Articles | Volume 20, issue 8
https://doi.org/10.5194/acp-20-4809-2020
https://doi.org/10.5194/acp-20-4809-2020
Review article
 | Highlight paper
 | 
24 Apr 2020
Review article | Highlight paper |  | 24 Apr 2020

The acidity of atmospheric particles and clouds

Havala O. T. Pye, Athanasios Nenes, Becky Alexander, Andrew P. Ault, Mary C. Barth, Simon L. Clegg, Jeffrey L. Collett Jr., Kathleen M. Fahey, Christopher J. Hennigan, Hartmut Herrmann, Maria Kanakidou, James T. Kelly, I-Ting Ku, V. Faye McNeill, Nicole Riemer, Thomas Schaefer, Guoliang Shi, Andreas Tilgner, John T. Walker, Tao Wang, Rodney Weber, Jia Xing, Rahul A. Zaveri, and Andreas Zuend

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Havala Pye on behalf of the Authors (12 Feb 2020)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (25 Feb 2020) by Alma Hodzic
RR by Anonymous Referee #2 (04 Mar 2020)
ED: Publish subject to technical corrections (07 Mar 2020) by Alma Hodzic
AR by Havala Pye on behalf of the Authors (10 Mar 2020)  Author's response    Manuscript
Short summary
Acid rain is recognized for its impacts on human health and ecosystems, and programs to mitigate these effects have had implications for atmospheric acidity. Historical measurements indicate that cloud and fog droplet acidity has changed in recent decades in response to controls on emissions from human activity, while the limited trend data for suspended particles indicate acidity may be relatively constant. This review synthesizes knowledge on the acidity of atmospheric particles and clouds.
Altmetrics
Final-revised paper
Preprint