Articles | Volume 20, issue 1
https://doi.org/10.5194/acp-20-55-2020
https://doi.org/10.5194/acp-20-55-2020
Research article
 | 
03 Jan 2020
Research article |  | 03 Jan 2020

Retrieving the global distribution of the threshold of wind erosion from satellite data and implementing it into the Geophysical Fluid Dynamics Laboratory land–atmosphere model (GFDL AM4.0/LM4.0)

Bing Pu, Paul Ginoux, Huan Guo, N. Christina Hsu, John Kimball, Beatrice Marticorena, Sergey Malyshev, Vaishali Naik, Norman T. O'Neill, Carlos Pérez García-Pando, Juliette Paireau, Joseph M. Prospero, Elena Shevliakova, and Ming Zhao

Data sets

Monthly and annual mean threshold of wind erosion dataset B. Pu and P. Ginoux https://www.gfdl.noaa.gov/ pag-homepage/

AERONET aerosol optical depth data and SDA data AERONET https://aeronet.gsfc.nasa.gov/new_web/download_all_ v3_aod.html

IMPROVE fine dust data FED http://views.cira.colostate.edu/fed/DataWizard/

Download
Short summary
Dust emission initiates when surface wind velocities exceed a threshold depending on soil and surface characteristics and varying spatially and temporally. Climate models widely use wind erosion thresholds. The climatological monthly global distribution of the wind erosion threshold, Vthreshold, is retrieved using satellite and reanalysis products and improves the simulation of dust frequency, magnitude, and the seasonal cycle in the Geophysical Fluid Dynamics Laboratory land–atmosphere model.
Altmetrics
Final-revised paper
Preprint