Charters, P. E., MacDonald, R. G., and Polanyi, J. C.: Formation of
vibrationally excited OH by the reaction
H+O3, Appl. Optics, 10,
1747–1754,
https://doi.org/10.1364/AO.10.001747, 1971.
a,
b
Cosby, P. C. and Slanger, T. G.: OH spectroscopy and chemistry
investigated with astronomical sky spectra, Can. J. Phys., 85, 77–99,
https://doi.org/10.1139/P06-088, 2007.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n
Cosby, P. C., Slanger, T. G., Huestis, D. L., and Osterbrock, D. E.:
Term energies, line positions, and spectroscopic constants for the OH Meinel
band system, in: 55th International Symposium on Molecular Spectroscopy,
Ohio State University, Columbus, Ohio, USA,
https://www.asc.ohio-state.edu/miller.104/molspect/symposium_55/symposium/Abstracts/p319.pdf (last access: 2 May 2020),
2000.
a,
b
Cosby, P. C., Sharpee, B. D., Slanger, T. G., Huestis, D. L., and
Hanuschik, R. W.: High-resolution terrestrial nightglow emission line
atlas from UVES/VLT: Positions, intensities, and identifications for 2808
lines at 314-1043 nm, J. Geophys. Res., 111, A12307,
https://doi.org/10.1029/2006JA012023, 2006.
a,
b,
c,
d
Dekker, H., D'Odorico, S., Kaufer, A., Delabre, B., and Kotzlowski,
H.: Design, construction, and performance of UVES, the echelle spectrograph
for the UT2 Kueyen Telescope at the ESO Paranal Observatory, in: Optical and
IR Telescope Instrumentation and Detectors, edited by: Iye, M. and
Moorwood, A. F., Vol. 4008 of
SPIE Proc. Ser., 534–545,
https://doi.org/10.1117/12.395512, 2000.
a,
b
Dodd, J. A., Armstrong, P. S., Lipson, S. J., Lowell, J. R.,
Blumberg, W. A. M., Nadile, R. M., Adler-Golden, S. M., Marinelli,
W. J., Holtzclaw, K. W., and Green, B. D.: Analysis of hydroxyl
earthlimb airglow emissions: Kinetic model for state-to-state dynamics of
OH(v,N), J. Geophys. Res., 99, 3559–3586,
https://doi.org/10.1029/93JD03338, 1994.
a,
b
Franzen, C., Espy, P. J., Hofmann, N., Hibbins, R. E., and Djupvik,
A. A.: Airglow Derived Measurements of Q-Branch Transition Probabilities for
Several Hydroxyl Meinel Bands, Atmosphere, 10, 637,
https://doi.org/10.3390/atmos10100637, 2019.
a
French, W. J. R., Burns, G. B., Finlayson, K., Greet, P. A., Lowe,
R. P., and Williams, P. F. B.: Hydroxyl (6-2) airglow emission intensity
ratios for rotational temperature determination, Ann. Geophys., 18,
1293–1303,
https://doi.org/10.1007/s00585-000-1293-2, 2000.
a,
b,
c,
d
Goldman, A., Schoenfeld, W. G., Goorvitch, D., Chackerian, Jr., C.,
Dothe, H., Mélen, F., Abrams, M. C., and Selby, J. E. A.:
Updated line parameters for OH X
2II-X
2II (
v′,
v′′)
transitions, J. Quant. Spectrosc. Ra., 59, 453–469,
https://doi.org/10.1016/S0022-4073(97)00112-X, 1998.
a,
b,
c,
d,
e
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y.,
Bernath, P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V.,
Drouin, B. J., Flaud, J. M., Gamache, R. R., Hodges, J. T.,
Jacquemart, D., Perevalov, V. I., Perrin, A., Shine, K. P., Smith,
M. A. H., Tennyson, J., Toon, G. C., Tran, H., Tyuterev, V. G.,
Barbe, A., Császár, A. G., Devi, V. M., Furtenbacher, T.,
Harrison, J. J., Hartmann, J. M., Jolly, A., Johnson, T. J.,
Karman, T., Kleiner, I., Kyuberis, A. A., Loos, J., Lyulin, O. M.,
Massie, S. T., Mikhailenko, S. N., Moazzen-Ahmadi, N., Müller,
H. S. P., Naumenko, O. V., Nikitin, A. V., Polyansky, O. L., Rey, M.,
Rotger, M., Sharpe, S. W., Sung, K., Starikova, E., Tashkun, S. A.,
Auwera, J. V., Wagner, G., Wilzewski, J., Wcisło, P., Yu, S.,
and Zak, E. J.: The HITRAN2016 molecular spectroscopic database, J.
Quant. Spectrosc. Ra., 203, 3–69,
https://doi.org/10.1016/j.jqsrt.2017.06.038, 2017.
a,
b,
c
Hanuschik, R. W.: A flux-calibrated, high-resolution atlas of optical sky
emission from UVES, Astron. Astrophys., 407, 1157–1164,
https://doi.org/10.1051/0004-6361:20030885, 2003.
a,
b,
c,
d,
e
Hart, M.: A Comparison of Einstein A Coefficients for OH Rotational
Temperature Measurements Using a Large Astronomical Data Set, Atmosphere,
10, 569,
https://doi.org/10.3390/atmos10100569, 2019b.
a,
b,
c,
d,
e
Kalogerakis, K. S.: Technical note: Bimodality in mesospheric OH rotational
population distributions and implications for temperature measurements,
Atmos. Chem. Phys., 19, 2629–2634,
https://doi.org/10.5194/acp-19-2629-2019, 2019.
a,
b,
c,
d
Kalogerakis, K. S., Matsiev, D., Cosby, P. C., Dodd, J. A.,
Falcinelli, S., Hedin, J., Kutepov, A. A., Noll, S., Panka, P. A.,
Romanescu, C., and Thiebaud, J. E.: New Insights for mesospheric OH:
Multi-quantum vibrational relaxation as
a driver for non-local thermodynamic
equilibrium, Ann. Geophys., 36, 13–24,
https://doi.org/10.5194/angeo-36-13-2018,
2018.
a,
b,
c,
d,
e,
f,
g
Langhoff, S. R., Werner, H.-J., and Rosmus, P.: Theoretical transition
probabilities for the OH meinel system, J. Mol. Spectrosc., 118, 507–529,
https://doi.org/10.1016/0022-2852(86)90186-4, 1986.
a,
b,
c,
d,
e,
f,
g,
h
Liu, W., Xu, J., Smith, A. K., and Yuan, W.: Comparison of rotational
temperature derived from ground-based OH airglow observations with
TIMED/SABER to evaluate the Einstein coefficients, J. Geophys. Res.-Space, 120, 10069–10082,
https://doi.org/10.1002/2015JA021886, 2015.
a,
b,
c,
d,
e
Llewellyn, E. J. and Long, B. H.: The OH Meinel bands in the airglow - The
radiative lifetime, Can. J. Phys., 56, 581–586,
https://doi.org/10.1139/p78-076,
1978.
a,
b
Melo, S. M. L., Lowe, R. P., and Takahashi, H.: The nocturnal behavior
of the hydroxyl airglow at the equatorial and low latitudes as observed by
WINDII: Comparison with ground-based measurements, J. Geophys. Res., 104,
24657–24666,
https://doi.org/10.1029/1999JA900291, 1999.
a
Mies, F. H.: Calculated vibrational transition probabilities of OH(X
2Π), J. Mol. Spectrosc., 53, 150–188,
https://doi.org/10.1016/0022-2852(74)90125-8, 1974.
a,
b,
c,
d,
e,
f,
g,
h
Mlynczak, M. G., Hunt, L. A., Mast, J. C., Thomas Marshall, B.,
Russell, J. M., Smith, A. K., Siskind, D. E., Yee, J.-H., Mertens,
C. J., Javier Martin-Torres, F., Earl Thompson, R., Drob, D. P., and
Gordley, L. L.: Atomic oxygen in the mesosphere and lower thermosphere
derived from SABER: Algorithm theoretical basis and measurement uncertainty,
J. Geophys. Res.-Atmos., 118, 5724–5735,
https://doi.org/10.1002/jgrd.50401, 2013.
a,
b
Nelson, Jr., D. D., Schiffman, A., Nesbitt, D. J., Orlando, J. J., and
Burkholder, J. B.:
H+O3 Fourier-transform infrared emission and laser
absorption studies of OH(X
2Π) radical: An experimental dipole moment
function and state-to-state Einstein A coefficients, J. Chem. Phys., 93,
7003–7019,
https://doi.org/10.1063/1.459476, 1990.
a,
b,
c,
d
Noll, S., Kausch, W., Barden, M., Jones, A. M., Szyszka, C.,
Kimeswenger, S., and Vinther, J.: An atmospheric radiation model for
Cerro Paranal. I. The optical spectral range, Astron. Astrophys., 543, A92,
https://doi.org/10.1051/0004-6361/201219040, 2012.
a
Noll, S., Kausch, W., Kimeswenger, S., Unterguggenberger, S., and
Jones, A. M.: OH populations and temperatures from simultaneous
spectroscopic observations of 25 bands, Atmos. Chem. Phys., 15, 3647–3669,
https://doi.org/10.5194/acp-15-3647-2015, 2015.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l
Noll, S., Kausch, W., Kimeswenger, S., Unterguggenberger, S., and
Jones, A. M.: Comparison of VLT/X-shooter OH and O
2 rotational
temperatures with consideration of TIMED/SABER emission and temperature
profiles, Atmos. Chem. Phys., 16, 5021–5042,
https://doi.org/10.5194/acp-16-5021-2016, 2016.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n
Noll, S., Kimeswenger, S., Proxauf, B., Unterguggenberger, S.,
Kausch, W., and Jones, A. M.: 15 years of VLT/UVES OH intensities and
temperatures in comparison with TIMED/SABER data, J. Atmos. Sol.-Terr.
Phys., 163, 54–69,
https://doi.org/10.1016/j.jastp.2017.05.012, 2017.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n
Noll, S., Proxauf, B., Kausch, W., and Kimeswenger, S.: Mechanisms for
varying non-LTE contributions to OH rotational temperatures from measurements
and modelling. I. Climatology, J. Atmos. Sol.-Terr. Phys., 175, 87–99,
https://doi.org/10.1016/j.jastp.2018.05.004, 2018a.
a,
b
Noll, S., Proxauf, B., Kausch, W., and Kimeswenger, S.: Mechanisms for
varying non-LTE contributions to OH rotational temperatures from measurements
and modelling. II. Kinetic model, J. Atmos. Sol.-Terr. Phys., 175, 100–119,
https://doi.org/10.1016/j.jastp.2018.05.005, 2018b.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n,
o,
p,
q,
r,
s,
t
Noll, S., Plane, J. M. C., Feng, W., Proxauf, B., Kimeswenger, S.,
and Kausch, W.: Observations and modeling of potassium emission in the
terrestrial nightglow, J. Geophys. Res.-Atmos., 124, 6612–6629,
https://doi.org/10.1029/2018JD030044, 2019.
a,
b
Oliva, E., Origlia, L., Maiolino, R., Baffa, C., Biliotti, V.,
Bruno, P., Falcini, G., Gavriousev, V., Ghinassi, F., Giani, E.,
Gonzalez, M., Leone, F., Lodi, M., Massi, F., Montegriffo, P.,
Mochi, I., Pedani, M., Rossetti, E., Scuderi, S., Sozzi, M.,
Tozzi, A., and Valenti, E.: A GIANO-TNG high-resolution infrared
spectrum of the airglow emission, Astron. Astrophys., 555, A78,
https://doi.org/10.1051/0004-6361/201321366, 2013.
a
Oliva, E., Origlia, L., Scuderi, S., Benatti, S., Carleo, I.,
Lapenna, E., Mucciarelli, A., Baffa, C., Biliotti, V., Carbonaro,
L., Falcini, G., Giani, E., Iuzzolino, M., Massi, F., Sanna, N.,
Sozzi, M., Tozzi, A., Ghedina, A., Ghinassi, F., Lodi, M.,
Harutyunyan, A., and Pedani, M.: Lines and continuum sky emission in the
near infrared: observational constraints from deep high spectral resolution
spectra with GIANO-TNG, Astron. Astrophys., 581, A47,
https://doi.org/10.1051/0004-6361/201526291, 2015.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j
Parihar, N., Singh, D., and Gurubaran, S.: A comparison of ground-based
hydroxyl airglow temperatures with SABER/TIMED measurements over 23
∘
N, India, Ann. Geophys., 35, 353–363,
https://doi.org/10.5194/angeo-35-353-2017,
2017.
a,
b
Pendleton, Jr., W., Espy, P., Baker, D., Steed, A., and Fetrow, M.:
Observation of OH Meinel (7,4)
P(
N′′ = 13) transitions in the night
airglow, J. Geophys. Res., 94, 505–510,
https://doi.org/10.1029/JA094iA01p00505,
1989.
a,
b
Pendleton Jr., W. R., and Taylor, M. J.: The impact of L-uncoupling on
Einstein coefficients for the OH Meinel (6,2) band: implications for Q-branch
rotational temperatures, J. Atmos. Sol.-Terr. Phys., 64, 971–983,
https://doi.org/10.1016/S1364-6826(02)00051-2, 2002.
a,
b,
c,
d,
e,
f
Pendleton, Jr., W. R., Espy, P. J., and Hammond, M. R.: Evidence for
non-local-thermodynamic-equilibrium rotation in the OH nightglow, J.
Geophys. Res., 98, 11567–11580,
https://doi.org/10.1029/93JA00740, 1993.
a,
b
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.:
NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and
scientific issues, J. Geophys. Res., 107, 1468,
https://doi.org/10.1029/2002JA009430,
2002.
a
Reisin, E. R., Scheer, J., Dyrland, M. E., Sigernes, F., Deehr,
C. S., Schmidt, C., Höppner, K., Bittner, M., Ammosov, P. P.,
Gavrilyeva, G. A., Stegman, J., Perminov, V. I., Semenov, A. I.,
Knieling, P., Koppmann, R., Shiokawa, K., Lowe, R. P.,
López-González, M. J., Rodríguez, E., Zhao, Y.,
Taylor, M. J., Buriti, R. A., Espy, P. J., French, W. J. R.,
Eichmann, K.-U., Burrows, J. P., and von Savigny, C.: Traveling
planetary wave activity from mesopause region airglow temperatures determined
by the Network for the Detection of Mesospheric Change (NDMC), J. Atmos.
Sol.-Terr. Phys., 119, 71–82,
https://doi.org/10.1016/j.jastp.2014.07.002, 2014.
a
Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner,
D., Bernath, P. F., Birk, M., Bizzocchi, L., Boudon, V., Brown,
L. R., Campargue, A., Chance, K., Cohen, E. A., Coudert, L. H.,
Devi, V. M., Drouin, B. J., Fayt, A., Flaud, J.-M., Gamache, R. R.,
Harrison, J. J., Hartmann, J.-M., Hill, C., Hodges, J. T.,
Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R. J., Li, G.,
Long, D. A., Lyulin, O. M., Mackie, C. J., Massie, S. T.,
Mikhailenko, S., Müller, H. S. P., Naumenko, O. V., Nikitin,
A. V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E. R.,
Richard, C., Smith, M. A. H., Starikova, E., Sung, K., Tashkun, S.,
Tennyson, J., Toon, G. C., Tyuterev, V. G., and Wagner, G.: The
HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 130, 4–50,
https://doi.org/10.1016/j.jqsrt.2013.07.002, 2013.
a,
b,
c,
d,
e,
f,
g
Rousselot, P., Lidman, C., Cuby, J.-G., Moreels, G., and Monnet, G.:
Night-sky spectral atlas of OH emission lines in the near-infrared, Astron.
Astrophys., 354, 1134–1150, 2000. a
Russell, III, J. M., Mlynczak, M. G., Gordley, L. L., Tansock, J., and
Esplin, R.: Overview of the SABER experiment and preliminary calibration
results, in: Optical Spectroscopic Techniques and Instrumentation for
Atmospheric and Space Research III, edited by: Larar, A. M., Vol. 3756 of
SPIE Proc. Ser., 277–288,
https://doi.org/10.1117/12.366382, 1999.
a,
b
SABER Team: v2.0 limb-sounding data products of the SABER radiometer on the
TIMED satellite, available at:
http://saber.gats-inc.com/data.php,
last access: 2 May 2020.
Schmidt, C., Höppner, K., and Bittner, M.: A ground-based
spectrometer equipped with an InGaAs array for routine observations of
OH(3-1) rotational temperatures in the mesopause region, J. Atmos.
Sol.-Terr. Phys., 102, 125–139,
https://doi.org/10.1016/j.jastp.2013.05.001, 2013.
a
Sedlak, R., Hannawald, P., Schmidt, C., Wüst, S., and Bittner,
M.: High-resolution observations of small-scale gravity waves and turbulence
features in the OH airglow layer, Atmos. Meas. Tech., 9, 5955–5963,
https://doi.org/10.5194/amt-9-5955-2016, 2016.
a
Taylor, M. J., Pendleton, W. R., Clark, S., Takahashi, H., Gobbi, D.,
and Goldberg, R. A.: Image measurements of short-period gravity waves at
equatorial latitudes, J. Geophys. Res., 102, 26283–26299,
https://doi.org/10.1029/96JD03515, 1997.
a
Turnbull, D. N. and Lowe, R. P.: An empirical determination of the dipole
moment function of OH(X
2Π), J. Chem. Phys., 89, 2763–2767,
https://doi.org/10.1063/1.455028, 1988.
a
Turnbull, D. N. and Lowe, R. P.: New hydroxyl transition probabilities and
their importance in airglow studies, Planet. Space Sci., 37, 723–738,
https://doi.org/10.1016/0032-0633(89)90042-1, 1989.
a,
b,
c,
d,
e,
f,
g,
h
van der Loo, M. P. J. and Groenenboom, G. C.: Theoretical transition
probabilities for the OH Meinel system, J. Chem. Phys., 126,
114314–114314,
https://doi.org/10.1063/1.2646859, 2007.
a,
b,
c,
d,
e,
f
van der Loo, M. P. J. and Groenenboom, G. C.: Erratum: “Theoretical
transition probabilities for the OH Meinel system” [J. Chem. Phys. 126,
114314 (2007)], J. Chem. Phys., 128, 159902–159902,
https://doi.org/10.1063/1.2899016, 2008.
a,
b,
c,
d,
e,
f
van Rhijn, P. J.: On the brightness of the sky at night and the total amount
of starlight, Publ. Kapteyn Astron. Lab. Groningen, 31, 1–83, 1921. a
von Savigny, C., McDade, I. C., Eichmann, K.-U., and Burrows, J. P.:
On the dependence of the OH* Meinel emission altitude on vibrational
level: SCIAMACHY observations and model simulations, Atmos. Chem. Phys., 12,
8813–8828,
https://doi.org/10.5194/acp-12-8813-2012, 2012.
a,
b,
c
Xu, J., Gao, H., Smith, A. K., and Zhu, Y.: Using TIMED/SABER
nightglow observations to investigate hydroxyl emission mechanisms in the
mesopause region, J. Geophys. Res., 117, D02301,
https://doi.org/10.1029/2011JD016342,
2012.
a,
b
Yee, J.-H., Crowley, G., Roble, R. G., Skinner, W. R., Burrage,
M. D., and Hays, P. B.: Global simulations and observations of O(
1S),
O
2(
1Σ) and OH mesospheric nightglow emissions, J.
Geophys. Res., 102, 19949–19968,
https://doi.org/10.1029/96JA01833, 1997.
a