Articles | Volume 20, issue 14
https://doi.org/10.5194/acp-20-8867-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-8867-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multidecadal trend analysis of in situ aerosol radiative properties around the world
Martine Collaud Coen
CORRESPONDING AUTHOR
Federal Office of Meteorology and Climatology, MeteoSwiss, Payerne,
Switzerland
Elisabeth Andrews
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO, USA
NOAA/Global Monitoring Laboratory, Boulder, CO, USA
Andrés Alastuey
Institute of Environmental Assessment and Water Research (IDAEA),
Spanish Research Council (CSIC), Barcelona, Spain
Todor Petkov Arsov
Institute for Nuclear Research and Nuclear Energy, Bulgarian
Academy of Sciences, Sofia, Bulgaria
John Backman
Atmospheric composition research, Finnish Meteorological Institute,
Helsinki, Finland
Benjamin T. Brem
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute,
Villigen PSI, Switzerland
Nicolas Bukowiecki
Atmospheric Sciences, Department of Environmental Sciences,
University of Basel, Basel, Switzerland
Cédric Couret
German Environment Agency (UBA), Zugspitze, Germany
Konstantinos Eleftheriadis
Institute of Nuclear and Radiological Science & Technology,
Energy & Safety N.C.S.R. “Demokritos”, Attiki, Greece
Harald Flentje
German Weather Service, Meteorological Observatory Hohenpeissenberg,
Hohenpeißenberg, Germany
Markus Fiebig
NILU – Norwegian Institute for Air Research, Kjeller, Norway
Martin Gysel-Beer
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute,
Villigen PSI, Switzerland
Jenny L. Hand
Cooperative Institute for Research in the Atmosphere (CIRA),
Colorado State University, Fort Collins, CO, USA
András Hoffer
MTA-PE Air Chemistry Research Group, Veszprém, Hungary
Rakesh Hooda
Atmospheric composition research, Finnish Meteorological Institute,
Helsinki, Finland
The Energy and Resources Institute, IHC, Lodhi Road, New Delhi,
India
Christoph Hueglin
Empa, Swiss Federal Laboratories for Materials Science and
Technology, Duebendorf, Switzerland
Warren Joubert
South African Weather Service, Research Department, Stellenbosch,
South Africa
Melita Keywood
CSIRO Oceans and Atmosphere, PMB1 Aspendale VIC, Australia
Jeong Eun Kim
Environmental Meteorology Research Division, National Institute of
Meteorological Sciences, Seogwipo, Korea
Sang-Woo Kim
School of Earth and Environmental Sciences, Seoul National
University, Seoul, Korea
Casper Labuschagne
South African Weather Service, Research Department, Stellenbosch,
South Africa
Neng-Huei Lin
Department of Atmospheric Sciences, National Central University,
Taoyuan, Taiwan
Yong Lin
NILU – Norwegian Institute for Air Research, Kjeller, Norway
Cathrine Lund Myhre
NILU – Norwegian Institute for Air Research, Kjeller, Norway
Krista Luoma
Institute for Atmospheric and Earth System Research, University of
Helsinki, Helsinki, Finland
Hassan Lyamani
Andalusian Institute for Earth System Research, IISTA-CEAMA,
University of Granada, Junta de Andalucía, Granada, Spain
Department of Applied Physics, University of Granada, Granada, Spain
Angela Marinoni
Institute of Atmospheric Sciences and Climate, National Research
Council of Italy, Bologna, Italy
Olga L. Mayol-Bracero
University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
Nikos Mihalopoulos
Environmental Chemistry Processes Laboratory, Department of
Chemistry, University of Crete, Heraklion, Greece
Marco Pandolfi
Institute of Environmental Assessment and Water Research (IDAEA),
Spanish Research Council (CSIC), Barcelona, Spain
Natalia Prats
Izaña Atmospheric Research Center, State Meteorological Agency
(AEMET), Tenerife, Spain
Anthony J. Prenni
National Park Service, Air Resources Division, Lakewood, CO, USA
Jean-Philippe Putaud
European Commission, Joint Research Centre (JRC), Ispra, Italy
Ludwig Ries
German Environment Agency (UBA), Zugspitze, Germany
Fabienne Reisen
CSIRO Oceans and Atmosphere, PMB1 Aspendale VIC, Australia
Karine Sellegri
Université Clermont Auvergne, CNRS, Laboratoire de
Météorologie Physique (LaMP), Clermont-Ferrand, France
Sangeeta Sharma
Climate Chemistry Measurements Research, Climate Research Division,
Environment and Climate Change Canada, Toronto, Canada
Patrick Sheridan
NOAA/Global Monitoring Laboratory, Boulder, CO, USA
James Patrick Sherman
Department of Physics and Astronomy, Appalachian State University,
Boone, NC, USA
Junying Sun
State Key Laboratory of Severe Weather & Key Laboratory of
Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences,
Beijing, China
Gloria Titos
Andalusian Institute for Earth System Research, IISTA-CEAMA,
University of Granada, Junta de Andalucía, Granada, Spain
Department of Applied Physics, University of Granada, Granada, Spain
Elvis Torres
University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
Thomas Tuch
Leibniz Institute for Tropospheric Research (TROPOS), Leipzig,
Germany
Rolf Weller
Glaciology Department, Alfred-Wegener-Institut Helmholtz Zentrum
für Polar- und Meeresforschung, Bremerhaven, Germany
Alfred Wiedensohler
Leibniz Institute for Tropospheric Research (TROPOS), Leipzig,
Germany
Paul Zieger
Department of Environmental Science and Analytical Chemistry,
Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm,
Sweden
Paolo Laj
Univ. Grenoble Alpes, CNRS, IRD, Grenoble-INP, IGE, 38000 Grenoble,
France
CNR-ISAC, National Research Council of Italy – Institute of
Atmospheric Sciences and Climate, Bologna, Italy
University of Helsinki, Atmospheric Science division, Helsinki,
Finland
Viewed
Total article views: 10,827 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 14 Jan 2020)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 7,478 | 3,231 | 118 | 10,827 | 495 | 137 | 195 |
- HTML: 7,478
- PDF: 3,231
- XML: 118
- Total: 10,827
- Supplement: 495
- BibTeX: 137
- EndNote: 195
Total article views: 8,534 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 27 Jul 2020)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 6,985 | 1,452 | 97 | 8,534 | 318 | 115 | 168 |
- HTML: 6,985
- PDF: 1,452
- XML: 97
- Total: 8,534
- Supplement: 318
- BibTeX: 115
- EndNote: 168
Total article views: 2,293 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 14 Jan 2020)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 493 | 1,779 | 21 | 2,293 | 177 | 22 | 27 |
- HTML: 493
- PDF: 1,779
- XML: 21
- Total: 2,293
- Supplement: 177
- BibTeX: 22
- EndNote: 27
Viewed (geographical distribution)
Total article views: 10,827 (including HTML, PDF, and XML)
Thereof 10,753 with geography defined
and 74 with unknown origin.
Total article views: 8,534 (including HTML, PDF, and XML)
Thereof 8,467 with geography defined
and 67 with unknown origin.
Total article views: 2,293 (including HTML, PDF, and XML)
Thereof 2,286 with geography defined
and 7 with unknown origin.
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
Latest update: 26 Nov 2025
Download
- Article
(1614 KB) - Full-text XML
Short summary
Long-term trends of aerosol radiative properties (52 stations) prove that aerosol load has significantly decreased over the last 20 years. Scattering trends are negative in Europe (EU) and North America (NA), not ss in Asia, and show a mix of positive and negative trends at polar stations. Absorption has mainly negative trends. The single scattering albedo has positive trends in Asia and eastern EU and negative in western EU and NA, leading to a global positive median trend of 0.02 % per year.
Long-term trends of aerosol radiative properties (52 stations) prove that aerosol load has...
Altmetrics
Final-revised paper
Preprint