Articles | Volume 20, issue 9
https://doi.org/10.5194/acp-20-5269-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-5269-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines
Institut für Physik, Universität Augsburg, Augsburg, Germany
Deutsches Fernerkundungsdatenzentrum, Deutsches Zentrum für Luft-
und Raumfahrt, Weßling-Oberpfaffenhofen, Germany
Holger Winkler
Institut für Umweltphysik, Universität Bremen, Bremen, Germany
Oleg Goussev
Deutsches Fernerkundungsdatenzentrum, Deutsches Zentrum für Luft-
und Raumfahrt, Weßling-Oberpfaffenhofen, Germany
Bastian Proxauf
Max-Planck-Institut für Sonnensystemforschung, Göttingen,
Germany
Related authors
Stefan Noll, John M. C. Plane, Wuhu Feng, Konstantinos S. Kalogerakis, Wolfgang Kausch, Carsten Schmidt, Michael Bittner, and Stefan Kimeswenger
Atmos. Chem. Phys., 24, 1143–1176, https://doi.org/10.5194/acp-24-1143-2024, https://doi.org/10.5194/acp-24-1143-2024, 2024
Short summary
Short summary
The Earth's nighttime radiation in the range from the near-UV to the near-IR mainly originates between 75 and 105 km and consists of lines of different species, which are important indicators of the chemistry and dynamics at these altitudes. Based on astronomical spectra, we have characterised the structure and variability of a pseudo-continuum of a high number of faint lines and discovered a new emission process in the near-IR. By means of simulations, we identified HO2 as the likely emitter.
Konstantinos S. Kalogerakis, Daniel Matsiev, Philip C. Cosby, James A. Dodd, Stefano Falcinelli, Jonas Hedin, Alexander A. Kutepov, Stefan Noll, Peter A. Panka, Constantin Romanescu, and Jérôme E. Thiebaud
Ann. Geophys., 36, 13–24, https://doi.org/10.5194/angeo-36-13-2018, https://doi.org/10.5194/angeo-36-13-2018, 2018
Short summary
Short summary
The question of whether mesospheric rotational population distributions of vibrationally excited OH are in equilibrium with the local kinetic temperature has been debated over several decades. We examine the relationship of multi-quantum relaxation pathways with the behavior exhibited by OH(v) rotational population distributions and find that the effective rotational temperatures of mesospheric OH(v) deviate from local thermodynamic equilibrium for all observed vibrational levels.
Stefanie Unterguggenberger, Stefan Noll, Wuhu Feng, John M. C. Plane, Wolfgang Kausch, Stefan Kimeswenger, Amy Jones, and Sabine Moehler
Atmos. Chem. Phys., 17, 4177–4187, https://doi.org/10.5194/acp-17-4177-2017, https://doi.org/10.5194/acp-17-4177-2017, 2017
Short summary
Short summary
This study focuses on the analysis of astronomical medium-resolution spectra from the VLT in Chile to measure airglow pseudo-continuum emission of FeO in the optical regime. Compared to OH or Na emissions, this emission is difficult to measure. Using 3.5 years of spectroscopic data, we found annual and semi-annual variations of the FeO emission. Furthermore, we used WACCM to determine the quantum yield of the FeO-producing Fe + O3 reaction in the atmosphere, which has not been done before.
Stefan Noll, Wolfgang Kausch, Stefan Kimeswenger, Stefanie Unterguggenberger, and Amy M. Jones
Atmos. Chem. Phys., 16, 5021–5042, https://doi.org/10.5194/acp-16-5021-2016, https://doi.org/10.5194/acp-16-5021-2016, 2016
Short summary
Short summary
We compare temperatures derived from simultaneous observations of 25 OH and two O2 mesospheric airglow bands taken with the X-shooter spectrograph at the Very Large Telescope in Chile. Considering emission and temperature profile data from the radiometer SABER on the TIMED satellite, we find significant time-dependent non-thermal contributions to the OH-based temperatures, especially for bands originating from high vibrational levels. Many studies of the mesopause region are affected.
S. Noll, W. Kausch, S. Kimeswenger, S. Unterguggenberger, and A. M. Jones
Atmos. Chem. Phys., 15, 3647–3669, https://doi.org/10.5194/acp-15-3647-2015, https://doi.org/10.5194/acp-15-3647-2015, 2015
Short summary
Short summary
We discuss a high-quality data set of simultaneous observations of 25 OH bands with an astronomical echelle spectrograph. These data allowed us to analyse band-dependent OH populations and temperatures. In particular, we could find different non-LTE contributions to OH rotational temperatures depending on band, line set, and observing time. This is critical for mesopause studies that use these temperatures as a proxy of the true temperatures.
Stefan Noll, John M. C. Plane, Wuhu Feng, Konstantinos S. Kalogerakis, Wolfgang Kausch, Carsten Schmidt, Michael Bittner, and Stefan Kimeswenger
Atmos. Chem. Phys., 24, 1143–1176, https://doi.org/10.5194/acp-24-1143-2024, https://doi.org/10.5194/acp-24-1143-2024, 2024
Short summary
Short summary
The Earth's nighttime radiation in the range from the near-UV to the near-IR mainly originates between 75 and 105 km and consists of lines of different species, which are important indicators of the chemistry and dynamics at these altitudes. Based on astronomical spectra, we have characterised the structure and variability of a pseudo-continuum of a high number of faint lines and discovered a new emission process in the near-IR. By means of simulations, we identified HO2 as the likely emitter.
Holger Winkler, Takayoshi Yamada, Yasuko Kasai, Uwe Berger, and Justus Notholt
Atmos. Chem. Phys., 21, 7579–7596, https://doi.org/10.5194/acp-21-7579-2021, https://doi.org/10.5194/acp-21-7579-2021, 2021
Short summary
Short summary
Sprites are electrical discharges above thunderstorms. We performed model simulations of the chemical processes in sprites to compare them with measurements of chemical perturbations above sprite-producing thunderstorms.
Konstantinos S. Kalogerakis, Daniel Matsiev, Philip C. Cosby, James A. Dodd, Stefano Falcinelli, Jonas Hedin, Alexander A. Kutepov, Stefan Noll, Peter A. Panka, Constantin Romanescu, and Jérôme E. Thiebaud
Ann. Geophys., 36, 13–24, https://doi.org/10.5194/angeo-36-13-2018, https://doi.org/10.5194/angeo-36-13-2018, 2018
Short summary
Short summary
The question of whether mesospheric rotational population distributions of vibrationally excited OH are in equilibrium with the local kinetic temperature has been debated over several decades. We examine the relationship of multi-quantum relaxation pathways with the behavior exhibited by OH(v) rotational population distributions and find that the effective rotational temperatures of mesospheric OH(v) deviate from local thermodynamic equilibrium for all observed vibrational levels.
Stefanie Unterguggenberger, Stefan Noll, Wuhu Feng, John M. C. Plane, Wolfgang Kausch, Stefan Kimeswenger, Amy Jones, and Sabine Moehler
Atmos. Chem. Phys., 17, 4177–4187, https://doi.org/10.5194/acp-17-4177-2017, https://doi.org/10.5194/acp-17-4177-2017, 2017
Short summary
Short summary
This study focuses on the analysis of astronomical medium-resolution spectra from the VLT in Chile to measure airglow pseudo-continuum emission of FeO in the optical regime. Compared to OH or Na emissions, this emission is difficult to measure. Using 3.5 years of spectroscopic data, we found annual and semi-annual variations of the FeO emission. Furthermore, we used WACCM to determine the quantum yield of the FeO-producing Fe + O3 reaction in the atmosphere, which has not been done before.
Stefan Noll, Wolfgang Kausch, Stefan Kimeswenger, Stefanie Unterguggenberger, and Amy M. Jones
Atmos. Chem. Phys., 16, 5021–5042, https://doi.org/10.5194/acp-16-5021-2016, https://doi.org/10.5194/acp-16-5021-2016, 2016
Short summary
Short summary
We compare temperatures derived from simultaneous observations of 25 OH and two O2 mesospheric airglow bands taken with the X-shooter spectrograph at the Very Large Telescope in Chile. Considering emission and temperature profile data from the radiometer SABER on the TIMED satellite, we find significant time-dependent non-thermal contributions to the OH-based temperatures, especially for bands originating from high vibrational levels. Many studies of the mesopause region are affected.
S. Noll, W. Kausch, S. Kimeswenger, S. Unterguggenberger, and A. M. Jones
Atmos. Chem. Phys., 15, 3647–3669, https://doi.org/10.5194/acp-15-3647-2015, https://doi.org/10.5194/acp-15-3647-2015, 2015
Short summary
Short summary
We discuss a high-quality data set of simultaneous observations of 25 OH bands with an astronomical echelle spectrograph. These data allowed us to analyse band-dependent OH populations and temperatures. In particular, we could find different non-LTE contributions to OH rotational temperatures depending on band, line set, and observing time. This is critical for mesopause studies that use these temperatures as a proxy of the true temperatures.
H. Winkler and J. Notholt
Atmos. Chem. Phys., 14, 3545–3556, https://doi.org/10.5194/acp-14-3545-2014, https://doi.org/10.5194/acp-14-3545-2014, 2014
Related subject area
Subject: Radiation | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Ground-based noontime D-region electron density climatology over northern Norway
Analysis of 24 years of mesopause region OH rotational temperature observations at Davis, Antarctica – Part 1: long-term trends
Global nighttime atomic oxygen abundances from GOMOS hydroxyl airglow measurements in the mesopause region
Technical note: Bimodality in mesospheric OH rotational population distributions and implications for temperature measurements
How long do satellites need to overlap? Evaluation of climate data stability from overlapping satellite records
Resolving the mesospheric nighttime 4.3 µm emission puzzle: comparison of the CO2(ν3) and OH(ν) emission models
TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece
Comparison of VLT/X-shooter OH and O2 rotational temperatures with consideration of TIMED/SABER emission and temperature profiles
OH populations and temperatures from simultaneous spectroscopic observations of 25 bands
CO2(ν2)-O quenching rate coefficient derived from coincidental SABER/TIMED and Fort Collins lidar observations of the mesosphere and lower thermosphere
Relativistic electron beams above thunderclouds
Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds
Stability of temperatures from TIMED/SABER v1.07 (2002–2009) and Aura/MLS v2.2 (2004–2009) compared with OH(6-2) temperatures observed at Davis Station, Antarctica
Toralf Renkwitz, Mani Sivakandan, Juliana Jaen, and Werner Singer
Atmos. Chem. Phys., 23, 10823–10834, https://doi.org/10.5194/acp-23-10823-2023, https://doi.org/10.5194/acp-23-10823-2023, 2023
Short summary
Short summary
The paper focuses on remote sensing of the lowermost part of the ionosphere (D region) between ca. 50 and 90 km altitude, which overlaps widely with the mesosphere. We present a climatology of electron density over northern Norway, covering solar-maximum and solar-minimum conditions (2014–2022). Excluding detected energetic particle precipitation events, we derived a quiet-profile climatology. We also found a spring–fall asymmetry, while a symmetric solar zenith angle dependence was expected.
W. John R. French, Frank J. Mulligan, and Andrew R. Klekociuk
Atmos. Chem. Phys., 20, 6379–6394, https://doi.org/10.5194/acp-20-6379-2020, https://doi.org/10.5194/acp-20-6379-2020, 2020
Short summary
Short summary
In this study, we analyse 24 years of atmospheric temperatures from the mesopause region (~87 km altitude) derived from ground-based spectrometer observations of hydroxyl airglow at Davis station, Antarctica (68° S, 78° E). These data are used to quantify the effect of the solar cycle and the long-term trend due to increasing greenhouse gas emissions on the atmosphere at this level. A record-low winter-average temperature is reported for 2018 and comparisons are made with satellite observations.
Qiuyu Chen, Martin Kaufmann, Yajun Zhu, Jilin Liu, Ralf Koppmann, and Martin Riese
Atmos. Chem. Phys., 19, 13891–13910, https://doi.org/10.5194/acp-19-13891-2019, https://doi.org/10.5194/acp-19-13891-2019, 2019
Short summary
Short summary
Atomic oxygen is one of the most important trace species in the mesopause region. A common technique to derive it from satellite measurements is to measure airglow emissions involved in the photochemistry of oxygen. In this work, hydroxyl nightglow measured by the GOMOS instrument on Envisat is used to derive a 10-year dataset of atomic oxygen in the middle and upper atmosphere. Annual and semiannual oscillations are observed in the data. The new data are consistent with various other datasets.
Konstantinos S. Kalogerakis
Atmos. Chem. Phys., 19, 2629–2634, https://doi.org/10.5194/acp-19-2629-2019, https://doi.org/10.5194/acp-19-2629-2019, 2019
Short summary
Short summary
Light emission from energetic hydroxyl radical, OH*, is a prominent feature in spectra of the night sky. It is routinely used to determine the temperature of the atmosphere near 90 km. This note shows that the common practice of using only a few emission features from low rotational excitation to determine rotational temperatures does not account for the bimodality of the OH population distributions and can lead to large systematic errors.
Elizabeth C. Weatherhead, Jerald Harder, Eduardo A. Araujo-Pradere, Greg Bodeker, Jason M. English, Lawrence E. Flynn, Stacey M. Frith, Jeffrey K. Lazo, Peter Pilewskie, Mark Weber, and Thomas N. Woods
Atmos. Chem. Phys., 17, 15069–15093, https://doi.org/10.5194/acp-17-15069-2017, https://doi.org/10.5194/acp-17-15069-2017, 2017
Short summary
Short summary
Satellite overlap is often carried out as a check on the stability of the data collected. We looked at how length of overlap influences how much information can be derived from the overlap period. Several results surprised us: the confidence we could have in the matchup of two records was independent of the offset, and understanding of the relative drift between the two satellite data sets improved significantly with 2–3 years of overlap. Sudden jumps could easily be confused with drift.
Peter A. Panka, Alexander A. Kutepov, Konstantinos S. Kalogerakis, Diego Janches, James M. Russell, Ladislav Rezac, Artem G. Feofilov, Martin G. Mlynczak, and Erdal Yiğit
Atmos. Chem. Phys., 17, 9751–9760, https://doi.org/10.5194/acp-17-9751-2017, https://doi.org/10.5194/acp-17-9751-2017, 2017
Short summary
Short summary
Recently, theoretical and laboratory studies have suggested an additional
nighttime channel of transfer of vibrational energy of OH molecules to CO2 in the
mesosphere and lower thermosphere (MLT). We show that new mechanism brings
modelled 4.3 μm emissions very close to the SABER/TIMED measurements. This
renders new opportunities for the application of the CO2 4.3 μm observations in
the study of the energetics and dynamics of the nighttime MLT.
Melina-Maria Zempila, Jos H. G. M. van Geffen, Michael Taylor, Ilias Fountoulakis, Maria-Elissavet Koukouli, Michiel van Weele, Ronald J. van der A, Alkiviadis Bais, Charikleia Meleti, and Dimitrios Balis
Atmos. Chem. Phys., 17, 7157–7174, https://doi.org/10.5194/acp-17-7157-2017, https://doi.org/10.5194/acp-17-7157-2017, 2017
Short summary
Short summary
NILU irradiances at five UV channels were used to produce CIE, vitamin D, and DNA- damage daily doses via a neural network (NN) model. The NN was trained with collocated weighted Brewer spectra and uncertainty in the NILU-derived UV effective doses was 7.5 %. TEMIS UV products were found to be ~ 12.5 % higher than the NILU estimates. The results improve for cloud-free days with differences of 0.57 % for CIE, 1.22 % for vitamin D, and 1.18 % for DNA damage, with standard deviations of ~ 11–13 %.
Stefan Noll, Wolfgang Kausch, Stefan Kimeswenger, Stefanie Unterguggenberger, and Amy M. Jones
Atmos. Chem. Phys., 16, 5021–5042, https://doi.org/10.5194/acp-16-5021-2016, https://doi.org/10.5194/acp-16-5021-2016, 2016
Short summary
Short summary
We compare temperatures derived from simultaneous observations of 25 OH and two O2 mesospheric airglow bands taken with the X-shooter spectrograph at the Very Large Telescope in Chile. Considering emission and temperature profile data from the radiometer SABER on the TIMED satellite, we find significant time-dependent non-thermal contributions to the OH-based temperatures, especially for bands originating from high vibrational levels. Many studies of the mesopause region are affected.
S. Noll, W. Kausch, S. Kimeswenger, S. Unterguggenberger, and A. M. Jones
Atmos. Chem. Phys., 15, 3647–3669, https://doi.org/10.5194/acp-15-3647-2015, https://doi.org/10.5194/acp-15-3647-2015, 2015
Short summary
Short summary
We discuss a high-quality data set of simultaneous observations of 25 OH bands with an astronomical echelle spectrograph. These data allowed us to analyse band-dependent OH populations and temperatures. In particular, we could find different non-LTE contributions to OH rotational temperatures depending on band, line set, and observing time. This is critical for mesopause studies that use these temperatures as a proxy of the true temperatures.
A. G. Feofilov, A. A. Kutepov, C.-Y. She, A. K. Smith, W. D. Pesnell, and R. A. Goldberg
Atmos. Chem. Phys., 12, 9013–9023, https://doi.org/10.5194/acp-12-9013-2012, https://doi.org/10.5194/acp-12-9013-2012, 2012
M. Füllekrug, R. Roussel-Dupré, E. M. D. Symbalisty, J. J. Colman, O. Chanrion, S. Soula, O. van der Velde, A. Odzimek, A. J. Bennett, V. P. Pasko, and T. Neubert
Atmos. Chem. Phys., 11, 7747–7754, https://doi.org/10.5194/acp-11-7747-2011, https://doi.org/10.5194/acp-11-7747-2011, 2011
M. Füllekrug, C. Hanuise, and M. Parrot
Atmos. Chem. Phys., 11, 667–673, https://doi.org/10.5194/acp-11-667-2011, https://doi.org/10.5194/acp-11-667-2011, 2011
W. J. R. French and F. J. Mulligan
Atmos. Chem. Phys., 10, 11439–11446, https://doi.org/10.5194/acp-10-11439-2010, https://doi.org/10.5194/acp-10-11439-2010, 2010
Cited articles
Adler-Golden, S.: Kinetic parameters for OH nightglow modeling consistent
with recent laboratory measurements, J. Geophys. Res., 102,
19969–19976, https://doi.org/10.1029/97JA01622, 1997. a, b
Baker, D. J. and Stair, Jr., A. T.: Rocket measurements of the altitude
distributions of the hydroxyl airglow, Phys. Scripta, 37, 611–622,
https://doi.org/10.1088/0031-8949/37/4/021, 1988. a
Bates, D. R. and Nicolet, M.: The Photochemistry of Atmospheric Water
Vapor, J. Geophys. Res., 55, 301–327, https://doi.org/10.1029/JZ055i003p00301, 1950. a
Beig, G., Keckhut, P., Lowe, R. P., Roble, R. G., Mlynczak, M. G.,
Scheer, J., Fomichev, V. I., Offermann, D., French, W. J. R.,
Shepherd, M. G., Semenov, A. I., Remsberg, E. E., She, C. Y.,
Lübken, F. J., Bremer, J., Clemesha, B. R., Stegman, J.,
Sigernes, F., and Fadnavis, S.: Review of mesospheric temperature
trends, Rev. Geophys., 41, RG1015, https://doi.org/10.1029/2002RG000121, 2003. a, b
Brooke, J. S. A., Bernath, P. F., Western, C. M., Sneden, C., Afşar, M., Li, G., and Gordon, I. E.: Line strengths of rovibrational
and rotational transitions in the X2Π ground state of OH, J.
Quant. Spectrosc. Radiat. Transf., 168, 142–157,
https://doi.org/10.1016/j.jqsrt.2015.07.021, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x
Charters, P. E., MacDonald, R. G., and Polanyi, J. C.: Formation of
vibrationally excited OH by the reaction H+O3, Appl. Optics, 10,
1747–1754, https://doi.org/10.1364/AO.10.001747, 1971. a, b
Cosby, P. C., Slanger, T. G., Huestis, D. L., and Osterbrock, D. E.:
Term energies, line positions, and spectroscopic constants for the OH Meinel
band system, in: 55th International Symposium on Molecular Spectroscopy,
Ohio State University, Columbus, Ohio, USA,
https://www.asc.ohio-state.edu/miller.104/molspect/symposium_55/symposium/Abstracts/p319.pdf (last access: 2 May 2020),
2000. a, b
Cosby, P. C., Sharpee, B. D., Slanger, T. G., Huestis, D. L., and
Hanuschik, R. W.: High-resolution terrestrial nightglow emission line
atlas from UVES/VLT: Positions, intensities, and identifications for 2808
lines at 314-1043 nm, J. Geophys. Res., 111, A12307,
https://doi.org/10.1029/2006JA012023, 2006. a, b, c, d
Dekker, H., D'Odorico, S., Kaufer, A., Delabre, B., and Kotzlowski,
H.: Design, construction, and performance of UVES, the echelle spectrograph
for the UT2 Kueyen Telescope at the ESO Paranal Observatory, in: Optical and
IR Telescope Instrumentation and Detectors, edited by: Iye, M. and
Moorwood, A. F., Vol. 4008 of SPIE Proc. Ser., 534–545,
https://doi.org/10.1117/12.395512, 2000. a, b
Dodd, J. A., Armstrong, P. S., Lipson, S. J., Lowell, J. R.,
Blumberg, W. A. M., Nadile, R. M., Adler-Golden, S. M., Marinelli,
W. J., Holtzclaw, K. W., and Green, B. D.: Analysis of hydroxyl
earthlimb airglow emissions: Kinetic model for state-to-state dynamics of
OH(v,N), J. Geophys. Res., 99, 3559–3586, https://doi.org/10.1029/93JD03338, 1994. a, b
Edlén, B.: The Refractive Index of Air, Metrologia, 2, 71–80,
https://doi.org/10.1088/0026-1394/2/2/002, 1966. a, b
ESO (European Southern Observatory): UVES Phase 3 spectra (release version 1),
available at: http://archive.eso.org/wdb/wdb/adp/phase3_spectral/form,
last access: 2 May 2020.
Franzen, C., Espy, P. J., Hofmann, N., Hibbins, R. E., and Djupvik,
A. A.: Airglow Derived Measurements of Q-Branch Transition Probabilities for
Several Hydroxyl Meinel Bands, Atmosphere, 10, 637,
https://doi.org/10.3390/atmos10100637, 2019. a
French, W. J. R., Burns, G. B., Finlayson, K., Greet, P. A., Lowe,
R. P., and Williams, P. F. B.: Hydroxyl (6-2) airglow emission intensity
ratios for rotational temperature determination, Ann. Geophys., 18,
1293–1303, https://doi.org/10.1007/s00585-000-1293-2, 2000. a, b, c, d
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y.,
Bernath, P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V.,
Drouin, B. J., Flaud, J. M., Gamache, R. R., Hodges, J. T.,
Jacquemart, D., Perevalov, V. I., Perrin, A., Shine, K. P., Smith,
M. A. H., Tennyson, J., Toon, G. C., Tran, H., Tyuterev, V. G.,
Barbe, A., Császár, A. G., Devi, V. M., Furtenbacher, T.,
Harrison, J. J., Hartmann, J. M., Jolly, A., Johnson, T. J.,
Karman, T., Kleiner, I., Kyuberis, A. A., Loos, J., Lyulin, O. M.,
Massie, S. T., Mikhailenko, S. N., Moazzen-Ahmadi, N., Müller,
H. S. P., Naumenko, O. V., Nikitin, A. V., Polyansky, O. L., Rey, M.,
Rotger, M., Sharpe, S. W., Sung, K., Starikova, E., Tashkun, S. A.,
Auwera, J. V., Wagner, G., Wilzewski, J., Wcisło, P., Yu, S.,
and Zak, E. J.: The HITRAN2016 molecular spectroscopic database, J.
Quant. Spectrosc. Ra., 203, 3–69,
https://doi.org/10.1016/j.jqsrt.2017.06.038, 2017. a, b, c
Hart, M.: Long-term Spectroscopic Observations of the Atmospheric Airglow by
the Sloan Digital Sky Survey, Publ. Astron. Soc. Pac., 131, 015003,
https://doi.org/10.1088/1538-3873/aae972, 2019a. a
Kalogerakis, K. S.: Technical note: Bimodality in mesospheric OH rotational
population distributions and implications for temperature measurements,
Atmos. Chem. Phys., 19, 2629–2634, https://doi.org/10.5194/acp-19-2629-2019, 2019. a, b, c, d
Kalogerakis, K. S., Matsiev, D., Cosby, P. C., Dodd, J. A.,
Falcinelli, S., Hedin, J., Kutepov, A. A., Noll, S., Panka, P. A.,
Romanescu, C., and Thiebaud, J. E.: New Insights for mesospheric OH:
Multi-quantum vibrational relaxation as a driver for non-local thermodynamic
equilibrium, Ann. Geophys., 36, 13–24, https://doi.org/10.5194/angeo-36-13-2018,
2018. a, b, c, d, e, f, g
Khomich, V. Y., Semenov, A. I., and Shefov, N. N.: Airglow as an
Indicator of Upper Atmospheric Structure and Dynamics, Springer, Berlin,
2008. a
Liu, G. and Shepherd, G. G.: An empirical model for the altitude of the OH
nightglow emission, Geophys. Res. Lett., 33, L09805,
https://doi.org/10.1029/2005GL025297, 2006. a
Llewellyn, E. J. and Long, B. H.: The OH Meinel bands in the airglow - The
radiative lifetime, Can. J. Phys., 56, 581–586, https://doi.org/10.1139/p78-076,
1978. a, b
Meinel, A. B.: OH Emission Bands in the Spectrum of the Night Sky. I,
Astrophys. J., 111, 555–564, https://doi.org/10.1086/145296, 1950. a
Melo, S. M. L., Lowe, R. P., and Takahashi, H.: The nocturnal behavior
of the hydroxyl airglow at the equatorial and low latitudes as observed by
WINDII: Comparison with ground-based measurements, J. Geophys. Res., 104,
24657–24666, https://doi.org/10.1029/1999JA900291, 1999. a
Mlynczak, M. G., Hunt, L. A., Mast, J. C., Thomas Marshall, B.,
Russell, J. M., Smith, A. K., Siskind, D. E., Yee, J.-H., Mertens,
C. J., Javier Martin-Torres, F., Earl Thompson, R., Drob, D. P., and
Gordley, L. L.: Atomic oxygen in the mesosphere and lower thermosphere
derived from SABER: Algorithm theoretical basis and measurement uncertainty,
J. Geophys. Res.-Atmos., 118, 5724–5735, https://doi.org/10.1002/jgrd.50401, 2013. a, b
Nelson, Jr., D. D., Schiffman, A., Nesbitt, D. J., Orlando, J. J., and
Burkholder, J. B.: H+O3 Fourier-transform infrared emission and laser
absorption studies of OH(X2Π) radical: An experimental dipole moment
function and state-to-state Einstein A coefficients, J. Chem. Phys., 93,
7003–7019, https://doi.org/10.1063/1.459476, 1990. a, b, c, d
Noll, S., Kausch, W., Barden, M., Jones, A. M., Szyszka, C.,
Kimeswenger, S., and Vinther, J.: An atmospheric radiation model for
Cerro Paranal. I. The optical spectral range, Astron. Astrophys., 543, A92,
https://doi.org/10.1051/0004-6361/201219040, 2012. a
Noll, S., Kausch, W., Kimeswenger, S., Unterguggenberger, S., and
Jones, A. M.: Comparison of VLT/X-shooter OH and O2 rotational
temperatures with consideration of TIMED/SABER emission and temperature
profiles, Atmos. Chem. Phys., 16, 5021–5042,
https://doi.org/10.5194/acp-16-5021-2016, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Noll, S., Kimeswenger, S., Proxauf, B., Unterguggenberger, S.,
Kausch, W., and Jones, A. M.: 15 years of VLT/UVES OH intensities and
temperatures in comparison with TIMED/SABER data, J. Atmos. Sol.-Terr.
Phys., 163, 54–69, https://doi.org/10.1016/j.jastp.2017.05.012, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Noll, S., Proxauf, B., Kausch, W., and Kimeswenger, S.: Mechanisms for
varying non-LTE contributions to OH rotational temperatures from measurements
and modelling. I. Climatology, J. Atmos. Sol.-Terr. Phys., 175, 87–99,
https://doi.org/10.1016/j.jastp.2018.05.004, 2018a. a, b
Noll, S., Proxauf, B., Kausch, W., and Kimeswenger, S.: Mechanisms for
varying non-LTE contributions to OH rotational temperatures from measurements
and modelling. II. Kinetic model, J. Atmos. Sol.-Terr. Phys., 175, 100–119,
https://doi.org/10.1016/j.jastp.2018.05.005, 2018b. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t
Noll, S., Plane, J. M. C., Feng, W., Proxauf, B., Kimeswenger, S.,
and Kausch, W.: Observations and modeling of potassium emission in the
terrestrial nightglow, J. Geophys. Res.-Atmos., 124, 6612–6629,
https://doi.org/10.1029/2018JD030044, 2019. a, b
Oliva, E., Origlia, L., Maiolino, R., Baffa, C., Biliotti, V.,
Bruno, P., Falcini, G., Gavriousev, V., Ghinassi, F., Giani, E.,
Gonzalez, M., Leone, F., Lodi, M., Massi, F., Montegriffo, P.,
Mochi, I., Pedani, M., Rossetti, E., Scuderi, S., Sozzi, M.,
Tozzi, A., and Valenti, E.: A GIANO-TNG high-resolution infrared
spectrum of the airglow emission, Astron. Astrophys., 555, A78,
https://doi.org/10.1051/0004-6361/201321366, 2013. a
Oliva, E., Origlia, L., Scuderi, S., Benatti, S., Carleo, I.,
Lapenna, E., Mucciarelli, A., Baffa, C., Biliotti, V., Carbonaro,
L., Falcini, G., Giani, E., Iuzzolino, M., Massi, F., Sanna, N.,
Sozzi, M., Tozzi, A., Ghedina, A., Ghinassi, F., Lodi, M.,
Harutyunyan, A., and Pedani, M.: Lines and continuum sky emission in the
near infrared: observational constraints from deep high spectral resolution
spectra with GIANO-TNG, Astron. Astrophys., 581, A47,
https://doi.org/10.1051/0004-6361/201526291, 2015. a, b, c, d, e, f, g, h, i, j
Parihar, N., Singh, D., and Gurubaran, S.: A comparison of ground-based
hydroxyl airglow temperatures with SABER/TIMED measurements over 23∘
N, India, Ann. Geophys., 35, 353–363, https://doi.org/10.5194/angeo-35-353-2017,
2017. a, b
Pendleton, Jr., W., Espy, P., Baker, D., Steed, A., and Fetrow, M.:
Observation of OH Meinel (7,4) P(N′′ = 13) transitions in the night
airglow, J. Geophys. Res., 94, 505–510, https://doi.org/10.1029/JA094iA01p00505,
1989. a, b
Pendleton, Jr., W. R., Espy, P. J., and Hammond, M. R.: Evidence for
non-local-thermodynamic-equilibrium rotation in the OH nightglow, J.
Geophys. Res., 98, 11567–11580, https://doi.org/10.1029/93JA00740, 1993. a, b
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.:
NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and
scientific issues, J. Geophys. Res., 107, 1468, https://doi.org/10.1029/2002JA009430,
2002. a
Reisin, E. R., Scheer, J., Dyrland, M. E., Sigernes, F., Deehr,
C. S., Schmidt, C., Höppner, K., Bittner, M., Ammosov, P. P.,
Gavrilyeva, G. A., Stegman, J., Perminov, V. I., Semenov, A. I.,
Knieling, P., Koppmann, R., Shiokawa, K., Lowe, R. P.,
López-González, M. J., Rodríguez, E., Zhao, Y.,
Taylor, M. J., Buriti, R. A., Espy, P. J., French, W. J. R.,
Eichmann, K.-U., Burrows, J. P., and von Savigny, C.: Traveling
planetary wave activity from mesopause region airglow temperatures determined
by the Network for the Detection of Mesospheric Change (NDMC), J. Atmos.
Sol.-Terr. Phys., 119, 71–82, https://doi.org/10.1016/j.jastp.2014.07.002, 2014. a
Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner,
D., Bernath, P. F., Birk, M., Bizzocchi, L., Boudon, V., Brown,
L. R., Campargue, A., Chance, K., Cohen, E. A., Coudert, L. H.,
Devi, V. M., Drouin, B. J., Fayt, A., Flaud, J.-M., Gamache, R. R.,
Harrison, J. J., Hartmann, J.-M., Hill, C., Hodges, J. T.,
Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R. J., Li, G.,
Long, D. A., Lyulin, O. M., Mackie, C. J., Massie, S. T.,
Mikhailenko, S., Müller, H. S. P., Naumenko, O. V., Nikitin,
A. V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E. R.,
Richard, C., Smith, M. A. H., Starikova, E., Sung, K., Tashkun, S.,
Tennyson, J., Toon, G. C., Tyuterev, V. G., and Wagner, G.: The
HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 130, 4–50, https://doi.org/10.1016/j.jqsrt.2013.07.002, 2013. a, b, c, d, e, f, g
Rousselot, P., Lidman, C., Cuby, J.-G., Moreels, G., and Monnet, G.:
Night-sky spectral atlas of OH emission lines in the near-infrared, Astron.
Astrophys., 354, 1134–1150, 2000. a
Russell, III, J. M., Mlynczak, M. G., Gordley, L. L., Tansock, J., and
Esplin, R.: Overview of the SABER experiment and preliminary calibration
results, in: Optical Spectroscopic Techniques and Instrumentation for
Atmospheric and Space Research III, edited by: Larar, A. M., Vol. 3756 of
SPIE Proc. Ser., 277–288, https://doi.org/10.1117/12.366382, 1999. a, b
SABER Team: v2.0 limb-sounding data products of the SABER radiometer on the
TIMED satellite, available at: http://saber.gats-inc.com/data.php,
last access: 2 May 2020.
Schmidt, C., Höppner, K., and Bittner, M.: A ground-based
spectrometer equipped with an InGaAs array for routine observations of
OH(3-1) rotational temperatures in the mesopause region, J. Atmos.
Sol.-Terr. Phys., 102, 125–139, https://doi.org/10.1016/j.jastp.2013.05.001, 2013.
a
Sedlak, R., Hannawald, P., Schmidt, C., Wüst, S., and Bittner,
M.: High-resolution observations of small-scale gravity waves and turbulence
features in the OH airglow layer, Atmos. Meas. Tech., 9, 5955–5963,
https://doi.org/10.5194/amt-9-5955-2016, 2016. a
Tapping, K. F.: The 10.7 cm solar radio flux (F10.7), Space Weather,
11, 394–406, https://doi.org/10.1002/swe.20064, 2013. a
Taylor, M. J., Pendleton, W. R., Clark, S., Takahashi, H., Gobbi, D.,
and Goldberg, R. A.: Image measurements of short-period gravity waves at
equatorial latitudes, J. Geophys. Res., 102, 26283–26299,
https://doi.org/10.1029/96JD03515, 1997. a
Turnbull, D. N. and Lowe, R. P.: An empirical determination of the dipole
moment function of OH(X2Π), J. Chem. Phys., 89, 2763–2767,
https://doi.org/10.1063/1.455028, 1988. a
van Rhijn, P. J.: On the brightness of the sky at night and the total amount
of starlight, Publ. Kapteyn Astron. Lab. Groningen, 31, 1–83, 1921. a
von Savigny, C., McDade, I. C., Eichmann, K.-U., and Burrows, J. P.:
On the dependence of the OH* Meinel emission altitude on vibrational
level: SCIAMACHY observations and model simulations, Atmos. Chem. Phys., 12,
8813–8828, https://doi.org/10.5194/acp-12-8813-2012, 2012. a, b, c
Xu, J., Gao, H., Smith, A. K., and Zhu, Y.: Using TIMED/SABER
nightglow observations to investigate hydroxyl emission mechanisms in the
mesopause region, J. Geophys. Res., 117, D02301, https://doi.org/10.1029/2011JD016342,
2012. a, b
Yee, J.-H., Crowley, G., Roble, R. G., Skinner, W. R., Burrage,
M. D., and Hays, P. B.: Global simulations and observations of O(1S),
O2(1Σ) and OH mesospheric nightglow emissions, J.
Geophys. Res., 102, 19949–19968, https://doi.org/10.1029/96JA01833, 1997. a
Short summary
Line emission from hydroxyl (OH) molecules at altitudes of about 90 km strongly contributes to the Earth's night-sky brightness and is therefore used as an important indicator of atmospheric chemistry and dynamics. However, interpreting the measurements can be ambiguous since necessary molecular parameters and the internal state of OH are not well known. Based on high-quality spectral data, we investigated these issues and found solutions for a better understanding of the OH line intensities.
Line emission from hydroxyl (OH) molecules at altitudes of about 90 km strongly contributes to...
Altmetrics
Final-revised paper
Preprint