., Platt, U., Pye, H. O. T., Rudich, Y., Schwantes, R. H., Shiraiwa, M., Stutz, J.,
1153 Thornton, J. A., Tilgner, A., Williams, B. J., and Zaveri, R. A.: Nitrate radicals and biogenic volatile
1154 organic compounds: oxidation, mechanisms, and organic aerosol, *Atmos. Chem. Phys.*, 17, 2103-2162,
1155 10.5194/acp-17-2103-2017, 2017.

1156 Novelli, A., Cho, C., Fuchs, H., Hofzumahaus, A., Rohrer, F., Tillmann, R., Kiendler-Scharr, A., Wahner, A.,
1157 and Vereecken, L.: Experimental and theoretical study on the impact of a nitrate group on the chemistry of
1158 alkoxy radicals, *Phys. Chem. Chem. Phys.*, 23, 5474–5495, <https://doi.org/10.1039/d0cp0555g>, 2021.

1159 Novelli, A., Vereecken, L., Bohn, B., Dorn, H.-P., Gkatzelis, G. I., Hofzumahaus, A., Holland, F., Reimer, D.,
1160 Rohrer, F., and Rosanka, S.: Importance of isomerization reactions for OH radical regeneration from the
1161 photo-oxidation of isoprene investigated in the atmospheric simulation chamber SAPHIR, *Atmos. Chem.*
1162 *Phys.*, 20, 3333–3355, 10.5194/acp-20-3333-2020, 2020.

1163 O'Meara, S., Booth, A. M., Barley, M. H., Topping, D., and McFiggans, G.: An assessment of vapour pressure
1164 estimation methods, *Phys. Chem. Chem. Phys.*, 16, 19453-19469, 10.1039/c4cp00857j, 2014.

1165 Orlando, J. J., Tyndall, G. S., and Wallington, T. J.: The atmospheric chemistry of alkoxy radicals, *Chem. Rev.*,
1166 103, 4657-4690, 10.1021/cr020527p, 2003.

1167 Orlando, J. J., and Tyndall, G. S.: Laboratory studies of organic peroxy radical chemistry: an overview with
1168 emphasis on recent issues of atmospheric significance, *Chem. Soc. Rev.*, 41, 6294-6317,
1169 10.1039/C2CS35166H, 2012.

1170 Pankow, J. F., and Asher, W. E.: SIMPOL.1: a simple group contribution method for predicting vapor pressures
1171 and enthalpies of vaporization of multifunctional organic compounds, *Atmos. Chem. Phys.*, 8, 2773-2796,
1172 10.5194/acp-8-2773-2008, 2008.

1173 Peeters, J., Müller, J.-F. o., Stavrakou, T., and Nguyen, V. S.: Hydroxyl radical recycling in isoprene oxidation
1174 driven by hydrogen bonding and hydrogen tunneling: The upgraded LIM1 mechanism, *J. Phys. Chem. A*,
1175 118, 8625-8643, 10.1021/jp5033146, 2014.

1176 Peräkylä, O., Riva, M., Heikkinen, L., Quéléver, L., Roldin, P., and Ehn, M.: Experimental investigation into the
1177 volatilities of highly oxygenated organic molecules (HOM), *Atmos. Chem. Phys.*, 20, 649–669,
1178 10.5194/acp-20-649-2020, 2020.

1179 Pöschl, U.: Atmospheric aerosols: composition, transformation, climate and health effects, *Angew. Chem. Int.*
1180 Ed., 44, 7520-7540, 10.1002/anie.200501122, 2005.

1181 Praske, E., Otkjær, R. V., Crounse, J. D., Hethcox, J. C., Stoltz, B. M., Kjaergaard, H. G., and Wennberg, P. O.:
1182 Atmospheric autoxidation is increasingly important in urban and suburban North America, *Proc. Natl.*
1183 *Acad. Sci. U.S.A.*, 115, 64-69, 10.1073/pnas.1715540115, 2018.

1184 Rissanen, M. P., Kurten, T., Sipila, M., Thornton, J. A., Kangasluoma, J., Sarnela, N., Junninen, H., Jorgensen,
1185 S., Schallhart, S., Kajos, M. K., Taipale, R., Springer, M., Mentel, T. F., Ruuskanen, T., Petaja, T.,
1186 Worsnop, D. R., Kjaergaard, H. G., and Ehn, M.: The formation of highly oxidized multifunctional
1187 products in the ozonolysis of cyclohexene, *J. Am. Chem. Soc.*, 136, 15596-15606, 10.1021/ja507146s,
1188 2014.

1189 Rissanen, M. P., Mikkilä, J., Iyer, S., and Hakala, J.: Multi-scheme chemical ionization inlet (MION) for fast
1190 switching of reagent ion chemistry in atmospheric pressure chemical ionization mass spectrometry (CIMS)
1191 applications, *Atmos. Meas. Tech.*, 12, 6635–6646, 10.5194/amt-12-6635-2019, 2019.

1192 Riva, M., Rantala, P., Krechmer, J. E., Peräkylä, O., Zhang, Y., Heikkinen, L., Garmash, O., Yan, C., Kulmala,
1193 M., Worsnop, D., and Ehn, M.: Evaluating the performance of five different chemical ionization techniques
1194 for detecting gaseous oxygenated organic species, *Atmos. Meas. Tech.*, 12, 2403-2421, 10.5194/amt-12-
1195 2403-2019, 2019.

1196 Rohrer, F., Bohn, B., Brauers, T., Brüning, D., Johnen, F. J., Wahner, A., and Kleffmann, J.: Characterisation of
1197 the photolytic HONO-source in the atmosphere simulation chamber SAPHIR, *Atmos. Chem. Phys.*, 5,
1198 2189-2201, 10.5194/acp-5-2189-2005, 2005.

1199 Rollins, A. W., Kiendler-Scharr, A., Fry, J., Brauers, T., Brown, S. S., Dorn, H.-P., Dubé, W. P., Fuchs, H.,
1200 Mensah, A., and Mentel, T.: Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic
1201 aerosol yields, *Atmos. Chem. Phys.*, 9, 6685–6703, 10.5194/acp-9-6685-2009, 2009.

1202 Schwantes, R. H., Teng, A. P., Nguyen, T. B., Coggon, M. M., Crounse, J. D., St Clair, J. M., Zhang, X.,
1203 Schilling, K. A., Seinfeld, J. H., and Wennberg, P. O.: Isoprene NO₃ Oxidation Products from the RO₂ +
1204 HO₂ Pathway, *J. Phys. Chem. A*, 119, 10158–10171, 10.1021/acs.jpca.5b06355, 2015.

1205 Schwantes, R. H., Charan, S. M., Bates, K. H., Huang, Y., Nguyen, T. B., Mai, H., Kong, W., Flagan, R. C., and
1206 Seinfeld, J. H.: Low-volatility compounds contribute significantly to isoprene secondary organic aerosol
1207 (SOA) under high-NO₂ conditions, *Atmos. Chem. Phys.*, 19, 7255–7278, 10.5194/acp-19-7255-2019, 2019.

1209 Sobanski, N., Schuladen, J., Schuster, G., Lelieveld, J., and Crowley, J. N.: A five-channel cavity ring-down
1210 spectrometer for the detection of NO₂, NO₃, N₂O₅, total peroxy nitrates and total alkyl nitrates, *Atmos.*
1211 *Meas. Tech.*, 9, 5103–5118, 10.5194/amt-9-5103-2016, 2016.

1212 Spracklen, D., Jimenez, J., Carslaw, K., Worsnop, D., Evans, M., Mann, G., Zhang, Q., Canagaratna, M., Allan,
1213 J., and Coe, H.: Aerosol mass spectrometer constraint on the global secondary organic aerosol budget,
1214 *Atmos. Chem. Phys.*, 11, 12109–12136, 10.5194/acp-11-12109-2011, 2011.

1215 Stadtler, S., Kühn, T., Schröder, S., Taraborrelli, D., Schultz, M. G., and Kokkola, H.: Isoprene-derived
1216 secondary organic aerosol in the global aerosol–chemistry–climate model ECHAM6.3.0–HAM2.3–
1217 MOZ1.0, *Geosci. Model Dev.*, 11, 3235–3260, 10.5194/gmd-11-3235-2018, 2018.

1218 Starn, T., Shepson, P., Bertman, S., Riemer, D., Zika, R., and Olszyna, K.: Nighttime isoprene chemistry at an
1219 urban - impacted forest site, *J. Geophys. Res. Atmos.*, 103, 22437–22447, 1998.

1220 Stroud, C., Roberts, J., Williams, E., Hereid, D., Angevine, W., Fehsenfeld, F., Wisthaler, A., Hansel, A.,
1221 Martinez - Harder, M., and Harder, H.: Nighttime isoprene trends at an urban forested site during the 1999
1222 Southern Oxidant Study, *J. Geophys. Res. Atmos.*, 107, ACH 7-1-ACH 7-14, 2002.

1223 Suh, I., Lei, W., and Zhang, R.: Experimental and Theoretical Studies of Isoprene Reaction with NO₃, *J. Phys.*
1224 *Chem. A*, 105, 6471–6478, 10.1021/jp0105950, 2001.

1225 Surratt, J. D., Chan, A. W., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan, A. J., Hersey, S. P., Flagan, R. C.,
1226 Wennberg, P. O., and Seinfeld, J. H.: Reactive intermediates revealed in secondary organic aerosol
1227 formation from isoprene, *Proc. Natl. Acad. Sci. U.S.A.*, 107, 6640–6645, 10.1073/pnas.0911114107, 2010.

1228 Thornton, J. A., Shilling, J. E., Shrivastava, M., D'Ambro, E. L., Zawadowicz, M. A., and Liu, J.: A Near-
1229 Explicit Mechanistic Evaluation of Isoprene Photochemical Secondary Organic Aerosol Formation and
1230 Evolution: Simulations of Multiple Chamber Experiments with and without Added NO_x, *ACS Earth Space*
1231 *Chem.*, 10.1021/acsearthspacechem.0c00118, 2020.

1232 Tröstl, J., Chuang, W. K., Gordon, H., Heinritzi, M., Yan, C., Molteni, U., Ahlm, L., Frege, C., Bianchi, F., and
1233 Wagner, R.: The role of low-volatility organic compounds in initial particle growth in the atmosphere,
1234 *Nature*, 533, 527–531, 10.1038/nature18271, 2016.

1235 Vereecken, L., Nguyen, T. L., Hermans, I., and Peeters, J.: Computational study of the stability of α -
1236 hydroperoxyl-or α -alkylperoxyl substituted alkyl radicals, *Chem. Phys. Lett.*, 393, 432-436,
1237 10.1016/j.cplett.2004.06.076, 2004.

1238 Vereecken, L.: Computational study of the stability of α -nitroxy-substituted alkyl radicals, *Chem. Phys. Lett.*,
1239 466, 127-130, 10.1016/j.cplett.2008.10.042, 2008.

1240 Vereecken, L., and Peeters, J.: Decomposition of substituted alkoxy radicals—part I: a generalized structure–
1241 activity relationship for reaction barrier heights, *Phys. Chem. Chem. Phys.*, 11, 9062-9074,
1242 10.1039/B909712K, 2009.

1243 Vereecken, L., and Peeters, J.: A structure–activity relationship for the rate coefficient of H-migration in
1244 substituted alkoxy radicals, *Phys. Chem. Chem. Phys.*, 12, 12608-12620, 10.1039/C0CP00387E, 2010.

1245 Vereecken, L., and Francisco, J. S.: Theoretical studies of atmospheric reaction mechanisms in the troposphere,
1246 *Chem. Soc. Rev.*, 41, 6259-6293, 10.1039/C2CS35070J, 2012.

1247 Vereecken, L., and Nozière, B.: H migration in peroxy radicals under atmospheric conditions, *Atmos. Chem.*
1248 *Phys.*, 20, 7429-7458, 10.5194/acp-20-7429-2020, 2020.

1249 Vereecken, L., Carlsson, P., Novelli, A., Bernard, F., Brown, S. S., Cho, C., Crowley, J. N., Fuchs, H., Mellouki,
1250 W., Reimer, D., Shenolikar, Justin, Tillmann, R., Zhou, L., Kiendler-Scharr, A., and Wahner, A.: Theoretical and experimental study of peroxy and alkoxy radicals in the NO_3 -initiated oxidation of
1251 isoprene, *Phys. Chem. Chem. Phys.*, 23, 5496–5515, <https://doi.org/10.1039/d0cp06267g>, 2021.

1252 Wang, S., Riva, M., Yan, C., Ehn, M., and Wang, L.: Primary formation of highly oxidized multifunctional
1253 products in the OH-Initiated oxidation of Isoprene: a combined theoretical and experimental study, *Environ.*
1254 *Sci. Technol.*, 52, 12255-12264, 10.1021/acs.est.8b02783, 2018.

1255 Warneke, C., De Gouw, J., Goldan, P., Kuster, W., Williams, E., Lerner, B., Jakoubek, R., Brown, S., Stark, H.,
1256 and Aldener, M.: Comparison of daytime and nighttime oxidation of biogenic and anthropogenic VOCs
1257 along the New England coast in summer during New England Air Quality Study 2002, *J. Geophys. Res.*
1258 *Atmos.*, 109, 2004.

1259 Wennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., McVay, R. C., Mertens, L. A., Nguyen, T. B.,
1260 Praske, E., Schwantes, R. H., and Smarte, M. D.: Gas-phase reactions of isoprene and its major oxidation
1261 products, *Chem. Rev.*, 118, 3337-3390, 10.1021/acs.chemrev.7b00439, 2018.

1262 Whalley, L., Stone, D., and Heard, D.: New insights into the tropospheric oxidation of isoprene: combining field
1263 measurements, laboratory studies, chemical modelling and quantum theory, in: *Atmospheric and Aerosol*
1264 *Chemistry*, edited by: McNeill, V. F., and Ariya, P. A., Springer, Berlin, Heidelberg, Germany, 55-95,
1265 10.1007/128_2012_359, 2012.

1266 Zhang, Q., Jimenez, J. L., Canagaratna, M., Allan, J., Coe, H., Ulbrich, I., Alfarra, M., Takami, A., Middlebrook,
1267 A., and Sun, Y.: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically -
1268 influenced Northern Hemisphere midlatitudes, *Geophys. Res. Lett.*, 34, 10.1029/2007GL029979, 2007.

1269 Zhao, D., Pullinen, I., Fuchs, H., Schrade, S., Wu, R., Acir, I.-H., Tillmann, R., Rohrer, F., Wildt, J., and Guo,
1270 Y.: Highly oxygenated organic molecules (HOM) formation in the isoprene oxidation by NO_3 radical,
1271 *Atmos. Chem. Phys. Discuss.*, 1-28, 2020.

1272 Ziemann, P. J., and Atkinson, R.: Kinetics, products, and mechanisms of secondary organic aerosol formation,
1273 *Chem. Soc. Rev.*, 41, 6582-6605, 10.1039/c2cs35122f, 2012.

1276 **Tables**

1277

1278

1279 **Table 1: Summary of estimation methods of saturation vapor pressure used in this study**

Estimation method	Methodology	Input information			Reference
		molecular formula	functional groups	others	
Donahue et al.	CA ^a	✓			Donahue et al., 2011
Mohr et al.	ICA ^b	✓			Mohr et al., 2019
Peräkylä et al.	ICA ^b	✓			Peräkylä et al., 2020
Nannoolal et al.	GC ^c	✓	✓	✓ ^d	Nannoolal et al., 2008
SIMPOL.1	GC	✓	✓		Pankow and Asher, 2008
EVAPORATION	GC	✓	✓		Compernolle et al., 2011
This study	EXP ^e				

1280 ^a abbreviation of composition-activity method; ^b abbreviation of improved composition-activity method, which
 1281 modified the parameterization based on chamber measurements to better fit HOMs; ^c abbreviation of group-
 1282 contribution method; ^d boiling point parameterization method is also required to be defined; ^e abbreviation of
 1283 experimental method.

1284

1285

1286

1287 **Figures**

1288

1289

1290

1291

1292 **Figure 1: Measurements of (A) O_3 and NO_2 , (B) NO_3 and N_2O_5 , (C) isoprene and (D) temperature and relative**
1293 **humidity in the chamber during the experiment on 08 August, 2018.**

1294

1295

1296

1297 **Figure 2: Averaged mass spectra for isoprene-NO₃ experiment on 8 August, 2018. Molecular formulas were**
 1298 **determined according to the accurate mass data provided by HR-ToF-CIMS.**

1299

1300

1301

1302

1303 **Figure 3: Comparison of the chemical composition of each oxidation step. (A) Averaged mass spectra for step I, II,**
 1304 **and IV, with the omitted spectrum of step III being very similar to that of step II. (B) Relative contribution of**
 1305 **different chemical groups for each oxidation step. Only organic products were counted for analysis. 'Others' refers to**
 1306 **CHO compounds without containing nitrogen atoms (e.g., $C_5H_8O_2$ and $C_5H_8O_3$).**

1307

1308

1309

1310

1311 **Figure 4: Distribution of gas-phase products from isoprene oxidation by NO_3 in the carbon oxidation state (OS_C)**
 1312 **versus carbon number (nc) space. Markers are colored by oxygen-to-carbon molar ratio and sized by the logarithm**
 1313 **of peak areas. The group-averaged and bulk-averaged OS_C are signal-weighted mean average carbon oxidation state**
 1314 **of compounds with the same carbon number and of all detected compounds, respectively.**

1315

1316

1317

1318 **Figure 5:** Time evolution of selected gas-phase compounds measured during the isoprene - NO_3 experiment on 08
 1319 August, 2018. (a) Time series of O_3 , NO_2 , NO_3 and isoprene. (b)-(f) Time evolution of major 1N-monomers ($\text{C}_5\text{H}_9\text{NO}_4$
 1320 and $\text{C}_4\text{H}_7\text{NO}_5$), 2N-monomers ($\text{C}_4\text{H}_6\text{N}_2\text{O}_7$, $\text{C}_5\text{H}_6\text{N}_2\text{O}_8$, and $\text{C}_5\text{H}_{8,10}\text{N}_2\text{O}_{8,9}$), 3N-monomers ($\text{C}_5\text{H}_9\text{N}_3\text{O}_{10-12}$), 2N-dimers
 1321 ($\text{C}_{10}\text{H}_{16}\text{N}_2\text{O}_{8-12}$), and 3N-dimers ($\text{C}_{10}\text{H}_{17}\text{N}_3\text{O}_{12-16}$).

1322

1324

1325

1326 **Figure 6: Time evolution of selected major gas-phase products during experiments with (red) and without (blue) seed**
 1327 **aerosols (ammonium sulfate). Signals have been corrected for dilution.**

1328

1329

1330

1331

1332 **Figure 7:** Saturation concentrations (in $\mu\text{g m}^{-3}$, at 298.15 K) of isoprene organonitrates estimated by using
 1333 experimental and parameterization methods. The numbers correspond with the compound numbers of given in Table
 1334 S2 (No. 1–9, 10–18, 19–21, 22–27, and 28–32 corresponding to 1N-monomers, 2N-monomers, 3N-monomer,
 1335 2N-dimers and 3N-dimers, respectively). Marker shapes indicate different isomers, with their size scaled by carbon
 1336 oxidation state (OSC).

1337

1338

1339

1340

1341 **Figure 8: Volatility distribution of different organonitrates formed from NO₃-initiated isoprene oxidation. The**
 1342 **volatility classes are indicated along the top with corresponding colors in the plot. The position of potential SOA**
 1343 **contributors is determined depending on the exact functionalities of molecules adapted from Bianchi et al. (2019).**

1344

1345

1346