

Supplement of

The acidity of atmospheric particles and clouds

Havala O. T. Pye et al.

Correspondence to: Havala O. T. Pye (pye.havala@epa.gov)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

44 S1 Supplementary information for the definition of pH

45 S1.1 Operational definition and pH measurements

46 *Operational definition of pH*

47 The notional character of the pH definition was recognized decades ago and has led to operational definitions of pH 48 in terms of primary standard methods for pH measurements. These standard methods have been agreed upon by expert 49 consensus, such as during the IUPAC-sponsored conference on "Harmonization of pH Scale Recommendations" in 50 the year 1980 and refinements since then (Covington et al. 1985; Buck et al., 2002). The operational definition of pH 51 is based on the principle of determining the difference between the pH of a solution of interest and that of a reference 52 (buffer) solution of known pH by means of measuring the difference in electromotive force, i.e. an electric potential 53 difference, using two electrochemical cells. High-precision measurement of absolute pH values are made with a so-54 called primary method using electrochemical cells without transference as described in great detail by Buck et al. 55 (2002) and briefly introduced in this section.

56 The main purpose of the rather laborious absolute pH measurements is to establish the pH values and associated 57 uncertainties of well-defined, stable standard buffer solutions (so-called primary standard buffers) at certain 58 concentrations and over a meaningful temperature range, e.g. the primary standard of 0.05 mol kg⁻¹ potassium 59 hydrogen phthalate (in water) has a determined pH value of 4.005 at 25 °C, 3.997 at 10 °C and 4.000 at 0 °C. Tabulated 60 values of primary standard buffer solutions, covering acidic to alkaline pH ranges, serve as calibration standards for a 61 wider range of so-called secondary standard buffer solutions, covering the pH scale from 1.7 to 13.4 (see tables 1 & 2 in Buck et al., 2002). Primary or secondary standard solutions of known pH are then used in instrument calibration 62 63 and the quantification of the pH of a sample solution of interest. As stated by Buck et al., (2002), the declaration of a 64 pH measurement by a "primary method" requires assuring full traceability of the results of all measurements and consideration of their uncertainties as well as of limitations in the theory employed in the determination of 65 experimental variables. 66

67 *Absolute pH measurement with a Harned cell*

IUPAC recommends the Harned cell, a cell without liquid junction, as a primary method of pH measurement. Using
 the conventional notation from electrochemistry, the Harned cell is defined by:

70 Pt
$$|H_2(g)(p = 101.325 \text{ kPa})|$$
 buffer S, Cl⁻(aq) | AgCl(s) | Ag. (C1)

Here, cell (C1) contains an aqueous standard buffer solution S of known composition as well as chloride ions (typically
 in form of an aqueous solution of KCl or NaCl). The cell includes a silver–silver-chloride electrode and a hydrogen–

73 platinum electrode (platinum as catalyst), allowing for concentration-dependent measurements of the electrical

potential. The potential difference E_1 of the cell is found by using the cell reaction AgCl(s) + $\frac{1}{2}H_2(g) \Rightarrow Ag(s) + \frac{1}{2}H_2(g) \Rightarrow Ag(s) +$

75 $H^+(aq) + Cl^-(aq)$ and application of Nernst's equation to yield (Buck et al., 2002),

76
$$E_1 = E^{\ominus} - \frac{RT}{F} \ln \left[a_{\mathrm{H}^+} \frac{m_{\mathrm{CI}^-}}{m^{\ominus}} \gamma_{\mathrm{CI}^-} \right], \tag{S1}$$

where E^{\ominus} is the standard potential difference of the cell at absolute temperature *T* when the hydrogen gas pressure is corrected to 101.325 kPa. *R* is the ideal gas constant (8.3144598 J K⁻¹ mol⁻¹) and *F* the Faraday constant (9.6485332 × 10⁴ C mol⁻¹). Equation (S1) can be rearranged to express the molality-based acidity function $p(a_H\gamma_{Cl})$, which is a linear function of the measured potential difference $(E_1 - E^{\ominus})$ and the logarithm of the chloride ion molality,

82
$$p(a_{\rm H}\gamma_{\rm Cl}) = -\log_{10}(a_{\rm H^+}\gamma_{\rm Cl^-}) = \frac{E_1 - E^{\ominus}}{(RT/F)\ln(10)} + \log_{10}\left(\frac{m_{\rm Cl^-}}{m^{\ominus}}\right).$$
(S2)

Calculation of the (molal) pH value of solution S from Eq. (S2) seems straightforward, pH(S) = $p(a_H\gamma_{Cl}) + \log_{10}(\gamma_{C\Gamma})$. However, it requires an independent assumption about the value of the single-ion activity coefficient of the chloride ion (immeasurable). The Bates–Guggenheim convention established a means for a standardized way of determining $\gamma_{C\Gamma}$ under specified conditions (outlined below). The standard potential difference E^{\ominus} is also determined using the Harned cell, with only aqueous HCl present at a specified molality; $m_{HCl} = 0.01 \text{ mol kg}^{-1}$ is recommended. This buffer-free Harned cell configuration is

89 Pt |
$$H_2$$
 | HCl(aq), ($m_{HCl} = 0.01 \text{ mol kg}^{-1}$) | AgCl | Ag. (C1a)

The Nernst equation for cell C1a involves the molality of HCl and the mean molal activity coefficient $\gamma_{\pm,\text{HCl}}$, which is known for various temperatures from experimental data, e.g. $\gamma_{\pm,\text{HCl}} = 0.9042$ for $m_{\text{HCl}} = 0.01$ mol kg⁻¹ (in pure water) at 298.15 K (Bates and Robinson, 1980). Hence, a precise measurement of the electrical cell potential E_{1a} allows for an unambiguous calculation of E^{\ominus} via

94
$$E^{\ominus} = E_{1a} + \frac{2 RT}{F} \ln [0.01 \gamma_{\pm, \text{HCl}}].$$
 (S3)

As mentioned above, to arrive at a pH value by means of the acidity function (Eq. S2), $\log_{10}(\gamma_{CL})$ needs to be 95 quantified independently. In brief, the IUPAC (Buck et al., 2002) recommends the following two-step procedure: (i) 96 the value of the acidity function at zero chloride molality $p(a_H\gamma_{Cl})^0$ is determined as the intercept of Eq. (S2) by 97 98 means of a linear extrapolation using several measurements with cell C1 at different molalities of NaCl or KCl (small additions of chloride while maintaining a total molal ionic strength $I < 0.1 \text{ mol kg}^{-1}$; (ii) the chloride ion activity 99 100 coefficient, γ_{Cl}^0 , at zero chloride molality (the trace activity coefficient) is determined using Debye–Hückel theory. In aqueous solutions of low ionic strength ($l < 0.1 \text{ mol kg}^{-1}$), the Debye–Hückel equation for single-ion activity 101 102 coefficients is applicable (but imperfect). The Bates-Guggenheim convention adopts the expression

103
$$\log_{10}(\gamma_{\rm Cl}^0) = -A \frac{\sqrt{l}}{1 + b \sqrt{l/m^{\ominus}}},$$
 (S4)

with parameter *A* as the temperature-dependent Debye–Hückel constant; parameter *b* set to 1.5, assumed constant for temperatures in the range from 5 – 50 °C; and $I = \frac{1}{2}\sum_{i} m_{i}z_{i}^{2}$, the ionic strength of the (standard) solution with z_{i} the normalized integer charge of ion *i*. Values of *A* are tabulated in the appendix of Buck et al. (2002), e.g. A = 0.5100

mol^{-1/2} kg^{-1/2} at 298.15 K. Employing this convention and parameters, the primary method allows determining the pH 107 of different standard solutions S based on Eqs. (S2 - S4) as follows: 108

110 The experimental uncertainty for a typical primary pH measurement is of the order 0.004 pH units. However, the 111 uncertainty associated with the assumptions made by the Bates-Guggenheim convention add an estimated 0.01 pH 112 units of uncertainty (95 % confidence interval) for I < 0.1 mol kg⁻¹, while increasing uncertainty is expected towards 113 higher ionic strength (Buck et al., 2002). Most of the latter uncertainty arises from assumptions about the true 114 dissociation of ions in buffer solutions (affecting the value of I) and the effective distance of closest approach of ions (factored into b = 1.5). We refer to the IUPAC recommendations detailed in Buck et al. (2002) and the pH uncertainty 115 116 evaluation by Meinrath and Spitzer (2000) for recommended measurement protocols, calibration and considerations 117

of uncertainties as well as various technical details of the procedures introduced.

118 Practical pH measurements with glass electrodes

119 In practice, secondary methods are frequently used, among them cells with a glass electrode instead of a H₂|Pt 120 electrode. These secondary methods use cells with transference, which contain liquid junctions (e.g. a salt bridge), 121 leading to irreversible migration of ions and associated non-negligible liquid junction potentials contributing to the 122 measured potential difference of interest. The modern pH meters used widely in laboratories and industry are based 123 on H⁺-ion-responsive glass electrodes. This choice of electrode is for reasons of convenience and reliability. The key 124 part of the electrode is a glass membrane (a thin piece of H⁺-sensitive glass), often shaped in the form of a bulb, 125 attached to a stem of glass of high electric resistivity containing an internal reference electrode and filling solution of 126 fixed chloride concentration. pH meters come in many shapes and sizes, including flat models, capillary probes and 127 devices with ion-selective electrodes specific for other ions, e.g. nitrate, chloride, sodium and ammonium (Kolb, 1979;

128 Buck et al., 2002). The glass-electrode electrochemical cell is defined by

129 ref. electrode
$$| \text{KCl}(aq), (m_{\text{KCl}} \ge 3.5 \text{ mol kg}^{-1}) :: \text{ solution (S or X)} | glass electrode. (C2)$$

The reference electrode is usually of the silver-silver chloride type, with a salt bridge, e.g. a porous plug junction in 130 131 contact with the solution to be tested. The working principle of a glass electrode is based on the development of an 132 electrical potential at H⁺-sensitive glass-liquid interfaces. The potential at the outside glass surface depends on the pH of the sample solution measured, while the potential at the inside surface is established by the constant pH of the 133 134 filling solution (e.g. concentrated KCl_(aq)). Sometimes the glass and reference electrodes are combined into a singleprobe combination electrode. 135

The pH of sample solution X is determined via the measured potential difference $E_2(X) - E_2(S)$ using an adequate 136 137 standard buffer solution of known pH(S),

138
$$pH(X) = pH(S) - \frac{E_2(X) - E_2(S)}{(RT/F)\ln(10)}$$
 (S6)

- 139 The direct application of Eq. (S6) is an example of a simple one-point calibration. Higher precision measurements are
- 140 carried out by using a two-point or multi-point calibration procedure, in which at least two standard buffers are used
- 141 that bracket the (unknown) pH(X). Ideally, the standard buffers chosen are close (above and below) in pH to pH(X),
- 142 leading to reduced uncertainties. Two-point or multipoint calibrations are needed to achieve a target pH uncertainty
- of about 0.02 0.03 near 25 °C. Details about such methods, proper instrument calibration procedures and associated
- uncertainties are outlined in Buck et al. (2002) as well as the manuals and guidelines of commercial pH-meter
- 145 manufacturers. Moreover, these references point out that special considerations are necessary for pH measurements
- 146 in non-aqueous solutions or solutions containing substantial amounts of organic components, which may affect the
- 147 behavior of the electrodes and junctions.

148 S1.2 Derivation of pH scale conversions

149 Conversions among pH values calculated using different concentration scales (molarity, molality, mole fraction, etc.) 150 are possible and necessary for an adequate comparison of model predictions. It is recommended to convert all pH 151 values to the molality scale. For clarity, the molality-scale pH is denoted by symbol "pH" while the pH on other scales 152 is indicated by a subscript (e.g. pH_x for the mole-fraction-based pH). Generally, formulas for the conversion of pH 153 scales are derived using the equivalence of the (electro-)chemical potential of single ions expressed in any 154 concentration scale. For example, in the case of an electroneutral liquid phase (i.e. cancellation of the local electrostatic 155 potential within the phase), the chemical potential of H⁺, $\mu_{H^+}^l$, is given by

156
$$\mu_{\rm H^+}^l = \mu_{\rm H^+}^{\ominus,(m)} + RT \ln\left(\frac{m_{\rm H^+}}{m^{\ominus}} \gamma_{\rm H^+}\right) = \mu_{\rm H^+}^{\ominus,(x)} + RT \ln\left(x_{\rm H^+} f_{\rm H^+}^*\right).$$
(S7)

157 Here, the chemical potential is expressed either using the molality scale (first equality on right hand side) or the mole fraction scale (second equality). In a general case, neither of the two standard state chemical potentials $(\mu_{\mu^+}^{\ominus,(m)}, \mu_{\mu^+}^{\ominus,(x)})$ 158 nor the two activity coefficients are of equivalent values, yet the correct combinations according to Eq. (S7) yield an 159 equivalent $\mu_{H^+}^l$. By using this fact combined with the detailed definitions of the different activity coefficient scales 160 161 and reference states, a correct mapping between scales is possible, which then allows also for a conversion between pH values defined on corresponding scales. Note, when solvents other than water are involved one needs to correctly 162 163 account for the definitions of the activity coefficients in terms of their reference states (e.g. infinite dilution in pure 164 water or in a specific water-organic mixed solvent), then follow the derivation steps analogous to those outlined below. In the case described here, the reference states of γ_{H^+} and $f_{H^+}^*$ are both that of infinite dilution of H⁺ in pure 165 water, where $\gamma_{H^+} \rightarrow 1$ and $f_{H^+}^* \rightarrow 1$ (regardless of whether other solvent compounds are present or not), such that both 166 167 activity coefficients are equivalent at that reference point. This is consistent with models that only treat organic-free aqueous electrolyte systems as well as with models treating organic-inorganic electrolyte solutions, such as 168 169 AIOMFAC. Using these definitions leads to (e.g. Zuend, 2007, pp. 45 - 47)

170
$$\ln(\gamma_{\rm H^+}) = \ln(f_{\rm H^+}^*) + \ln\left(\frac{x_{\rm H^+}}{M_w \, m_{\rm H^+}}\right), \tag{S8}$$

171 where M_w denotes the molar mass of water. Using the definition of molality, $m_{H^+} = \frac{n_{H^+}}{\sum_s n_s M_s}$, (compatible with the 172 AIOMFAC model) Eq. (S8) can be expressed as

173
$$\ln(\gamma_{\rm H^+}) = \ln(f_{\rm H^+}^*) + \ln\left(\frac{1}{M_w}\sum_s x_s M_s\right).$$
(S9)

Here, the summation over index *s* covers non-electrolyte species only, i.e. water and organic mixture components, while $x_s = \frac{n_s}{\sum_s n_s + \sum_i n_i}$ is the mole fraction of 'solvent' *s* computed by accounting for all solution species, including molar amounts of H⁺ and other ions ($\sum_i n_i$). For the case of an aqueous electrolyte solution absent any organic components or when water is defined as the only solvent (e.g. in the E-AIM model), molality is defined by $m_{H^+} =$ $\frac{n_{H^+}}{n_w M_w}$ and $x_w = \frac{n_w}{n_w + \sum_i n_i}$. In this case, Eq. (S9) simplifies to

179
$$\ln(\gamma_{H^+}) = \ln(f_{H^+}^*) + \ln(x_w).$$
 (S10)

Using Eq. (S9) with the definitions of pH on molality and mole fraction scales (Eqs. 1 and 2 from main text) resultsin

182
$$pH_x - pH = \log_{10}\left(\frac{m_{H^+}}{m \ominus} \frac{\sum_s n_s M_s}{M_w n_{H^+}}\right),$$
 (S11)

183 with $m_{\text{H}^+} = \frac{n_{\text{H}^+}}{\sum_S n_S M_S}$ this simplifies to

184
$$pH = pH_x + \log_{10}(m^{\ominus}M_w) \approx pH_x - 1.74436.$$
 (S12)

The exact same conversion formula (Eq. S12) results for solutions for which the molality is defined via $m_{\rm H^+} = \frac{n_{\rm H^+}}{n_w M_w}$ which led to Eq. S10. This is the case because the reference state in both cases is that of infinite dilution of ion "*i*" in pure water. As a reminder, m^{\ominus} stands for unit molality (1 mol kg⁻¹). Therefore, pH values defined on molality and mole fraction scales are offset by a constant value of about -1.74436.

189 The analogous conversion between molarity and molality-based pH is given by (Jia et al., 2018)

190
$$pH_c = pH - \log_{10} \left(\frac{c^{\ominus}}{m^{\ominus} \rho_0} \cdot 10^3 \frac{\mathrm{dm}^3}{\mathrm{m}^3} \right).$$
(S13)

Here, ρ_0 is the density of the reference solvent, water, in units of kg m⁻³, while $10^3 \frac{dm^3}{m^3}$ is a conversion factor necessary when concentrations are expressed in non-SI units of mol dm⁻³ (or moles per liter). Because liquid-state density of the reference solvent depends weakly on temperature, the exact relation between pH and pH_c is non-linear. However, in the case of water near room temperature (ρ_0 close to 1000 kg m⁻³), the logarithm in Eq. (S13) yields a small number, resulting in pH_c \approx pH (Jia et al., 2018).

196 S2. Supplementary information for sulfate production in Figure 3

- 197 The reaction rates for the S(IV) S(VI) conversion processes listed in Table S1 were calculated using the conditions
- 198 for Beijing Winter Haze published in Cheng et al. (2016): 271 K, 40 ppb SO₂, 66 ppb NO₂, 3 ppb O₃, 0.01 ppb
- 199 HOOH, 3.16×10⁻³ M [Mn⁺²], and

200
$$[Fe^{+3}] = \begin{cases} 10^{-3} M \text{ for } pH < 3\\ 10^{3} [H^{+}]^{3} M \text{ for } pH \ge 3 \end{cases}$$
 (S14)

201 Henry's Law constants are available in Table S2.

202 S3. Supplementary information for proxy estimates in Figure 15

(a) Inorganic ion balance: There are 5 points for the Tianjin data set off scale. The lines represent the linear fits to each data set based on a least squares regression analysis. The fit parameters are as follows: northeast USA (slope = -45.63, intercept = 0.71, $R^2 = 0.32$, n = 3623), southeast USA (slope = -27.11, intercept = 1.31, $R^2 = 0.36$, n = 555), California (slope = -12.27, intercept = 2.25, $R^2 = 0.34$, n = 102), Tianjin (slope = -1.346, intercept = 3.16, $R^2 = 0.02$, n = 241). Note that a positive value for the ion balance represents conditions with Σ (anion equivalents) > Σ (cation

- 208 equivalents).
- 209 (b) Cation/anion molar equivalents ratio: There are 7 points for the Tianjin data set off scale. The lines represent the
- 210 linear fits to each data set based on a least squares regression analysis. The fit parameters are as follows: northeast
- 211 USA (slope = 2.88, intercept = -1.88, R^2 = 0.72, n = 3623), southeast USA (slope = 1.34, intercept = 0.07, R^2 = 0.27, n
- 212 = 524), California (slope = 0.69, intercept = 1.70, R^2 = 0.27, n = 102), Tianjin (slope = 0.65, intercept = 2.45, R^2 = 0.28,
- 213 n = 241).
- 214 *(c) Gas ratio*: The lines represent the linear fits to each data set based on a least squares regression analysis. The fit 215 parameters are as follows: northeast USA (slope = 1.73, intercept = 0.44, R²= 0.75, n = 3534), southeast USA (slope
- 216 = 0.012, intercept = 0.89, R^2 = 0.21, n = 525), California (slope = 0.76, intercept = 1.93, R^2 = 0.72, n = 102, GR values
- below -2 excluded from the fit), Tianjin (slope = 0.03, intercept = 3.10, R²= 0.01, n = 241).
- 218 *(d) pH* from *HNO*₃ partitioning: The lines represent the linear fits to each data set based on a least squares regression 219 analysis. The fit parameters are as follows: northeast USA (slope = 0.54, intercept = -0.06, R²= 0.16, n = 3268),
- 220 California (slope = 0.27, intercept = 2.01, R²= 0.09, n = 102), Tianjin (slope = -0.27, intercept = 4.20, R²= 0.00, n = -0.27, intercept = 4.20, R²= 0.00, n = -0.27, intercept = 4.20, R²= 0.00, n = -0.27, intercept = -0
- 221 234, five points with $pH_F > 7$ were excluded from the fit).
- (f) pH from NH₃ partitioning: The lines represent the linear fits to each data set based on a least squares regression
- analysis. The fit parameters are as follows: southeast USA (slope = 1.15, intercept = 0.25, R²= 0.41, n = 486),
- 224 California (slope = 0.22, intercept = 2.41, R^2 = 0.22, n = 102), Tianjin (slope = 1.18, intercept = 0.95, R^2 = 0.41, n =
- 225 234, five points with $pH_F > 7$ were excluded from the fit).

Figure S1. Aerosol pH modeled in E-AIM (model II) versus the Gas Ratio ($GR = ([TNH_4] - 2[TSO_4])/[TNO_3]$).

231 Conditions for the simulations were: Temperature = 298 K, RH = 0.7, $[TSO4] = 10 \ \mu g \ m^{-3}$, $[TNO_3] = 10 \ \mu g \ m^{-3}$,

[TNH4] varied from $0 - 130 \ \mu g \ m^{-3}$. Color of the symbols corresponds to the fraction of TNH₄ in the gas phase

 $(\epsilon_{NH3} = [NH_3]/([NH_3] + [NH_4^+]))$. The dotted line at GR = 0 indicates the transition from "ammonia-poor" ([TNH_4]

 $< 2[TSO_4]$) to "ammonia-rich" ([TNH₄] $> 2[TSO_4]$) conditions.

Figure S2. Comparison of different metrics of calculating pH using the CalNex data for AIOMFAC-GLE (left

column) and E-AIM (right column).

Figure S3. Comparison of different metrics of calculating pH using the SOAS data for AIOMFAC-GLE (left column) and E-AIM (right column).

Figure S4. Comparison of different metrics of calculating pH using the Tianjin data for AIOMFAC-GLE (left column) and E-AIM (right column).

Figure S5. Comparison of different metrics of calculating pH using the WINTER data for AIOMFAC-GLE (left
 column) and E-AIM (right column).

Figure S6. MOSAIC-calculated pH using the different metrics plotted against the corresponding pH values calculated using ISORROPIA II for the data presented in Table S7. Each pH metric is presented with a distinct

261 symbol, and the corresponding linear fit to the data is shown in the corresponding symbol colour.

(a) Fine aerosol pH_F without NVC from dust

264 265 266

(b) Change in fine aerosol pH_F due to NVC from dust

267 268

269 Figure S7. (a) GEOS-Chem annual-mean predicted fine aerosol pH_F excluding non-volatile cations (NVCs) from

14

270 dust (default GEOS-Chem approach). (b) Increase in pH_F from the inclusion of NVCs from dust. Main text GEOS-

 $\label{eq:271} Chem \mbox{ figures include NVC from dust in calculations of fine aerosol pH_F}.$

.

276

(

278 Supplementary Tables

Table S1. Reaction rates for the S(IV) –S(VI) conversion processes in Figure 3.

Rate	Parameters	Reference
$R_{HOOH} = k_1 K_1 \frac{[\text{H}^+][\text{HSO}_3^-]}{1 + K_1[\text{H}^+]} [\text{HOOH}]$	$k_1 = 7.2 \times 10^7 \exp(-4000 \left(\frac{1}{T} - \frac{1}{298}\right)) \text{ M}^{-1} \text{s}^{-1}$ $K_l = 16 \text{ M}^{-1}$	McArdle and Hoffmann (1983); Zellner
		(1996)
$R_{TMI} = R_{Fe} + R_{Mn}$ R_{Fe} $= \begin{cases} \frac{k_2 [Fe^{+3}][S(IV)]}{[H^+](1 + K_2 [S(IV)]^{2/3})} & M \text{ for } pH < 3 \\ k_3 [Fe^{+3}]^2 [S(IV)] \text{ for } 3 \le pH < 5 \\ k_4 [S(IV)] \text{ for } pH \ge 5 \end{cases}$ $R_{Mn} = \begin{cases} k_5 [Mn^{+2}][S(IV)] \text{ for } pH < 6 \\ 680 [H^+]^2 \text{ for } pH \ge 6 \end{cases}$	$k_{2} = 6 \text{ s}^{-1}$ $K_{2} = 150 \text{ M}^{-2/3}$ $k_{3} = 10^{9} \text{ M}^{-2} \text{ s}^{-1}$ $k_{4} = 10^{-3} \text{ s}^{-1}$ $k_{5} = 10^{3} \text{ M}^{-1} \text{ s}^{-1}$ $k_{6} = 680 \text{ M}^{-1} \text{ s}^{-1}$	Martin and Hill (1987); Martin et al. (1991)
$R_{03} = (k_7 [SO_2 \cdot H_2O] + k_8 [HSO_3^-] + k_9 [SO_3^{-2}])[O_3]$	$k_7 = 2.4 \times 10^4 \mathrm{M}^{-1}\mathrm{s}^{-1}$ $k_8 = 3.7 \times 10^5 \exp(-5530 \left(\frac{1}{T} - \frac{1}{298}\right)) \mathrm{M}^{-1}\mathrm{s}^{-1}$ $k_9 = 1.5 \times 10^9 \exp(-5280 \left(\frac{1}{T} - \frac{1}{298}\right)) \mathrm{M}^{-1}\mathrm{s}^{-1}$	Hoffmann (1986)
$R_{NO2} = k_{10} [NO_2] [S(IV)]$	$ \begin{split} k_{10} \\ &= \begin{cases} 1.4 \times 10^5 \mathrm{M}^{-1} \mathrm{s}^{-1} \mathrm{for} pH < 5.3 \\ 1.24 \times 10^7 \mathrm{M}^{-1} \mathrm{s}^{-1} \mathrm{for} pH = 5.3 \\ 1.6 \times 10^7 \mathrm{M}^{-1} \mathrm{s}^{-1} \mathrm{for} pH = 8.7 \\ linear interpolation for 5.3 < pH < 8.7 \end{cases} \end{split} $	Lee and Schwartz (1983); Clifton (1988); Cheng et al. (2016)

284	Table S2. Henry's Law constants (Sander 2015) used for the S(IV) –S(VI) conversion processes in Figure 3.
285	

Henry's Law Constant	Value
H _{SO2}	$1.317225 \exp\left(2900\left(\frac{1}{T}-\frac{1}{298}\right)\right) M atm^{-1}$
H _{NO2}	$1.22 \times 10^{-2} \exp\left(2400\left(\frac{1}{T} - \frac{1}{298}\right)\right) M \text{ atm}^{-1}$
H _{O3}	$1.01 \times 10^{-2} \exp\left(2800\left(\frac{1}{T} - \frac{1}{298}\right)\right) M \text{ atm}^{-1}$
Н _{ноон}	$8.41 \times 10^4 \exp\left(7600\left(\frac{1}{T} - \frac{1}{298}\right)\right)$ M atm ⁻¹

287

288

Table S3. Predictions of molality-based pH and related H^+ properties for system 1, water + (NH₄)₂SO₄ + H₂SO₄ +

- NH₃ at 298.15 K. Model calculations include the partial dissociation of HSO_4^- and the gas–liquid equilibria of NH₃ and water.
- 292

	E-AIN	I, model 1	ш	AIOM	FAC-G	LE		MOSAIC		ISC	ORROPIA II	ROPIA IIEQUISOLV II $(H^+ HSO^-)$ $\mathbf{p}H^+$ m_{U_1} \mathbf{y} $(H^+ Cl^-)$			
RH	$m_{\mathrm{H^+}}$	γ_{H^+}	pН	$m_{\mathrm{H^+}}$	γ_{H^+}	pН	$m_{\mathrm{H^+}}$	$\gamma_{\pm}(\mathrm{H^{+},HSO_{4}^{-}})$	$pH\pm$	$m_{\mathrm{H^+}}$	$\gamma_{\pm}(\mathrm{H}^+,\mathrm{HSO}_4^-)$	рН±	$m_{\mathrm{H^+}}$	$\gamma_{\pm}(\mathrm{H}^+,\mathrm{Cl}^-)$	pH±
	(mol kg ⁻¹)			(mol kg ⁻¹)			(mol kg ⁻¹)			(mol kg ⁻¹)			(mol kg ⁻¹)		
				moderate	ly acidic;	water-fre	ee input con	position: 99.9%	атто	nium sulfate	by mass; higher	r NH ₃ (g)		
99%	2.466×10 ⁻⁴	4.681×10 ⁻¹	3.94	2.900×10-4	3.634×10 ⁻¹	3.98	2.873×10 ⁻⁴	4.331×10 ⁻¹	3.91	5.740×10 ⁻⁵	5.852×10 ⁻¹	4.47	1.556×10 ⁻⁴	6.061×10 ⁻¹	4.03
90%	6.359×10 ⁻³	1.336×10-1	3.07	5.639×10-3	1.054×10 ⁻¹	3.23	6.504×10 ⁻³	2.284×10-1	2.83	6.221×10 ⁻⁴	6.015×10 ⁻¹	3.43	1.675×10-3	4.808×10 ⁻¹	3.09
80%	1.636×10-2	9.445×10-2	2.81	1.208×10 ⁻²	7.936×10-2	3.02	1.591×10 ⁻²	1.941×10 ⁻¹	2.51	1.562×10-3	7.658×10 ⁻¹	2.92	1.799×10 ⁻³	5.879×10-1	2.98
70%	2.738×10 ⁻²	8.258×10 ⁻²	2.65	1.624×10 ⁻²	8.042×10 ⁻²	2.88	2.538×10 ⁻²	2.003×10 ⁻¹	2.29	2.732×10 ⁻³	9.249×10 ⁻¹	2.60	1.424×10 ⁻³	7.607×10 ⁻¹	2.97
60%	3.928×10 ⁻²	7.733×10-2	2.52	1.814×10 ⁻²	9.192×10 ⁻²	2.78	3.577×10 ⁻²	2.110×10-1	2.12	4.223×10-3	1.100	2.33	9.985×10 ⁻⁴	1.020	2.99
50%	5.261×10 ⁻²	7.408×10 ⁻²	2.41	1.918×10 ⁻²	1.074×10 ⁻¹	2.69	4.719×10 ⁻²	2.205×10-1	1.98	6.210×10 ⁻³	1.313	2.09	6.429×10 ⁻⁴	1.418	3.04
40%	6.883×10 ⁻²	7.053×10-2	2.31	2.195×10-2	1.136×10 ⁻¹	2.60	5.861×10 ⁻²	2.369×10-1	1.86	9.091×10-3	1.607	1.84	4.017×10 ⁻⁴	1.989	3.10
				highly a	acidic; wai	ter-free i	nput compo	sition: 50% amm	onium	sulfate by n	ass; moderate l	VH ₃ (g)			
99%	1.447×10 ⁻²	4.910×10 ⁻¹	2.15	1.717×10 ⁻²	3.825×10 ⁻¹	2.18	1.760×10 ⁻²	4.529×10-1	2.10	4.890×10-3	5.864×10 ⁻¹	2.54	1.084×10 ⁻²	6.136×10 ⁻¹	2.18
90%	2.47×10 ⁻¹	1.89×10 ⁻¹	1.33	2.582×10 ⁻¹	1.312×10 ⁻¹	1.47	2.504×10 ⁻¹	2.847×10-1	1.15	5.504×10 ⁻²	6.161×10 ⁻¹	1.47	7.329×10 ⁻²	5.404×10 ⁻¹	1.40
80%	4.69×10 ⁻¹	1.72×10 ⁻¹	1.09	4.629×10 ⁻¹	1.123×10 ⁻¹	1.28	5.018×10 ⁻¹	2.629×10 ⁻¹	0.88	1.400×10 ⁻¹	7.976×10 ⁻¹	0.95	7.065×10 ⁻²	6.798×10 ⁻¹	1.32
70%	5.85×10 ⁻¹	1.93×10 ⁻¹	0.95	5.527×10 ⁻¹	1.260×10 ⁻¹	1.16	6.425×10 ⁻¹	2.815×10-1	0.74	2.455×10 ⁻¹	9.738×10 ⁻¹	0.62	5.225×10 ⁻²	8.939×10 ⁻¹	1.33
60%	5.92×10 ⁻¹	2.49×10 ⁻¹	0.83	5.664×10 ⁻¹	1.568×10-1	1.05	7.228×10 ⁻¹	2.916×10 ⁻¹	0.68	3.793×10 ⁻¹	1.169	0.35	3.445×10 ⁻²	1.217	1.38
50%	4.89×10 ⁻¹	4.00×10 ⁻¹	0.71	5.578×10 ⁻¹	1.971×10 ⁻¹	0.96	7.654×10 ⁻¹	2.750×10 ⁻¹	0.68	5.565×10 ⁻¹	1.408	0.11	2.104×10 ⁻²	1.710	1.44
40%	3.57×10 ⁻¹	8.26×10 ⁻¹	0.53	5.997×10 ⁻¹	2.204×10-1	0.88	6.284×10 ⁻¹	2.207×10-1	0.86	8.116×10 ⁻¹	1.735	-0.15	1.247×10-2	2.431	1.52

293 * E-AIM was run using model III and the comprehensive calculation mode including NH₃ equilibration; no solids considered. It predicts mole-

fraction-based activity coefficients of H^+ ; pH_x was converted to pH using Eq. (4).

^b The AIOMFAC–GLE model was used, including gas–liquid partitioning of NH₃; no solids.

 $^{\circ}$ MOSAIC calculations were run with dynamic gas-particle of NH₃ considered; no solids. pH \approx pH_± predicted by use of the listed mean molal ion

activity coefficients (Eq. 7).

299 = Cl⁻, HSO₄⁻ or NO₃⁻, as indicated by the $\gamma_{\pm}(H^+, X)$ used.

300

Table S4. Predictions of molality-based pH and related H⁺ properties for system 2, water + Na₂SO₄ + NaCl +

 $H_2SO_4 + HCl at 298.15 \text{ K}$. Model calculations include the partial dissociation of HSO_4^- and the gas–liquid equilibria of HCl and water.

	E-AIN	I, model I	п	AIOM	FAC-GLI	E	Ν	IOSAIC		ISO	RROPIA I	I	EQ	UISOLV II	
RH	$m_{\mathrm{H^+}}$ (mol kg ⁻¹)	$\gamma_{\rm H^+}$	рН	$m_{\mathrm{H^+}}$ (mol kg ⁻¹)	$\gamma_{\rm H^+}$	рН	$m_{\mathrm{H^+}}$ (mol kg ⁻¹)	$\gamma_{\pm}(\mathrm{H^{+},Cl^{-}})$	pH±	$m_{\mathrm{H^+}}$ (mol kg ⁻¹)	γ _± (H ⁺ ,Cl ⁻)	pH±	$m_{\mathrm{H^+}}$ (mol kg ⁻¹)	$\gamma_{\pm}(\mathrm{H^{+},Cl^{-}})$	рН±
				ma	derately aci	dic; v	vater-free in	out compositio	n: 99.	9% sea salt i	nimic by mas	s	•	•	-
99%	2.902×10-3	7.464×10 ⁻¹	2.66	3.068×10 ⁻³	7.157×10 ⁻¹	2.66	3.375×10 ⁻³	6.732×10 ⁻¹	2.64	2.441×10 ⁻³	7.065×10 ⁻¹	2.76	2.730×10-3	7.464×10 ⁻¹	2.69
90%	2.063×10-4	1.280	3.58	2.661×10-4	1.019	3.57	1.848×10 ⁻⁴	1.002	3.73	1.325×10 ⁻⁴	8.819×10 ⁻¹	3.93	2.358×10-4	8.977×10 ⁻¹	3.67
80%	4.119×10-5	2.753	3.95	6.242×10-5	1.870	3.93	3.554×10-5	1.699	4.22	2.748×10-5	1.320	4.43	4.726×10-5	1.486	4.15
70%	1.072×10-5	5.739	4.21	1.844×10 ⁻⁵	3.482	4.19	8.380×10 ⁻⁶	2.955	4.61	7.70610-6	1.970	4.82	1.393×10 ⁻⁵	2.307	4.49
60%	3.066×10-6	1.184×10 ¹	4.44	5.810×10-6	6.676	4.41	2.171×10-6	5.120	4.95	2.509×10-6	2.863	5.14	4.435×10-6	3.551	4.80
50%	8.852×10-7	2.495×101	4.66	1.800×10-6	1.357×101	4.61	5.856×10-7	8.873	5.28	8.659×10-7	4.125	5.45	1.319×10 ⁻⁶	5.677	5.13
40%	2.410×10-7	5.570×101	4.87	5.098×10-7	3.054×101	4.81	1.507×10-7	1.589×10 ¹	5.62	2.957×10-7	6.011	5.75	3.941×10-7	9.127	5.44
					highly acid	ic; wa	ter-free inpi	t composition	: 50%	sea salt min	nic by mass				
99%	2.308×10 ⁻¹	7.516×10 ⁻¹	0.76	2.346×10 ⁻¹	7.371×10 ⁻¹	0.76	4.678×10 ⁻¹	4.626×10 ⁻¹	0.66	1.958×10 ⁻¹	6.392×10 ⁻¹	0.90	2.444×10 ⁻¹	7.542×10 ⁻¹	0.73
90%	1.553×10 ⁻¹	6.213×10 ⁻¹	1.02	2.226×10 ⁻¹	3.782×10 ⁻¹	1.07	2.861×10-1	6.114×10 ⁻¹	0.76	9.878×10 ⁻²	6.366×10 ⁻¹	1.20	7.194×10 ⁻²	9.059×10-1	1.19
80%	4.226×10 ⁻²	1.274	1.27	1.019×10 ⁻¹	4.768×10 ⁻¹	1.31	7.857×10 ⁻²	1.238	1.01	9.186×10 ⁻²	7.088×10 ⁻¹	1.19	3.079×10 ⁻²	1.247	1.42
70%	1.020×10-2	3.031	1.51	3.565×10-2	8.540×10 ⁻¹	1.52	1.445×10 ⁻²	2.714	1.41	8.089×10 ⁻²	7.734×10 ⁻¹	1.20	1.485×10 ⁻²	1.654	1.61
60%	2.404×10-3	7.525	1.74	9.379×10-3	2.052	1.72	2.685×10-3	5.715	1.81	6.869×10 ⁻²	8.383×10 ⁻¹	1.24	4.959×10 ⁻³	2.367	1.93
50%	5.259×10 ⁻⁴	1.999×10 ¹	1.98	1.471×10 ⁻³	7.878	1.94	5.072×10 ⁻⁴	1.197×10 ¹	2.22	5.659×10 ⁻²	9.076×10 ⁻¹	1.29	1.344×10 ⁻³	3.630	2.31
40%	9.912×10-5	5.966×101	2.23	7.366×10-5	7.891×10 ¹	2.24	7.971×10-5	2.758×101	2.66	4.495×10 ⁻²	9.872×10 ⁻¹	1.35	5.058×10 ⁻⁴	4.885	2.61
See a	lso footnot	tes to Table	e S3.	1	1	1		1	1	1	I	1	1	I	L

Table S5. Predictions of molality-based pH and related H^+ properties for system 3, water + (NH₄)₂SO₄ + H₂SO₄ +

NH₃ + HNO₃ at 298.15 K. Model calculations include the partial dissociation of HSO₄⁻ and the gas–liquid equilibria

of NH₃, HNO₃, and water.

E-AIM	, model I	Π	AIOMI	FAC-GL	E	I	MOSAIC	ISORROPIA II EQUISOLV II 0^{-1} pH+ mu v(H+ HSO-)						
$m_{\rm H^+}$ (mol kg ⁻¹)	γ_{H^+}	pН	$m_{\mathrm{H^+}}$ (mol kg ⁻¹)	γ_{H^+}	pН	$m_{\mathrm{H^+}}$ (mol kg ⁻¹)	$\gamma_{\pm}(\mathrm{H^{+},NO_{3}^{-}})$	рН±	$m_{\mathrm{H^+}}$ (mol kg ⁻¹)	$\gamma_{\pm}(\mathrm{H}^+,\mathrm{NO}_3^-)$	рН±	$m_{\mathrm{H^+}}$ (mol kg ⁻¹)	γ _± (H ⁺ , HSO ₄ ⁻)	рН±
		ma	oderately aci	idic; water	-free	input compo	sition: 99.9% a	mmonii	um sulfate by	, mass; high NH	I3(g) an	d HNO3(g)		
4.426×10-3	7.059×10 ⁻¹	2.51	4.803×10-3	6.836×10 ⁻¹	2.48	8.020×10-3	6.157×10 ⁻¹	2.31	4.128×10-3	6.580×10 ⁻¹	2.57	5.987×10-3	5.940×10 ⁻¹	2.45
6.697×10 ⁻³	7.539×10 ⁻¹	2.30	1.166×10 ⁻²	5.400×10 ⁻¹	2.20	7.217×10 ⁻³	4.905×10 ⁻¹	2.45	4.477×10 ⁻³	5.188×10 ⁻¹	2.63	5.348×10 ⁻³	7.976×10 ⁻¹	2.37
4.574×10-3	1.120	2.29	1.047×10-2	6.241×10 ⁻¹	2.18	6.436×10-3	4.255×10 ⁻¹	2.56	2.450×10-3	5.759×10 ⁻¹	2.85	3.331×10-3	9.921×10 ⁻¹	2.48
3.131×10-3	1.651	2.29	8.065×10-3	8.301×10 ⁻¹	2.17	6.194×10 ⁻³	3.787×10 ⁻¹	2.63	1.291×10-3	6.910×10 ⁻¹	3.05	2.328×10-3	1.123	2.58
2.321×10-3	2.249	2.28	5.484×10-3	1.247	2.16	7.266×10-3	3.077×10 ⁻¹	2.65	6.602×10 ⁻⁴	8.602×10 ⁻¹	3.25	1.009×10-3	1.169	2.93
1.908×10-3	2.768	2.28	3.003×10-3	2.326	2.16	1.157×10 ⁻²	2.063×10 ⁻¹	2.62	3.727×10-4	1.152	3.37	6.708×10 ⁻⁴	1.162	3.11
1.874×10 ⁻³	2.862	2.27	1.076×10-3	6.628	2.15	2.611×10 ⁻²	1.083×10 ⁻¹	2.55	1.842×10 ⁻⁴	1.776	3.49	5.270×10 ⁻⁴	1.310	3.16
		h	nighly acidic	; water-fre	e inp	ut compositi	on: 99.9% amm	onium :	sulfate mass,	moderate NH ₃	(g) and	HNO ₃ (g)		
7.955×10-3	6.386×10 ⁻¹	2.29	9.703×10-3	5.797×10-1	2.25	1.074×10 ⁻²	5.88×10-1	2.20	4.357×10-3	6.247×10 ⁻¹	2.57	7.270×10-3	6.152×10 ⁻¹	2.35
3.28×10 ⁻²	2.69×10 ⁻¹	2.06	4.292×10 ⁻²	2.053×10 ⁻¹	2.05	5.929×10 ⁻²	2.251×10 ⁻¹	1.87	5.112×10 ⁻³	3.936×10 ⁻¹	2.70	1.413×10 ⁻²	6.271×10 ⁻¹	2.05
9.54×10 ⁻²	1.53×10 ⁻¹	1.84	8.792×10 ⁻²	1.281×10 ⁻¹	1.95	1.383×10 ⁻¹	1.736×10 ⁻¹	1.62	1.211×10-2	3.139×10 ⁻¹	2.42	1.629×10 ⁻²	7.085×10 ⁻¹	1.94
1.68×10 ⁻¹	1.27×10 ⁻¹	1.67	1.183×10 ⁻¹	1.194×10 ⁻¹	1.85	2.103×10 ⁻¹	1.629×10 ⁻¹	1.47	2.236×10 ⁻²	2.746×10 ⁻¹	2.21	1.313×10 ⁻²	8.727×10 ⁻¹	1.94
2.36×10-1	1.21×10 ⁻¹	1.55	1.304×10 ⁻¹	1.332×10-1	1.76	2.856×10-1	1.482×10 ⁻¹	1.37	3.619×10 ⁻²	2.485×10 ⁻¹	2.05	9.261×10-3	1.109	1.99
2.97×10 ⁻¹	1.22×10 ⁻¹	1.44	1.339×10-1	1.573×10-1	1.68	3.722×10 ⁻¹	1.259×10 ⁻¹	1.33	5.526×10 ⁻²	2.282×10 ⁻¹	1.90	5.967×10-3	1.436	2.07
3.49×10 ⁻¹	1.28×10 ⁻¹	1.35	1.449×10 ⁻¹	1.738×10 ⁻¹	1.60	4.690×10 ⁻¹	1.021×10 ⁻¹	1.32	8.352×10 ⁻²	2.105×10 ⁻¹	1.75	3.722×10-3	1.840	2.16
	$\begin{array}{c} \textbf{E-AIM},\\ m_{\rm H+}\\ ({\rm mol}\;{\rm kg}^{-1})\\ \hline\\ 4.426\times10^{-3}\\ \hline\\ 6.697\times10^{-3}\\ \hline\\ 4.574\times10^{-3}\\ \hline\\ 3.131\times10^{-3}\\ \hline\\ 2.321\times10^{-3}\\ \hline\\ 1.908\times10^{-3}\\ \hline\\ 1.874\times10^{-3}\\ \hline\\ 7.955\times10^{-3}\\ \hline\\ 3.28\times10^{-2}\\ \hline\\ 9.54\times10^{-2}\\ \hline\\ 1.68\times10^{-1}\\ \hline\\ 2.36\times10^{-1}\\ \hline\\ 3.49\times10^{-1}\\ \hline\end{array}$	$\begin{array}{c c} \hline \textbf{E-AIM}, \mbox{ model I} \\ \hline m_{H^+} \\ (mol \ \mbox{g}^{-1}) \end{array} \begin{array}{c} \gamma_{H^+} \\ \hline \mbox{4.426\times10^{-3}} & 7.059\times10^{-1} \\ \hline \mbox{4.426\times10^{-3}} & 7.539\times10^{-1} \\ \hline \mbox{4.574\times10^{-3}} & 7.539\times10^{-1} \\ \hline \mbox{4.574\times10^{-3}} & 1.651 \\ \hline \mbox{2.321\times10^{-3}} & 2.249 \\ \hline \mbox{1.908\times10^{-3}} & 2.768 \\ \hline \mbox{1.874\times10^{-3}} & 2.862 \\ \hline \mbox{7.955\times10^{-3}} & 6.386\times10^{-1} \\ \hline \mbox{3.28\times10^{-2}} & 2.69\times10^{-1} \\ \hline \mbox{3.28\times10^{-2}} & 2.69\times10^{-1} \\ \hline \mbox{3.54\times10^{-1}} & 1.27\times10^{-1} \\ \hline \mbox{3.68\times10^{-1}} & 1.22\times10^{-1} \\ \hline \mbox{3.69\times10^{-1}} & 1.28\times10^{-1} \\ \hline \mbox{3.99\times10^{-1}} & 1.28\times10^{-1} \\ \hline \end{array}$	$\begin{array}{ c c c c c } \hline \textbf{E-AIM, model III} \\ \hline m_{H^+} (mol kg^{-1}) & \gamma_{H^+} & \textbf{PH} \\ \hline (mol kg^{-1}) & 7.559 \times 10^{-1} & \textbf{2.51} \\ \hline c.697 \times 10^{-3} & 7.539 \times 10^{-1} & \textbf{2.51} \\ \hline c.697 \times 10^{-3} & 7.539 \times 10^{-1} & \textbf{2.30} \\ \hline 4.574 \times 10^{-3} & 1.120 & \textbf{2.29} \\ \hline 3.131 \times 10^{-3} & 1.651 & \textbf{2.29} \\ \hline 2.321 \times 10^{-3} & 2.249 & \textbf{2.28} \\ \hline 1.908 \times 10^{-3} & 2.768 & \textbf{2.28} \\ \hline 1.874 \times 10^{-3} & \textbf{2.862} & \textbf{2.27} \\ \hline \hline r.955 \times 10^{-3} & \textbf{6.386} \times 10^{-1} & \textbf{2.29} \\ \hline 3.28 \times 10^{-2} & \textbf{2.69} \times 10^{-1} & \textbf{2.60} \\ \hline 9.54 \times 10^{-2} & 1.53 \times 10^{-1} & \textbf{1.84} \\ \hline 1.68 \times 10^{-1} & 1.27 \times 10^{-1} & \textbf{1.67} \\ \hline 2.36 \times 10^{-1} & 1.21 \times 10^{-1} & \textbf{1.55} \\ \hline 2.97 \times 10^{-1} & 1.22 \times 10^{-1} & \textbf{1.44} \\ \hline 3.49 \times 10^{-1} & 1.28 \times 10^{-1} & \textbf{1.35} \end{array}$	$\begin{array}{ c c c c c } \hline \textbf{E-AIM}, \textbf{model} & \blacksquare & \textbf{AIOMH} \\ \hline m_{H+} \\ (mol kg^{-1}) & \end{matrix} & \begin{matrix} \textbf{PH} \\ m_{H+} \\ (mol kg^{-1}) & \end{matrix} \\ \hline \textbf{M} \\ \hline \textbf{M} \\ \hline \textbf{M} \\ \hline \textbf{M} \\ (mol kg^{-1}) & \end{matrix} \\ \hline \textbf{M} \\ \hline \textbf{M} \\ \hline \textbf{M} \\ (mol kg^{-1}) & \end{matrix} \\ \hline \textbf{M} \hline \textbf{M} \\ \hline \textbf{M} \hline \hline \textbf{M} \hline \hline \textbf{M} \hline $	$\begin{array}{ c c c c c } \hline \textbf{E-AIM}, \textbf{model} & \textbf{II} & \textbf{AIOMFAC-GL} \\ \hline \textbf{m}_{H^+} (mol \ \mbox{g}^{-1}) & \gamma_{H^+} & \textbf{PH} & m_{H^+} (mol \ \mbox{g}^{-1}) & \gamma_{H^+} \\ \hline \textbf{m}_{H^+} (mol \ \mbox{g}^{-1}) & \gamma_{H^+} & m_{H^+} (mol \ \mbox{g}^{-1}) & \gamma_{H^+} \\ \hline \textbf{m}_{H^+} (mol \ \mbox{g}^{-1}) & 7.059 \times 10^{-1} & \textbf{2.51} & 4.803 \times 10^{-3} & 6.836 \times 10^{-1} \\ \hline \textbf{4.426} \times 10^{-3} & 7.539 \times 10^{-1} & \textbf{2.51} & 4.803 \times 10^{-3} & 6.836 \times 10^{-1} \\ \hline \textbf{4.574} \times 10^{-3} & 7.539 \times 10^{-1} & \textbf{2.51} & 1.166 \times 10^{-2} & 5.400 \times 10^{-1} \\ \hline \textbf{4.574} \times 10^{-3} & 1.120 & \textbf{2.29} & 1.047 \times 10^{-2} & 6.241 \times 10^{-1} \\ \hline \textbf{3.131} \times 10^{-3} & 1.651 & \textbf{2.29} & 8.065 \times 10^{-3} & 8.301 \times 10^{-1} \\ \hline \textbf{2.321} \times 10^{-3} & 2.249 & \textbf{2.28} & 3.003 \times 10^{-3} & 2.326 \\ \hline \textbf{1.874} \times 10^{-3} & 2.862 & \textbf{2.27} & 1.076 \times 10^{-3} & 6.628 \\ \hline \textbf{1.874} \times 10^{-3} & 2.862 & \textbf{2.27} & 1.076 \times 10^{-3} & 6.628 \\ \hline \textbf{1.874} \times 10^{-3} & 2.69 \times 10^{-1} & \textbf{2.09} & 9.703 \times 10^{-3} & 5.797 \times 10^{-1} \\ \hline \textbf{3.28} \times 10^{-2} & 2.69 \times 10^{-1} & \textbf{2.06} & 4.292 \times 10^{-2} & 2.053 \times 10^{-1} \\ \hline \textbf{9.54} \times 10^{-2} & 1.53 \times 10^{-1} & \textbf{1.84} & 8.792 \times 10^{-2} & 1.281 \times 10^{-1} \\ \hline \textbf{1.68} \times 10^{-1} & 1.27 \times 10^{-1} & \textbf{1.55} & 1.304 \times 10^{-1} & 1.332 \times 10^{-1} \\ \hline \textbf{2.97} \times 10^{-1} & 1.22 \times 10^{-1} & \textbf{1.44} & 1.339 \times 10^{-1} & 1.573 \times 10^{-1} \\ \hline \textbf{3.49} \times 10^{-1} & 1.28 \times 10^{-1} & \textbf{1.55} & 1.449 \times 10^{-1} & 1.738 \times 10^{-1} \\ \hline \textbf{3.49} \times 10^{-1} & 1.28 \times 10^{-1} & \textbf{3.55} & 1.449 \times 10^{-1} & 1.738 \times 10^{-1} \\ \hline \textbf{3.49} \times 10^{-1} & 1.28 \times 10^{-1} & \textbf{3.55} & 1.449 \times 10^{-1} & 1.738 \times 10^{-1} \\ \hline \textbf{3.49} \times 10^{-1} & 1.28 \times 10^{-1} & \textbf{3.55} & 1.449 \times 10^{-1} & 1.738 \times 10^{-1} \\ \hline \textbf{3.49} \times 10^{-1} & 1.28 \times 10^{-1} & \textbf{3.55} & 1.449 \times 10^{-1} & 1.738 \times 10^{-1} \\ \hline \textbf{3.49} \times 10^{-1} & 1.28 \times 10^{-1} & \textbf{3.55} & 1.449 \times 10^{-1} & 1.738 \times 10^{-1} \\ \hline \textbf{3.49} \times 10^{-1} & 1.28 \times 10^{-1} & \textbf{3.55} & 1.449 \times 10^{-1} & 1.738 \times 10^{-1} \\ \hline \textbf{3.49} \times 10^{-1} & 1.28 \times 10^{-1} & \textbf{3.55} & 1.449 \times 10^{-1} & 1.738 \times 10^{-1} \\ \hline \textbf{3.49} \times 10^{-1} & 1.28 \times 10^{-1} & \textbf{3.55} & 1.449 \times 10^$	$ \begin{array}{ c c c c c } \hline \textbf{E-AIM, model III} & \textbf{AIOMFAC-GLE} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{PH} & \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Y}_{H^+} & \textbf{PH} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Y}_{H^+} & \textbf{PH} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{PH} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} & \textbf{Z}_{H^+} \\ \hline \textbf{m}_{H^+} (mol kg^{-1}) &$	$ \begin{array}{ c c c c c } \hline \textbf{F-AIM, model} & \textbf{II} & \textbf{AIOMFAC-GLE} & \textbf{II} \\ \hline \textbf{M}_{H^+} & \textbf{M}_{H^+}$	$ \begin{array}{ c c c c c c c } \hline F-AIM, model III & AIOMFAC-GLE & MOSAIC \\ \hline m_{H+} & \gamma_{H^+} & PH & m_{H+} & \gamma_{H^+} & PH & m_{H+} & m_{H$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

314 See also footnotes to Table S3.

316 Table S6. Observationally-constrained estimates of aerosol acidity. In most cases pH_F is reported although there are

317 some exceptions (e.g. E-AIM predictions are usually pH). This data is available in excel format at

doi:10.23719/1504059.

Location	Altitude (m)	Lati- tude (°N)	Lati- tude (°E)	Time	Aerosol Size	n	Mean (pH)	σ (pH)	Min (pH)	Max (pH)	Method	Reference
Eastern United S	tates and vi	cinity										
Chicago, IL, USA urban		41.93	-87.72	Jan & Jul 2011-2015	PM2.5	46	2.5		1.4	3.65	ISORROPIA (forward, aerosol and NH ₃ , no HNO ₃ input, no organics, internally mixed aerosol), average of min/max	Battaglia et al., 2017
Chicago, IL, USA rural		41.93	-87.72	Jul 2011-2015	PM2.5		2.1		1.6	2.6	ISORROPIA (forward, aerosol and NH ₃ , no HNO ₃ input, no organics, internally mixed aerosol), average of min/max	Battaglia et al., 2017
Chicago, IL, USA rural		41.93	-87.72	Jan 2011- 2015	PM2.5		3.5		3.4	3.65	ISORROPIA (forward, aerosol and NH,, no HNO ₃ input, no organics, internally mixed aerosol), average of min/max	Battaglia et al., 2017
Pellston, MI, USA		45.55	-84.78	Jul-16	<0.4 µm		1.5				pH paper	Craig et al. 2018
Pellston, MI, USA		45.55	-84.78	Jul 2016	0.4-2.5 μm		3.5				pH indicator paper/ colorimetric image	Craig et al., 2018
Ann Arbor, MI, USA		42.28	-83.74	Aug 2016	0.4-2.5 μm		3.5				pH indicator paper/ colorimetric image	Craig et al., 2018
Pittsburgh, PA, USA		40.44	-79.98	7-22 Sep 2002	PM1	3599	2.5		-0.5	5.5	Aerosol Inorganics Model (AIM II), average of min/max	Zhang et al.,2007
North East US (Ohio River Valley and the Adirondack region)	aircraft and ground	40	-83	1979-1980			0.1	0.6				Ferek et al.,1983
Baltimore, MD, USA rural		39.06	-76.88	Jan 2011- 2015	PM2.5	39	2.5		2.3	2.7	ISORROPIA (forward, aerosol and NH ₃ , no HNO ₃ input, no organics, internally mixed aerosol), average of min/max	Battaglia et al., 2017
Baltimore, MD, USA rural		39.06	-76.88	Jan 2011- 2015	PM2.5	47	1.6		1.1	2.1	ISORROPIA (forward, aerosol and NH ₃ , no HNO ₃ input, no organics, internally mixed aerosol), average of min/max	Battaglia et al., 2017
Baltimore, MD, USA urban		39.06	-76.88	Jan-Jul 2011- 2015	PM2.5		1.8		1	2.55	ISORROPIA (forward, aerosol and NH ₃ , no HNO ₃ input, no organics, internally mixed aerosol), average of min/max	Battaglia et al., 2017

Location	Altitude (m)	Lati- tude (°N)	Lati- tude (°E)	Time	Aerosol Size	n	Mean (pH)	σ (pH)	Min (pH)	Max (pH)	Method	Reference
Hampton, VA, C130 flights	up to 5000m	37.03	-76.35	Feb 2015 - Mar 2015	PM1		0.8	1	-0.5	1.9	ISORROPIA metastable, with HNO ₃ , no observed NH ₃ used, iterated to reach convergence in NH ₃	Guo et al., 2016
Yorkville, GA, USA		33.93	-85.05	Jun 2012	PM1		1.1	0.6			ISORROPIA (forward, no NH ₃ , pH bias correction)	Guo et al., 2015
Yorkville, GA, USA		33.93	-85.05	Dec 2012	PM1		1.8	1			ISORROPIA (forward, no NH ₃ , pH bias correction)	Guo et al., 2015
Yorkville, GA, USA		33.93	-85.05	Sep 2016 - Oct 2016	PM1		2.2	0.6	0.9	3.8	ISORROPIA (forward, metastable, NH ₃ , HNO ₃ input, internally mixed)	Nah et al., 2018
Atlanta, GA, USA		33.80	-84.40	Mar- Apr 2015	PM1		1.5		1	2	ISORROPIA (forward, iterative, no NH ₃ , HNO ₃ , HCl data, fine PM internally mixed), average of min/max	Fang et al., 2017
Atlanta, GA, USA		33.80	-84.40	Mar - Apr 2015	coarse		3.5				ISORROPIA (forward external mixed)	Fang et al., 2017
Atlanta, GA, USA (GIT)	30-40 m	33.78	-84.40	Jul 2012	PM1		1.1	0.4			ISORROPIA (forward, no NH ₃ , pH bias correction)	Guo et al., 2015
JST, Atlanta, GA, USA		33.78	-84.42	Aug 2011	PM1		0.55				ISORROPIA (forward, no NH ₃ , pH bias correction)	Guo et al., 2015 (from Vasilakos et al., 2018)
JST, Atlanta, GA, USA		33.78	-84.42	May 2012	PM1		1.3	0.7			ISORROPIA (forward, no NH ₃ , pH bias correction)	Guo et al., 2015
JST, Atlanta, GA, USA		33.78	-84.42	Nov 2012	PM1		2.2	0.9			ISORROPIA (forward, no NH ₃ , pH bias correction)	Guo et al., 2015
Atlanta, GA, USA (RS)		33.78	-84.39	Sep 2012	PM1		1.3	0.7			ISORROPIA (forward, no NH ₃ , pH bias correction)	Guo et al., 2015
Centreville, AL, USA	126 m	32.90	-87.25	Jun 1998-Aug 2013	PM2.5		1.19		0	2	ISORROPIA (forward, no NH ₃ , l unit lower in the original study due to lack of NH ₃ measurements)	Weber et al., 2016 corrected by 1 unit due to NH ₃
Centreville, AL, USA	126 m	32.90	-87.25	1 Jun - 15 Jul 2013	PM1		0.94	0.59	-0.9	2.2	ISORROPIA (forward no NH ₃ , no correction)	Guo et al., 2015
Centreville, AL, USA		32.90	-87.25	Jun-Jul 2013	PM2.5		1.3	2.1			AIOMFAC (inorganic only, aerosol-only inputs, including activity coefficient)	Pye et al., 2018
Centreville, AL, USA		32.90	-87.25	Jun -Jul 2013	PM2.5		1.5	1.1			AIOMFAC (equilibrium organic-inorganic, aerosol-only inputs, including	Pye et al., 2018

Location	Altitude (m)	Lati- tude (°N)	Lati- tude (°E)	Time	Aerosol Size	n	Mean (pH)	о (pH)	Min (pH)	Max (pH)	Method	Reference
											activity coefficient)	
Centreville, AL, USA		32.90	-87.25	Jun- Jul 2013	PM2.5		1.1	0.7			ISORROPIA (aerosol+gas inputs)	Pye et al., 2018
Barbados, West Indies		13.10	-58.38	Jul - Aug 1989	0.4-0.8 μm		-0.2		-0.7	0.4	aerosol solution pH calculated from aerosol composition, neutralization by NH ₃ and CaCO ₃ , average of min/max	Zhu et al., 1992
Barbados, West Indies		13.10	-58.38	Jul - Aug 1989	0.8-1.7 μm		5.7		-0.2	11.6	aerosol solution pH calculated from aerosol composition, neutralization by NH ₃ and CaCO ₃ , average of min/max	Zhu et al., 1992
Southeast US (SENEX) aircraft				summer 2013	PM1		1.4	0.4			ISORROPIA	Xu et al., 2015
Southeast US (SOAS & SCAPE)				1 Jun - 15 Jul 2013 & May 2012- Feb 2013	PM1		1		0	2	ISORROPIA, average of min/max	Xu et al., 2015
North America e	xcluding Ea	stern US										
Egbert, ON, Canada		44.23	-79.78	20 Jul - 30 Sep 2012	PM2.5		2.1	approx ± 1	2.5	5	E-AIM Model II (sulfate-nitrate- ammonium; AIM- IC measurements; pH=mole fraction activity coeff*mole fraction H*55.508)	Murphy et al., 2017
Harrow, ON, Canada		42.03	-82.89	15 Jun- 15 Jul 2007	PM2.5		1.6	approx ± 1		>2	E-AIM Model II (sulfate-nitrate- ammonium; AIM- IC measurements; pH=mole fraction activity coeff*mole fraction H*55.508)	Murphy et al., 2017
Colorado, BAO-NOAA, USA	1584m	40.05	-105.01	18 Feb - 12 Mar 2011	various sizes < 1 µm		2.5	about 1.5	about 1	about 4	E-AIM(Inferred From Measured Phase Partitioning based on HCl, NH ₃ and HNO ₃ , for various sizes	Young et al., 2013
Pasadena, Los Angeles, CA CALNEX, SW USA		34.14	-118.12	15 May - 15 Jun 2010	PM 1		1.9	0.5	1.4	2.5	ISORROPIA forward, with NH ₃ and HNO ₃	Guo et al., 2017a
Pasadena, Los Angeles, CA CALNEX, SW USA		34.14	-118.12	1-15 Jun 2010	PM 2.5		2.7	0.3	2.2	3	ISORROPIA forward, internally mixed with seasalt	Guo et al., 2017a
Mexico City, Mexico, T1 site		19.71	-98.98	Mar-Apr 2006	PM 1		3.31	1	1.9	7	ISORROPIA forward NH ₃ >0, HNO ₃ >0	Hennigan et al., 2015
Mexico City, Mexico, T1 site		19.71	-98.98	Mar-Apr 2006	PM 1		3.24	1	2	5	E-AIM forward NH ₃ >0, HNO ₃ >0	Hennigan et al., 2015

Location	Altitude (m)	Lati- tude (°N)	Lati- tude (°E)	Time	Aerosol Size	n	Mean (pH)	σ (pH)	Min (pH)	Max (pH)	Method	Reference
Toronto, Canada		43.658	-79.397	2007-2013	PM 2.5	766	2.6		1.48	4.39	E-AIM I (gas + particles NH ₃ , HNO ₃)	Tao and Murphy, 2019
Toronto Canada		43.659	-79.395	2014-2016	PM 2.5	301	2.65		1.35	4.02	E-AIM I (gas + particles NH ₃ , HNO ₃)	Tao and Murphy, 2019
Ottawa Canada		45.434	-75.676	2007-2016	PM 2.5	851	2.54		1.18	4.67	E-AIM I (gas + particles NH ₃ , HNO ₃)	Tao and Murphy, 2019
Simcoe Canada		42.857	-80.27	2007-2016	PM 2.5	713	2.41		0.84	4.38	E-AIM I (gas + particles NH ₃ , HNO ₃)	Tao and Murphy, 2019
Montreal Canada		45.652	73.574	2007-2016	PM 2.5	840	2.35		0.51	4.72	E-AIM I (gas + particles NH ₃ , HNO ₃)	Tao and Murphy, 2019
Windsor Canada		42.293	-83.073	2007-2010	PM 2.5	256	2.12		0.94	3.2	E-AIM I (gas + particles NH ₃ , HNO ₃)	Tao and Murphy, 2019
Windsor Canada		42.293	-83.073	2012-2016	PM 2.5	456	2.35		0.4	3.98	E-AIM I (gas + particles NH ₃ , HNO ₃)	Tao and Murphy, 2019
St Anicet Canada		45.121	-74.288	2007-2016	PM 2.5	742	2.51		0.9	4.65	E-AIM I (gas + particles NH ₃ , HNO ₃)	Tao and Murphy, 2019
North Pacific												
Oahu, Hawaii, USA		21.367	-157.717	4-29 Sep 2000			4.6		2.6	5.3	MOCCA model & measurements	Pszenny et al., 2004
Near Kilauea, Hawaii, USA		19.318	-155.376	Jan - Feb 2013	PM1		1.1		-0.8	3.0	E-AIM II with ACSM measured composition, average of min/max	Kroll et al., 2015
Mainland China	•	•	•	•				•		•	•	•
Beijing (PKU)		39.99	116.30	Nov 2015 - Dec 2016	PM2.5		4.2		3	4.9	ISORROPIA forward with NH ₃ , HNO ₃ , HCl tested with AIM, good agreement with a difference of 0.3 units	Liu et al., 2017
Guangzhou	15 m	23.13	113.26	1 Jul - 31 Jul 2013	PM2.5		2.5	0.3	1.4	3.1	E-AIM IV forward with NH ₃ , HNO ₃ , HCl	Jia et al., 2018
Guangzhou	15 m	23.13	113.26	1 Jul- 31 Jul 2013	PM2.5		2.8	0.4	1.55	3.5	ISORROPIA forward mode, no NVC, with NH ₃ , HNO ₃ , HCl	Jia et al., 2018
Guangzhou	15 m	23.13	113.26	1 Jul- 31 Jul 2013	PM2.5		2.6	0.3	1.5	3.1	AIOMFAC	Jia et al., 2018
Beijing	49 m	39.97	116.37	17 Nov- 12 Dec 2014	PM2.5		4.6	0.5	4	5.1	ISORROPIA forward, Ca ²⁺ and Mg ²⁺ were not measured, pH values would be increased by 0.1 unit	Song et al., 2018
Beijing	49 m	39.97	116.37	17 Nov- 12 Dec 2014	PM2.5		4	0.4	3.6	4.4	E-AIM forward, Ca ²⁺ and Mg ²⁺ were not measured, pH values would be increased by 0.1 unit	Song et al., 2018

Location	Altitude (m)	Lati- tude (°N)	Lati- tude (°E)	Time	Aerosol Size	n	Mean (pH)	σ (pH)	Min (pH)	Max (pH)	Method	Reference
Beijing	8m	39.97	116.37	24 Jan - 1 Feb 2013	PM2.1		1.1	0.05	1.1	1.2	AIM-IV, no gases	Tian et al., 2018
Chengdu	20 m	30.66	104.02	5 Jan - 24 Jan 2011 night	PM2.1		-1.2	1.1	-2.3	0.3	E-AIM Model II, no gases	Cheng et al., 2015
Chengdu	20 m	30.66	104.02	5 Jan - 24 Jan 2011 day	PM2.1		0.7	1	-0.2	2.1	E-AIM Model II, no gases	Cheng et al., 2015
Beijing	20 m	40.41	116.68	Oct 2014- Jan 2015	PM2.5		4.70	1.1	3.4	7.6	ISORROPIA (metastable)	He et al., 2018
Beijing	20 m	39.99	116.31	1 Jan- 31 Dec 2014	PM2.5		3.02	1.62	3	4.9	ISORROPIA (forward mode, metastable)	Tan et al., 2018
Beijing	20 m	39.99	116.31	winter 2014	PM2.5		4.11	1.37			ISORROPIA (forward mode, metastable)	Tan et al., 2018
Beijing	20 m	39.99	116.31	fall 2014	PM2.5		3.13	1.2			ISORROPIA (forward mode, metastable)	Tan et al., 2018
Beijing	20 m	39.99	116.31	spring 2014	PM2.5		2.12	0.72			ISORROPIA (forward mode, metastable)	Tan et al., 2018
Beijing	20 m	39.99	116.31	summer 2014	PM2.5		1.82	0.53			ISORROPIA (forward mode, metastable)	Tan et al., 2018
Tianjin	22 m	39.11	117.16	25 Dec 2014- 2 Jun 2015	PM2.5		4.9	1.4	0.33	13.6	ISORROPIA (forward, metastable)	Shi et al., 2017
Tianjin		39.11	117.16	12-23 August 2015	PM2.5	387	3.4	0.5	2.6	4.6	ISORROPIA (forward, metastable)	Shi et al., 2019
Beijing		39.99	116.30		PM 1		4.5				ISORROPIA forward, metastable with NH ₃ & HNO ₃	Guo et al., 2017b
X'ian		34.23	108.89		PM2.5		5		4.6	5.4	ISORROPIA forward, metastable with NH ₃ & HNO ₃	Guo et al., 2017b
Beijing		39.983 33	116.28	winter (Feb 2017)	PM2.5		4.5	0.7			ISORROPIA forward	Ding et al., 2019
Beijing		39.983 33	116.28	spring (Apr - May 2016)	PM2.5		4.4	1.2			ISORROPIA forward	Ding et al., 2019
Beijing		39.983 33	116.28	summer (Jul - Aug 2017)	PM2.5		3.8	1.2			ISORROPIA forward	Ding e tal., 2019
Beijing		39.983 33	116.28	fall (Sep - Oct2017).	PM2.5		4.3	0.8			ISORROPIA forward	Ding et al., 2019
Guangzhou		23.13	113.26	Jul -Sep 2013	PM2.5		2.4	0.3	1.5	3.4	E-AIM-III, open system, with NH ₃ , HNO ₃ , HCl	Jia et al., 2018
Hohhot, Inner Mongolia		40.48	111.41	summer 2014	PM2.5		5				ISORROPIA (forward metastable, no NH ₃)	Wang et al., 2019
Hohhot, Inner Mongolia		40.48	111.41	autumn 2014	PM2.5		5.3				ISORROPIA (forward metastable, no NH3)	Wang et al., 2019
Hohhot, Inner Mongolia		40.48	111.41	winter 2015	PM2.5		5.7				ISORROPIA (forward metastable, no NH ₃)	Wang et al., 2019

Location	Altitude (m)	Lati- tude (°N)	Lati- tude (°E)	Time	Aerosol Size	n	Mean (pH)	σ (pH)	Min (pH)	Max (pH)	Method	Reference
Hohhot, Inner Mongolia		40.48	111.41	spring 2015	PM2.5		6.1				ISORROPIA (forward metastable, no NH ₃)	Wang et al., 2019
Hohhot, Inner Mongolia		40.48	111.41	annual 2014- 2015	PM2.5		5.6		1.1	8.4	ISORROPIA (forward metastable, no NH ₃)	Wang et al., 2019
ASIA (excluding	mainland C	China)	-				-	-				
Singapore	20 m	1.30	103.78	Sep - Nov 2011	PM2.5		0.6	0.4	-0.2	1.5	AIM-IV	Behera et al., 2013
Hong Kong (HKUST)		22.34	114.26	24 Jul 1997 - 29 May 1998	PM2.5		0.3	1.3	about -0.9	1.5	AIM-II (for RH >=70% range only)	Yao et al., 2007
Hong Kong (HKUST)		22.34	114.26	18 Nov 1996 - 5 Nov 1997	PM2.5		-1	1	-2.5	about 0.4	AIM-II (for RH<70% range only)	Yao et al., 2007
Hong Kong (three sites)		22.34	114.26		PM2.5	25	-0.4	1.5	-2.2	1.1	AIM-II (range only)	Yao et al., 2006, data from Pathak et al., 2003
Hong Kong (three sites)		22.34	114.26		PM2.5	25	3.9		-1.2	7.5	ISORROPIA (gases + aerosols)	Yao et al., 2006
Hong Kong (three sites)		22.34	114.26		PM2.5	25	2.3		-1.3	7.3	SCAPE2	Yao et al., 2006
Middle East												
Israel (Tel Aviv)		32.11	34.86	summer 1988-1989			2	2	1.5	2.5	Haze	Ganor et al., 1993
Europe		-	-						_			
Po Valley Italy		45.40	12.20	Mar 2009 - Jan 2010	PM2.5	267	3.1	0.6			E-AIM thermodynamic model 4 (average for three sites, four seasons)	Squizzato et al., 2013
Po Valley Italy		45.40	12.20	spring 2009	PM2.5	73	3.6	0.7			E-AIM thermodynamic model 4 (average for three sites)	Squizzato et al., 2013
Po Valley Italy		45.40	12.20	summer 2009	PM2.5	69	2.3	0.7			E-AIM thermodynamic model 4 (average for three sites)	Squizzato et al., 2013
Po Valley Italy		45.40	12.20	fall 2009	PM2.5	62	3	0.9			E-AIM thermodynamic model 4 (average for three sites)	Squizzato et al., 2013
Po Valley Italy		45.40	12.20	winter 2009- 2010	PM2.5	63	3.4	0.5			E-AIM thermodynamic model 4 (average for three sites)	Squizzato et al., 2013
Po Valley Italy	mean of 6 sites	45.4	12.2	winter 2012- 2013	PM2.5		3.9	0.3			ISORROPIA (forward, metastable, no NH3)	Masiol et al. 2020
Po Valley Italy	mean of 6 sites	45.4	12.2	summer 2012	PM2.5		2.3	0.3			ISORROPIA (forward, metastable, no NH3)	Masiol et al. 2020
Finokalia, Crete	250 m asl	35.33	25.67	Jun - Nov 2012	PM1	37	1.3	1.1	-0.97	3.75	ISORROPIA (forward, no NH ₃)	Bougiatioti et al., 2016
Finokalia, Crete-Biomass	250 m asl	35.33	25.67	Jun - Nov 2012	PM1	7	2.77	0.88			ISORROPIA (biomass burning	Bougiatioti et al., 2016

Location	Altitude (m)	Lati- tude (°N)	Lati- tude (°E)	Time	Aerosol Size	n	Mean (pH)	б (pH)	Min (pH)	Max (pH)	Method	Reference
burning influenced											influenced air, no NH ₃)	
Cabauw, Netherlands		51.97	4.93	Jul 2012 - Jun 2013	PM 2.5		3.7	0.6			ISORROPIA (Forward mode, gas+aerosol)	Guo et al., 2018
Cabauw, Netherlands		51.97	4.93	Jun - Aug 2013	PM 2.5		3.3	0.5			ISORROPIA (Forward mode, gas+aerosol)	Guo et al., 2018
Cabauw, Netherlands		51.97	4.93	Dec - Feb 2012	PM 2.5		3.9	0.4			ISORROPIA (Forward mode, gas+aerosol)	Guo et al., 2018
South Hemispher	re											
Sao Paulo, Brazil		-23.55	-46.63	8 Aug - 5 Sep 2012	size resolved PM		4.8		4.1	5.4	E-AIM, average of min/max	Vieira-Filho et al., 2016
Pacific Ocean/South of Australia- ACE1		-47.5	147.5	18 Nov- 11 Dec 1995	fine	19	1		0	2	EQUISOLV	Fridlind and Jacobson, 2000
South OceanWeddel, PEGASO, sea- ice influence zone		-61	-45	9 Jan-24 Jan 2015	PM2.5	3	1.36667	0.7505 6	0.5	1.8	ISORROPIA (forward mode, no NH ₃)	Dall'Osto et al., 2019
South Ocean, Weddel, PEGASO		-64	-65	24 Jan-9 Feb 2015	PM2.5	3	3.76667	0.4163 3	3.3	4.1	ISORROPIA (forward mode, no NH ₃)	Dall'Osto et al., 2019

Table S7. Published aerosol acidity values not used in this study.

Location	Altitude (m)	Lati- tude (°N)	Lati- tude (°E)	Time	Aerosol Size	n	Mean (pH)	σ (pH)	Min (pH)	Max (pH)	Method	Reference
Beijing		40.41	116.68	Oct 2014- Jan 2015	PM2.5		7.6	0.1			ISORROPIA (stable state)	He et al., 2018
Xi'an		34.23	108.89	17 Nov - 12 Dec 2012	PM2.5		6.7	1.3	4.14	11	ISORROPIA (forward, gas aerosols)	Wang et al., 2016
Beijing		39.99	116.30	21 Jan - 4 Feb 2015	PM2.5		7.63	0.03	7.6	7.7	ISORROPIA (forward, gas aerosols)	Wang et al., 2016
Hong Kong (TST site)		22.26	114.07	5 Dec - 16 Dec 2000	PM2.5	10					AIM2 (only free H+ is available)	Pathak et al., 2004
Hong Kong (HKUST site)		22.33	114.26	12 Mar - 17 Mar 2002	PM2.5	6					AIM2 (only free H+ is available)	Pathak et al., 2004
Jinan	20 m	36.65	117.01	Apr, Aug, Oct, Dec 2006 & Jan 2007	PM1.8		-1.2		-3	1.5	AIM-II, no gases, no organic acids	Cheng et al., 2011
Jinan	20 m	36.65	117.01	Apr, Aug, Oct, Dec 2006 & Jan 2007	PM1.8		-1.1		-2.5	1	AIM-II, no gases, with organic acids	Cheng et al., 2011
Beijing	285 m asl	40.35	116.30	29 Jun- 2 Aug 2005	PM2.5	25	-0.52	0.62			E-AIM Model II only aerosol input	Pathak et al., 2009
Shanghai	15 m	31.45	121.10	5 May - 15 Jun 2005	PM2.5	40	-0.77	0.67			E-AIM Model II only aerosol input	Pathak et al., 2009
Lanzhou		36.13	103.68	18 Jun - 17 Jul 2006	PM2.5	25	-0.38	0.64			E-AIM Model II only aerosol input	Pathak et al., 2009

Guangzhou	17 m	22.69	113.56	15 May - 27 May 2004	PM2.5	13	0.61	0.71			E-AIM Model II only aerosol input	Pathak et al., 2009
Beijing		40.32	116.32	28 Jan 2005- 28 Apr 2006	PM2.5		0.65	1.08	about -0.6	about 3	E-AIM Model II (two sites averaged), only aerosol input	He et al., 2012
Chongqing		29.57	106.53	28 Jan 2005- 28 Apr 2006	PM2.5		1.45	0.77	about 0.5	about 4	E-AIM Model II (three sites averaged), only aerosol input	He et al., 2012
Beijing	10 m	40.00	116.33	1 Jan - 31 Jan 2013	PM2.5		5.8	0.4	5.4	6.2	ISORROPIA mean of forward and reverse, NH ₃ estimated from NO _x	Cheng et al., 2016 in Song et al., 2018
Hong Kong	20 m	22.34	114.26	21 Oct - 25 Oct 2008	PM2.5	127	0.59	0.43	-0.8	2.4	AIM-III (aerosol only input)	Xue et al., 2011
Hong Kong	20 m	22.34	114.26	6 Nov - 13 Nov 2008	PM2.5	180	-0.45	0.59	-2	0.4	AIM-III (aerosol only input)	Xue et al., 2011
Hong Kong	20 m	22.34	114.26	29 Jun - 3 Jul 2009	PM2.5	213	-0.08	0.81	-1.6	3.2	AIM-III (aerosol only input)	Xue et al., 2011

325 326 327 328 Table S8. Observed cloud acidity (pH) – sorted by region. This data is available in excel format at doi:10.23719/1504059.

(a) Africa

Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	Ν	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Congo										
Mayombé Massif, Dimonika	290	-4	12.5	Nov-Sept 1986-1987	14	4.9				Lacaux et al., 1992
Egypt										
Delta Barrage, Egypt	18	30.2	31.12	2015-2016		7.6				Salem et al., 2017
Namibia										
Namib Desert, Namibia	420	-22.74	15.89	Apr-Oct 1994-1995	7	6.2	6.4	5.6	6.6	Eckardt and Schemenauer, 1998
South Africa										
Cape Columbine, South Africa		-32.83	17.85	Aug 1997	1	6.5				Olivier, 2002
Cape Columbine, South Africa		-32.83	17.85	May 1998	1	7.3				Olivier, 2002
Lepelfontein, South Africa	200	-31.05	17.85	Sept 2000	1	7.2				Olivier and De Rautenbach, 2002
Soutpansberg, South Africa	1004	-22.93	30.36	Aug 2001	1	5.9				Olivier and De Rautenbach, 2002
Morocco										
Boutmezguida, Anti-Atlas Mts., Morocco	1225	29.2	-10.02	Nov-June 2013-2015		7.3		7	8.5	Dodson and Bargach, 2015; Schunk et al., 2018
329										
330 (b) Antarct	tica		-							
Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	Ν	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Antarctic	600- 1490	-77.82	166.69	Dec 1982	7	5.3		4.9	6.2	Saxena et al., 1985
331 332 (c) Asia										
Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	N	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Bangladesh		-	-	-	-					
Bangladesh, coastal Bhola		22.17	90.75	2015-2016	15	7.1		6.9	7.3	Ahmed et al., 2018
Mainland China and	l Hong Kong	5	1	1	n		1		1	1
Anning Industrial Zone, China		24.92	102.46	Dec 1988	19	6.12		5.4	7.5	Huang et al., 1992
Beijing, China		39.93	166.28	1998-1999	3	5.3				Jiang et al., 2010
Beijing, China		39.93	166.28	2005-2006	2	6.2				Jiang et al., 2010
Changsha, China		28.22	112.96	1993	13	4.9		3.4	5.6	Shen et al., 1996
Chengdu, China				Sept 1989	48	3.8	4.1	2.9	6.8	Lei et al., 1997
Chengdu, China		32.2	118.71	1989	58	4.6		3.2	6.8	Shen et al., 1996
Chongqing, China		29.43	106.89	Sept-Oct 1985	18	5.85				Lei et al., 1997
Chongqing, China		29.43	106.89	1985	16	6.2		4.9	7.8	Shen et al., 1996
Chongging Ching										
Chongqing, China		29.43	106.89	Oct 1989	39	3.9	4.6	3	6	Lei et al., 1997

Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	N	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Chongqing, China		29.43	106.89	1984-1990	182	4.4		3.0	8	Li et al., 1996; Li and Peng, 1994
Guangzhou, China		23.15	113.29	Mar 1988	29	3.8	3.9	3.4	4.2	Lei et al., 1997
Guangzhou, China		23.15	113.29	1988	47	3.9		3.4	6.3	Shen et al., 1996
Guangzhou, China		23.15	113.29	Oct 1989	41	4.1	4.6	3.4	6	Lei et al., 1997
Guangzhou, China	82	23.13	113.30	Feb-Mar 2005	3	5.7				Wu et al., 2009
Guilin, China		25.24	110.18	Mar-Apr 1988	13	4.1	4.2	3.6	5.7	Lei et al., 1997
Guilin, China		25.24	110.18	1988	20	3.9		3.3	5.3	Shen et al., 1996
Guiyang, China		26.65	106.63	1989	48	4.6		3.4	6.0	Shen et al., 1996
Jinan, China		36.67	117.05	Jan 2013		2.9		2.62	4.2	Wang et al., 2014
Jingdong County, China	2476	24.54	101.03	2015-2016	117		4.1	3.5	6.9	Nieberding et al., 2018
Jinghong, China	582	22.01	100.80	Dec 1997	3	6.3		5.8	6.8	Zhu et al., 2000
Lushan, China	~1250	29.58	116.02	May 1987	60	5.1		4.9	5.4	Ding et al., 1991
Mengyangzhen, China	771	22.09	100.90	Dec 1997	8	8.3		7.9	9.2	Zhu et al., 2000
Mount Heng, Hunan, China	1269	27.3	112.70	Mar-May 2009	194	3.8		2.9	6.9	Sun et al., 2010
Mt. Lu, Jiujiang city, China	1165	29.58	116.00	Aug-Sept 2011	11	3.5		3.2	3.9	Li et al., 2013
Mt. Tai, China	1534	36.3	117.22	Mar-Apr 2007		4.6	3.7	2.6	7.6	Wang et al., 2011
Mt. Tai, China	1545	36.3	117.22	2007-2008	482	4.6	4.3	2.6	7.6	Guo et al., 2012; Liu et al., 2012; Shen et al., 2012
Mt. Tai, China	1545	36.3	117.22	July-Oct 2014	39	5.9		3.8	6.9	Li et al., 2017
Mt. Tai, China	1534	36.3	117.22	June-Aug 2015	17	4.9		3.8	6.3	Zhu et al., 2018
Mt. Tai Mao Shan, China	957	22.4	114.27	Oct-Nov 2016		3.6		3.0	5.9	Li et al. 2019
Nangchang, China		28.68	115.84	1993	51	4.7		3.4	6.5	Shen et al., 1996
Nanjing, China		32.20	118.73	Dec 2001	13	5.6		4.3	7.3	Li et al., 2008
Nanjing, China	22	32.2	118.71	Dec 2006	11	5.7		4.1	7.6	Tang et al., 2008
Nanjing, China	22	32.2	118.71	2006-2007	37	5.9		4.1	7.3	Yang et al., 2012
Nanling Dayaoshan Mountain, China	815	25.083	113.1	Jan 1999	21	6.1				Wu et al., 2004
Nanling Dayaoshan Mountain, China	815	25.083	113.1	Feb-Mar 2001	36	5.2				Wu et al., 2004
Shanghai, China		31.26	121.45	June-Jul 1986	22	5.5	6.2	4.5	7.4	Lei et al., 1997
Shanghai, China		31.26	121.50	1992-1993	80	6.0		4.5	7.8	Minghua and Demin, 1999
Shanghai, China		31.20	121.50	1989-1991	28	5.2		4.3	6.5	Bao et al., 1995
Shanghai, China		31.3	121.48	2009-2010	26	6.0		4.7	6.6	Li et al., 2011
Urumqi, China		43.41	87.27	Mar-May 2003	19	6.35				Xu et al., 2011
Xiamen, China		24.49	118.10	Mar-Apr 1993	5	3.6		2.9	4.5	Liu et al., 1996
Zhanjiang, Donghai Island, China		21.28	110.2	Mar-Apr 2010	19	5.2		4.8	6.1	Xu et al., 2011
Zhoushan, China		30.00	122.21	May 1987	31	6.0		3.8	7.3	Mo et al., 1989

Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	N	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
India	•									
Agra, India	169	27.17	78.08	1998-2000	37	7.2		7	7.6	Lakhani et al., 2007
Akaltara, India	283	22.02	82.43	Feb 2011	1	7.5				Ambade, 2014
Bilaspur, India	346	22.09	82.15	Feb 2011	1	7.2				Ambade, 2014
Delhi, India	217	28.62	77.2	Winter 2001-2003	43	6.7		6.6	6.7	Ali et al., 2004
Dongargarh, India	335	21.02	80.08	Feb 2011	1	7.5				Ambade, 2014
Kanpur, India	142	26.5	80.3	Jan-Feb 2010		7.2		6.0	8.1	Kaul et al., 2011
Kanpur, India		26.46	80.33	2012-2014	66	5.4		5.1	7.3	Chakraborty et al., 2016
Korba, India	252	22.35	82.68	Jan-Feb 2011	4	5.6		5	6.4	Ambade, 2014
New Delhi, India	218	28.35	77.12	Winter 2014-2015	24	5.5		5.1	7.0	Nath and Yadav, 2018
Pune region, India	559	18.52	73.86	1983-1985	47	6.6		6.3	7.6	Khemani et al., 1987
Raipur, India	298	21.23	81.63	2010-2011	14	6.8		6.3	7.4	Ambade, 2014
Rajnandgaon, India	307	21.1	81.03	Feb 2011	1	7.3				Ambade, 2014
Sinhagad, India	1450	18.35	73.75	2007-2010	123	6		4.7	7.4	Budhavant et al., 2014
Japan										
Bijodaira, Mt Tateyama, Japan	977	36.58	137.46	Sept-Oct 2009		4.4		3.9	6	Watanabe et al., 2011
Lake Mashu, Japan	542	43.55	144.5	2006-2012	258	4.6				Yamaguchi et al., 2015
Lake Mashu, Japan	542	43.55	144.5	Jul-Oct 2006		4.5				Yamaguchi et al., 2015
Lake Mashu, Japan	542	43.55	144.5	Jul-Oct 2007		4.6				Yamaguchi et al., 2015
Lake Mashu, Japan	542	43.55	144.5	Jul-Oct 2008		4.3				Yamaguchi et al., 2015
Lake Mashu, Japan	542	43.55	144.5	Jul-Oct 2009		4.5				Yamaguchi et al., 2015
Lake Mashu, Japan	542	43.55	144.5	Jul-Oct 2010		5.1				Yamaguchi et al., 2015
Lake Mashu, Japan	542	43.55	144.5	Jul-Oct 2011		4.8				Yamaguchi et al., 2015
Lake Mashu, Japan	542	43.55	144.5	Jul-Oct 2012		4.6				Yamaguchi et al., 2015
Midagahara, Mt Tateyama, Japan	1930	36.57	137.56	Sept-Oct 2009		4.7		3.8	6.2	Watanabe et al., 2011
Mt. Awaga, Aogakicho, Japan	962	35.33	135.03	May-Nov 1999	14	4.1		4	4.5	Aikawa et al., 2006
Mt. Fuji, Japan	3776	35.4	138.7	Sept 2002	34	4.6		4	6.8	Watanabe et al., 2006
Mt. Mokko, Iwate, Japan	1465	39.93	140.85	Aug-Sept 1997	16	4.1		3.6		Ogawa et al., 1999
Mt. Mokko, Iwate, Japan	1465	39.93	140.83	Sept 1998	62	4.4				Adzuhata et al., 2001b
Mt. Mokko, Iwate, Japan	1465	39.93	140.83	June-Sept 1999	20	4.6				Adzuhata et al., 2001a
Mt. Norikura, Japan	3026	36.34	137.52	July 1963	10	3.8		3.4	4.3	Okita, 1968
Mt. Norikura, Japan	3026	36.34	137.52	Aug 1989	2	3.7		3.6	3.8	Qian et al., 1992
Mt. Norikura, Japan	3026	36.34	137.52	July 1990	12	3.8		3.6	4.2	Qian et al., 1992
Mt. Norikura, Japan	2770	36.34	137.52	Aug 1991	55	3.6		3.3	4.3	Minami and Ishizaka, 1996

Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	Ν	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Mt. Norikura, Japan	2770	36.34	137.52	July & Sept 1994	68	4		3.7	6.7	Watanabe et al., 1999
Mt. Norikura, Japan	2770	36.34	137.52	Aug 1995	7	3.3		3.1	3.5	Watanabe et al., 1999
Mt. Norikura, Japan	2770	36.34	137.52	Oct 1996	32	3.7		3.4	5.1	Watanabe et al., 1999
Mt. Oyama, Japan	700	35.56	139.21	1991-1992	1169	4.0	4.3	2.6	6.8	Hosono et al., 1994
Mt. Oyama, Japan	680	35.56	139.21	1995	175	3.7		2.6	6.1	Igawa et al., 1998
Mt. Oyama, Japan	680	35.56	139.21	Aug-Sept 1998		3.3		3.1	5.6	Watanabe et al., 2001a
Mt. Rokko, Kobe City, Japan	931	34.79	135.26	1997-1998	55	3.8		2	5.8	Aikawa et al., 2001
Mt. Rokko, Kobe City, Japan	931	34.79	135.26	June-Nov 1999	14	3.7		3.3	3.9	Aikawa et al., 2006
Mt. Rokko, Kobe City, Japan	931	34.79	135.26	1997-2001	403	3.8	3.8	3.2	4.9	Aikawa et al., 2005
Mt. Tsukuba, Japan	876	36.39	140.12	Nov 1963	5	5.9		5.6	6.5	Okita, 1968
Murododaria, Mt Tateyama, Japan	2450	36.61	137.63	July-Aug 2004	11	4.5		4	5.4	Watanabe et al., 2010; Watanabe et al., 2011
Murododaria, Mt Tateyama, Japan	2450	36.61	137.63	Autumn 2005	14	3.8		3.5	5.5	Watanabe et al., 2010; Watanabe et al., 2011
Murododaria, Mt Tateyama, Japan	2450	36.61	137.63	Sept-Oct 2006	7	4.8		4.5	6.3	Watanabe et al., 2010; Watanabe et al., 2011
Murododaria, Mt Tateyama, Japan	2450	36.61	137.63	Sept-Oct 2007		4.6		4.3	5.5	Watanabe et al., 2011
Murododaria, Mt Tateyama, Japan	2450	36.61	137.63	Sept-Oct 2008		4.0		3.7	4.7	Watanabe et al., 2011
Murododaria, Mt Tateyama, Japan	2450	36.61	137.63	Sept-Oct 2009		4.2		3.8	5.7	Watanabe et al., 2011
Shiobara, Japan		36.97	139.82	July 1963	2	5.9		5.9	5.9	Okita, 1968
Pakistan										
Kala Bagh, Nathiagali, Pakistan		34.3	73.2	July 1996	18	6.3		5.3	6.8	Ghauri et al., 2001
South Korea										
Chongwon, South Korea	39	36.63	127.49	Sept 1994	32	4.6		4.2	6.4	Chung et al., 1999
Chongwon, South Korea	39	36.63	127.49	Apr-Nov 1995	36	5.3		4.9	5.8	Chung et al., 1999
Chongwon, South Korea	39	36.63	127.49	Jan-Oct 1996	45	5.5		4.4	5.8	Chung et al., 1999
Daekwanreung, South Korea	840	37.68	128.45	2002-2003	203	5.2		3.6	6.8	Kim et al., 2006
Mt. Sobaek, South Korea	1340	36.93	128.43	Aug 1995	27	4.4				Nam et al., 2001
Taiwan					•		•		•	
Chilan Mountain, Taiwan	1650	24.59	121.5	Apr-May 2011	36		4.5	3.7	5.2	Simon et al., 2016
Kinmen Weather Station, Taiwan	48	24.41	118.29	Mar-Apr 2014	15		3.0	2.3	3.4	Simon et al., 2016
Lulin Atmospheric Background Station, Taiwan	2826	23.47	120.87	Apr-May 2011	14		3.9	3.4	4.5	Simon et al., 2016
Mt. Bamboo, Taiwan	1050	25.19	121.54	Jan 2011	291		4.2	3.2	6.4	Klemm et al., 2015
Xitou Flux Tower, Taiwan	1150	23.66	120.8	Sept-Nov 2013	69		4.1	3.2	6.0	Simon et al., 2016

333 334 (d) Australia

Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	N	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Barrington Tops	400	-31.92	151.58	Jan-Apr 1989		5.6				Post et al., 1991
Craigieburn	1600	-37.56	144.93	1985-1986	3	6.4				Verhoeven et al., 1987
Dorrigo	900	-30.33	152.67	Jan-Apr 1989		5.4				Post et al., 1991
Sydney	1500- 1800	-34.11	151.28	July-Aug 1976	28	5.9		4.6	6.6	Scott, 1978
Tasmania		-40.68	114.68	1981 & 1983	55	5.4		4.1	7.0	Gillett and Ayers, 1989
335 336 (e) Central	and South	America								
	Altitude	Latitude	Longitude	Period		Mean	Median	Min	Max	
Location	(m)	(°N)	(°E)	(mo/yr)	Ν	(pH)	(pH)	(pH)	(pH)	Reference
Brazil										
São Paulo City, Brazil		-23.56	-46.66	2009	8	5.9		5.0	7.7	Vasconcellos et al., 2018
Chile						1	1		1	
El Tofo, Chile	780	-29.43	-71.25	1987	2	5.2		5.0	5.8	Schemenauer and Cereceda, 1992b
El Tofo, Chile	780	-29.43	-71.25	1987	5	3.6		3.5	5.6	Schemenauer and Cereceda, 1992b
El Tofo, Chile	780	-29.43	-71.25	1987	8	4.5		4.0	6.7	Schemenauer and Cereceda, 1992b
Torres del Paine (+Punta Arenas)	50-400	-51.17	-71.97	1987-1994	22	4.8	5.2	4.2	6.3	Weathers and Likens, 1996
Venezuela										
Altos de Pipe, Miranda State	1747	10.33	-66.92	June-Aug 1989	6	4.9				Gordon et al., 1994
Altos de Pipe, Miranda State	1747	10.33	-66.92	Jun, Oct- Dec 1989	13	5.4		4.8		Sanhueza et al., 1992
Altos de Pipe, Miranda State	1747	10.33	-66.92	Mar-May 1990	10	5.0				Gordon et al., 1994
Pico del Avila, Distrito Federal	2150	10.54	-66.88	June-Aug 1989	19	5.0				Gordon et al., 1994
Pico del Avila, Distrito Federal	2150	10.54	-66.88	Mar-May 1990	51	4.6				Gordon et al., 1994
Costa Rica										
Monteverde, Costa Rica	1470	10.3	-84.4	1988-1992	34	3.9		3.3	5.6	Clark et al., 1998
Ecuador										
El Tiro, Ecuador	2825	-4.00	-79.16	2003-2004	59		4.6	3.9	5.6	Beiderwieden et al., 2005
El Tiro, Ecuador*	2870	-4.00	-79.16	2005-2009		4.7				Giannoni et al., 2013
Cerro del Consuelo, Ecuador [*]	3180	-4.00	-79.16	2004-2009		5.4				Giannoni et al., 2016
ECSF, Ecuador*	1960	-4.00	-79.16	2005-2009		4.9				Giannoni et al., 2013
TS1, Ecuador*	2660	-4.00	-79.16	2005-2009		5.3				Giannoni et al., 2013
Antenas*	3180	-4.00	-79.16	2005-2009		5.5				Giannoni et al., 2013

337 338 339 340 *These sampling locations are close to each other, thus the average pH value was calculated and shown in Figure 5.2.

(f) Europe

Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	Ν	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Austria										
Mt. Sonnblick, Austria	3106	47.05	12.96	May & Nov 1991	15	4.5	4.5	3.8	5.2	Brantner et al., 1994
Mt. Sonnblick, Austria	3106	47.05	12.96	Sept 1996		4.7				Hitzenberger et al., 2000
Mt. Sonnblick, Austria	3106	47.05	12.96	Apr- May1997		5.7				Hitzenberger et al., 2000

Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	Ν	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Rax, Austria	1644	47.7	15.75	Ap1999 & Mar 2000	12	4.1	3.9	3.36	5.26	Löflund et al., 2002
Czech Rep.										
Beskydy Mts., Czech Rep.	1324	49.53	18.43	May- Apr 2003-2004	48	5.2		3.8	6.7	Skybova, 2006
Cervenohorske sedlo, Czech Rep.	1013	50.12	17.16	1999	12	4.7	4.4	3.9	5.9	Zapletal et al., 2007
Cervenohorske sedlo, Czech Rep.	1013	50.12	17.16	2000	12	5.2	5.8	3.1	6.5	Zapletal et al., 2007
Cervenohorske sedlo, Czech Rep.	1013	50.12	17.16	2001	12	4.8	4.5	3.9	6.0	Zapletal et al., 2007
Cervenohorske sedlo, Czech Rep.	1013	50.12	17.16	2002	12	5.2	4.9	3.9	7.0	Zapletal et al., 2007
Flaje, Krusné Hory Mts., Czech Rep.	740	50.68	13.6	Mar- Mar1995- 1996	27	3.0		2.3	4.1	Bridges et al., 2002
Mt. Churanov, Czech Rep.,	1122	49.06	13.61	Mar-Nov 1999-2000	23	4.6	4.4	3.4	6.6	Fisak et al., 2002
Mt. Milesovka, Czech Rep.,	837	50.56	13.9	Sept- Nov1999- 2000	141	4.6	4.5	3.4	6.1	Fisak et al., 2002
Mt. Milesovka, Czech Rep.,	837	50.56	13.9	May-June 2006	5	4.1	4.2	3.8	4.7	Fisak et al., 2009a; Fisak et al., 2009b
Sumava Mts., Czech Rep.	1123	49.06	13.61	Oct-Oct 1989-1992	40	4.2		2.9	7.0	Elias and Tesar, 1994
Sumava Mts., Czech Rep.	1123	49.06	13.61	Feb-Oct 1988-1991	30	3.2	3.67	2.9	6.4	Elias et al., 1995
France	•									•
Mt. Le Donon, Vosges, France	750	48.5	7.2	Mar 1990	4	3.3		2.8	4.7	Lammel and Metzig, 1991
Near Paris, France	68	48.7	2.2	2012-2013	9	5.2		3.7	6.2	Degefie et al., 2015
Puy de Dôme, France	1465	48	2	2001-2011	143	5.5	5.6	3.1	7.6	Deguillaume et al., 2013
Puy de Dôme, France	1465	48	2	2010-2013	23	5.6	5.5	3.9	7.1	Wirgot et al., 2017
Strasbourg, France	145	48.58	7.77	Feb-Nov 1991	31	3.8	3.7	2.8	5.8	Millet et al., 1997
Strasbourg, France	145	48.58	7.77	Jan-Dec 1992	21	3.9	3.8	2.3	6.2	Millet et al., 1996; Millet et al., 1997
Strasbourg, France	145	48.58	7.77	Oct-Jan 1993-1994	7	5.2	5.5	2.4	6.3	Millet et al., 1997
Strasbourg, France	145	48.58	7.77	1991-1999	54	4.6	4.7	2.3	6.6	Herckes et al., 2002
Germany Bavarian Alps,	1780	47.52	11.15	Mar-May	104	4.5	4.9	3.9*	6.0#	Munzert, 1988
Bayreuth, Germany	[≈] 350	≈49.95	[≈] 11.58	Sept-Oct 1987	2	5.0		4.7	5.2	Trautner et al., 1989
Collmberg, Germany	316	51.3	13.01	~1960	9	4.2				Mrose, 1966
Kap Arkona, Germany	46	54.67	13.44	~1960	42	3.8				Mrose, 1966
Lugstein, Ore Mt., Germany	880	50.7	13.75	Dec-May 1997-1998	27	4		3.3	5.4	Lange et al., 2003
Mt. Brocken, Germany	1142	51.79	10.67	~1960	19	5.1				Mrose, 1966
Mt. Brocken, Germany	1142	51.79	10.67	1992	35	4.4				Acker et al., 1998a
Mt. Brocken, Germany	1142	51.79	10.67	1993		4.2				Acker et al., 1998a
Mt. Brocken, Germany	1142	51.79	10.67	1994		3.9				Acker et al., 1998a
Mt. Brocken, Germany	1142	51.79	10.67	1995		4.0				Acker et al., 1998a
Mt. Brocken, Germany	1142	51.79	10.67	1996		4.0		2.5	>8	Acker et al., 1998a; Acker et al., 1998b

Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	Ν	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Mt. Brocken,	1142	51.79	10.67	1997		4.3	4.3	3.4	6.8	Möller, 2007; Plessow et
Germany	1112	51.75	10.07	1777		1.5	1.5	5.1	0.0	al., 2001
Mt. Brocken, Germany	1142	51.79	10.67	1998		4.1				Möller, 2007
Mt. Brocken, Germany	1142	51.79	10.67	1999		4.3				Möller, 2007
Mt. Brocken, Germany	1142	51.79	10.67	2000		4.2				Möller, 2007
Mt. Kleiner Feldberg, Germany	825	50.22	8.44	-		2.8				Schrimpff, 1983
Mt. Kleiner Feldberg, Germany	825	50.22	8.44	1983-1986	250	3.8		2.4	7	Schmitt, 1986
Mt. Kleiner Feldberg, Germany	825	50.22	8.44	Oct-Nov 1990		4.3		3.5	5.9	Wobrock et al., 1994
Mt. Kleiner Feldberg, Germany	825	50.22	8.44	Oct-Nov 1995	114	4.1	4.1	2.7	5	Deutsch et al., 2001
Mt. Kleiner Feldberg, Germany	825	50.22	8.44	Apr-May 1997	25	4.6	4.6	4.1	4.9	Deutsch et al., 2001
Mt. Ochsenkopf, Germany	1024	50.03	11.81	May-June 1985	14	3.7				Verhoeven et al., 1987
Mt. Ochsenkopf, Germany	1024	50.03	11.81	Nov 1987	1	3.4				Trautner et al., 1989
Mt. Schmücke, Germany	937	50.65	10.77	Oct & Nov 2001/2002	22	4.5		4	5.1	Brüggemann et al., 2005
Mt. Schmücke, Germany	937	50.65	10.77	2010	60	4.3	4.6	3.6	5.3	van Pinxteren et al., 2016
Mt. Schöllkopf, Black Forest, Germany	540	48.43	8.39	Dec 1988	5	4.1	4.1	4	4.9	Lammel and Metzig, 1991
Mt. Waldstein, Germany	776	50.14	11.87	Summer 1997	56	4.3	4.3	3.3	5.7	Wrzesinsky and Klemm, 2000
Mt. Waldstein, Germany	776	50.14	11.87	June-Dec 2000	56	4.1				Thalmann et al., 2002
Mt. Waldstein, Germany	776	50.14	11.87	Apr-Mar 2001-2002	247		4.3	3.3	5.4	Klemm and Wrzesinsky, 2007
Ochsenkopf, Germany	1024	50.0314	11.81	May-June, 1985		3.7				Verhoeven et al., 1987
Taunus Mts, Germany	800	50.22	8.41	Autumn, 1983-1986		3.8		2.3	7.9	Schmitt, 1989
Zinnwald, Germany	877	50.73	13.76	Dec-May 1997-1998	51	4		3.3	4.5	Zimmermann and Zimmermann, 2002
Italy										
Po-Valley, S. Pietro Capofiume, Italy	10	44.65	11.62	Winter 1980-1982	36	4.9	5	2.4	7.5	Fuzzi et al., 1983
Po-Valley, S. Pietro Capofiume, Italy	10	44.65	11.62	Feb &Nov 1984	5	3.8	3.6	3.5	4.3	Fuzzi et al., 1985
Po-Valley, S. Pietro Capofiume, Italy	10	44.65	11.62	Nov 1985	63	3.5		2.5	6.7	Fuzzi, 1988
Po-Valley, S. Pietro Capofiume, Italy	10	44.65	11.62	Nov 1985/1986	10	5.1	5.1	4	6.3	Winiwarter et al., 1988
Po-Valley, S. Pietro Capofiume, Italy	10	44.65	11.62	Feb-Mar 1989	62	5.4	5.2	3.4	7.1	Facchini et al., 1990
Po-Valley, S. Pietro Capofiume, Italy	10	44.65	11.62	Nov-Apr 1989-1990	182	3.5	5.4	3.2	6.9	Fuzzi et al., 1992a; Fuzzi et al., 1992b
Po-Valley, S. Pietro Capofiume, Italy	10	44.65	11.62	Nov-Mar 1992-1993			5.4	3.1	7.0	Fuzzi et al., 1996
Po-Valley, S. Pietro Capofiume, Italy	10	44.65	11.62	Feb-Mar 1994	7	5.4	5.5	2.6	7.0	Fuzzi et al., 1997
Po-Valley, S. Pietro Capofiume, Italy	10	44.65	11.62	1996-1997	17	4.6	4.6	3.1	6.4	Facchini et al., 1999
Po-Valley, S. Pietro Capofiume, Italy	10	44.65	11.62	1990-2000		5.5				Giulianelli et al., 2014
Po-Valley, S. Pietro Capofiume, Italy	10	44.65	11.62	2000-2010		6.5				Giulianelli et al., 2014

Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	Ν	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Po-Valley, S. Pietro Capofiume, Italy	10	44.65	11.62	Nov2013	2		4.6	3.3	5.8	Brege et al., 2018
Vallombrosa, Italy	950	43	11	Nov-May 1992-1995	20	4.2	3.8	3.2	6.2	Cini et al., 2002
Norway				1772 1775	I				I.	
Bakka, Norway	27	60.77	5	Fall 2011		5.0				Wang et al., 2015
Hakadal, Norway	170	60.12	10.83	Fall 2011		4.7		4.4	5.5	Wang et al., 2015
Sundsbø, Norway	28	60.77	5.2	Fall 2011		5.0				Wang et al., 2015
Poland										
Mt. Szrenica, Poland	1332	50.79	15.51	Winter 1993		3.8				Błaś et al., 2008
Mt. Szrenica, Poland	1332	50.79	15.51	Summer 1995		4.1	4.4	3.1	6.7	Błaś et al., 2008; Kmiec et al., 1997
Mt. Szrenica, Poland	1332	50.79	15.51	Dec-Dec 2005-2006	55	4.6		3.5	7.4	Błaś et al., 2010
Zakopane, Poland	911	49.28	17.97	Dec-Dec 2005-2006	4	5.1		4.6	5.8	Błaś et al., 2010
Spain										·
Valencia region, Spain	≈842	≈39.3	≈-0.38	Apr-Dec 2008	71	6.6		5.3	7.5	Corell, 2010
Xistral Mts., Spain	700	43.54	-7.5	Sept-Apr 2011-2012	14	4.5		3.8	5.2	Fernández-González et al., 2014
Sweden										
Areskutan, Sweden	1250	63.43	13.09	Summer 1983-1984	125	4.4				Ogren and Rodhe, 1986
Switzerland										
Bern-Belpmoos, Switzerland	515	46.9	7.51	Oct-Mar 1983-1985	40	4.4	5.6	3.1	6.7	Fuhrer, 1986
Dübendorf, Switzerland		47.40	8.61	Dec 1985	21	2.7	4.2	1.9	6.0	Johnson et al., 1987
Eawag, Dübendorf, Switzerland	440	47.40	8.61	Nov-Dec 1986 & Dec 1987	20	3.3		2.1	6	Capel et al., 1990
Eawag, Dübendorf, Switzerland	440	47.40	8.61	Oct 1989 – Jan 1990	24	3.5		2.5	6.3	Xue et al., 1991; Zuo, 1994
Eawag, Dübendorf, Switzerland	440	47.40	8.61	1991-1992		4.1		3.28	6.17	Kotronarou and Sigg, 1993
Jungfraujoch, Switzerland	3450	46.55	7.98	Oct-Nov 1993	72	4.9				Baltensperger et al., 1998
Mt. Lägeren, Switzerland	682	47.48	8.36	Sept-Dec 1986-1987	97	4.8	4.6	2.7	7.1	Joos and Baltensperger, 1991
Mt. Lägeren, Switzerland	682	47.48	8.36	Summer 2006-2007		7	7.3	5.6	7.5	Michna et al., 2015
Mt. Lägeren, Switzerland	682	47.48	8.36	2007		7.2	7.3	7	8.1	Michna et al., 2015
Mt. Lägeren, Switzerland	682	47.48	8.36	May-Apr 2001-2002		4.3	3.9	3.7	5.8	Burkard et al., 2003
Mt. Rigi, Switzerland	1620	47.06	8.49	May-Dec 1990 & Apr 1991	38	4.6		3.0	6.9	Collett Jr. et al., 1993
Niesen Kulm, Switzerland	2330	46.65	7.01	2006-2007		6.4	6.8	6	7.7	Michna et al., 2015
Niesen Schwandegg, Switzerland	1650	46.64	7.67	2006-2007		6.6	6.8	5.8	7.6	Michna et al., 2015
Seeboden, Switzerland	1030	47.07	8.47	1990-1991		5.3		3.8	6.9	Collett Jr et al., 1993
UK										
Dunslair Heights, UK	602	55.68	-3.13	1993-1994		4.1				Fowler et al., 1995
Great Dun Fell, UK	850	54.69	-2.45	1988		3.7	3.7	3.2	4.2	Radojevic et al., 1990
Great Dun Fell, UK	847	54.69	-2.45	Apr-May 1993		4.1	4.2	3.1	5.8	Laj et al., 1997; Sedlak et al., 1997
Holmes Moss, UK	550	53.53	-1.86	1993-1994		4.2				Fowler et al., 1995

Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	Ν	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Plynlimon, UK	390	52	-4.6	1995		5.1		2.9	6.9	Wilkinson et al., 1997

341 342 343 Remarks: *10% percentile, =90% percentile, = stimated latitude/longitude/height a.m.s.l.

(g) Island/Marine

Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	Ν	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Baengnyeong Island, Yellow Sea	100	37.97	124.62	June-July 2014	11	3.9		3.5	5	Boris et al., 2016
Bering Sea		58.22	-178.29	1998	1	5.5				Sasakawa and Uematsu, 2005
East Peak, Luquillo, Puerto Rico	1051	18.27	-65.75	2004-2005	8	5.8		4.8	6.4	Gioda et al., 2009
East Peak, Luquillo, Puerto Rico	1051	18.27	-65.75	2004-2007	45	5.5		3.5	6.3	Gioda et al., 2013; Gioda et al., 2011
East Peak, Luquillo, Puerto Rico	1051	18.27	-65.75	June-Aug 2007	9	5.6		5.0	7.4	Reyes-Rodríguez et al., 2009
East Peak, Luquillo, Puerto Rico	1051	18.27	-65.75	2010-2012	94	4.9		4.0	7.3	Valle-Díaz et al., 2016
Eastern Pacific Ocean		30.5	-121.5	July 2001	50		4.0	3.3	4.8	Straub et al., 2007
Hilo City, Hawaii		19.74	-155.04	June 1980	6	4.5		4.2	4.7	Parungo et al., 1982
Luquillo Mountains, Puerto Rico	1020	18.32	-65.75	Nov-Dec 1967	7	5.1		4.9	5.4	Lazrus et al., 1970
Luquillo Mountains, Puerto Rico	1050	18.3	-65.78	1986-1987	12	4.6				Asbury et al., 1994
Northeastern North Pacific		49.58	-145	1999	1	4.1				Sasakawa and Uematsu, 2005
Northwestern North Pacific		37.85	142.40	Dec 1996	4	4.1		3.8	5.2	Watanabe et al., 2001b
Northwestern North Pacific		37.85	142.40	July 1998	13	4.2				Sasakawa and Uematsu, 2002
Northwestern North Pacific		44	155	1999	1	3.9				Sasakawa and Uematsu, 2005
Northwestern North Pacific		44	155	2000	21	4.2				Sasakawa and Uematsu, 2005
Northwestern North Pacific		44	155	2001	30	3.7				Sasakawa and Uematsu, 2005
Pico del Ingles, Tenerife, Canary Islands	992	28.5	-16.3	1995 & 1996		3.3		3	4.4	Borys et al., 1998
Puerto Rico	1020	18.32	-65.75	May-Nov 1984-1985		4.7	5.0	4.1	6.9	Weathers et al., 1988
Sea of Japan		39.54	134.28	Feb 1997	1	3.8				Watanabe et al., 2001b
Sea of Japan		39.54	134.28	July 1998	2	2.8				Sasakawa and Uematsu, 2002
Sea of Okhotsk		47.68	145.93	July 1998	5	3				Sasakawa and Uematsu, 2002
Sea of Okhotsk		47.68	145.93	2000	4	4				Sasakawa and Uematsu, 2005
Southeast Pacific		-24	-78	Oct-Nov 2008	72	4.3		2.9	7.2	Benedict et al., 2012
Tenerife, Canary Islands		28.34	-16.64	July 1997	2	3.6		3.7	3.4	Zhang and Anastasio, 2001
Tenerife, Canary Islands		28.34	-16.64	July 1997	1	3.4				Anastasio and McGregor, 2001

348 (h) Middle East

Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	Ν	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Dhofar, Oman	900	17.26	54.28	July 1990	7	6.4		7.0	7.9	Schemenauer and Cereceda, 1992a
Mt. Carmel, Israel	1120	32.74	35.05	1988	1	2				Ganor et al., 1993
Mt. Meron, Israel	341	33.00	35.41	1992	1	2				Ganor et al., 1993
Tel Aviv University		32.11	34.80	1987 & 1989	3	2.1				Ganor et al., 1993

349 350 (i) North America

Location	Altitude		Longitude	Period	Ν	Mean	Median	Min	Max	Reference
LIGA	(m)	(*N)	(*E)	(mo/yr)		(рн)	(рн)	(рн)	(рн)	
Albany NV		12.66	72 77	Oct 1082	24	56		12	6.4	Euzzi et al. 1084
Angiola CA	60	42.00	-/3.//	2000 2001	36	5.0	67	5.0	8.0	Herckes et al. 2007
Angora Peak OP	820	45 70	-119.55	2000-2001 July 1003	50	1.6	0.7	3.9	8.0 5.0	Rao and Collett 1995
Angola Feak, OK	820	42.99	-70.61	1987	4	4.0		3.1	6.5	Lagels et al 1989
Represented FACT		42.99	-70.01	1987	4	5.5		5.1	0.5	Jageis et al., 1989
CA		35.35	-119.09	Jan 1994	2	6.4		6.0	6.6	Collett Jr et al., 1999
Bakersfield, CA		35.37	-119	1982-1983	108	2.9		2.6	7	Jacob et al., 1984
Bakersfield, CA	76	35.37	-119	1983-1984	16	5.7		5.1	6.9	Jacob et al., 1986a
Bakersfield, CA	76	35.37	-119	1984-1985	35	4.0		2.9	7.6	Jacob et al., 1986b
Bakersfield, CA		35.37	-119	Jan 1993	5	6.7		6.4	7.1	Erel et al., 1993
Bakersfield, CA	130	35.37	-119.03	Jan 1994	4	6.7		6.5	6.9	Rao and Collett, 1995
Bakersfield, CA	130	35.37	-119.03	Feb 1995	5	5.5		4.9	6.9	Siefert et al., 1998
Bakersfield, CA	130	35.37	-119.03	Dec 1995	4	6.7		6.3	7.0	Collett Jr et al., 1999
Bar Harbor, ME	10	44.38	-68.23	Aug 1984	3	3.0		2.9	3	Weathers et al., 1986
Bar Harbor, ME	5	44.4	-68.23	1984-1985	15	3.2	3.6	2.4	5.4	Weathers et al., 1988
Bar Harbor, ME	< 10	44.4	-68.23	1984-1985	16	3.2	3.7	2.4	5.4	Kimball et al., 1988
Baton Rouge, LA		30.82	-90.79	2002-2004	15	6.1		4.7	6.7	Raja et al., 2005
Baton Rouge, LA		30.82	-90.79	2004-2005	21	5		2.7	6.4	Raja et al., 2008
Brooklyn, NY		40.68	-73.94	1954	11	4.7		3.5	6.3	Houghton, 1955
Buttonwillow, CA	24	35.40	-119.47	1983-1984	7	5.3		5.0	6.8	Jacob et al., 1986a
Buttonwillow, CA	24	35.40	-119.47	Jan 1985	11	5.9		5.3	5.9	Jacob et al., 1986b
Camels Hump		11.86	72 50	Mar-Sept	17	3.2		20	4.5	Hemmerlein and Perkins,
mountain, Vermont		44.80	-12.39	1991	47	5.2		2.9	4.5	1993
Cape Elizabeth		43.56	-70.20	1987	3	2.8		2.5	3.6	Jagels et al., 1989
Casitas Pass, CA		34.39	-119.42	June 1985	42	4.0		3.3	4.9	Munger, 1989
Casitas Pass, CA	290	34.39	-119.42	June 2015	20	5.9		5.3	6.7	Boris et al., 2018
Catoctin Mountain, MD	860	40.22	-77.42	Jan-May 1987	9	5.3				Anderson and Landsberg, 1979
Charleston, SC	~520	32.78	-79.94	Feb 1982	27	3.6				Daum et al., 1984
Cheeka Peak	460	49.25	124.67	Mar. 1002	102	4.2				Mana at al. 1007
Observatory, WA	400	46.55	-124.07	May 1995	102	4.2				vong et al., 1997
Clingman's Dome,	2014	25.56	82.50	June-Oct	0	4.4		20	6.1	Anderson et al., 1999;
TN	2014	55.50	-85.50	1994	9	4.4		5.8	0.1	2003
										Anderson et al., 1999:
Clingman's Dome,	2014	35.56	-83.50	June-Oct	136	3.9		2.7	6.3	Baumgardner Jr et al.
TN				1995		•••				2003
				I O I						Anderson et al., 1999;
Clingman's Dome,	2014	35.56	-83.50	June-Oct	103	3.7		3.1	4.9	Baumgardner Jr et al.,
IN				1996						2003
Clingmon's Dome				June Oct						Anderson et al., 1999;
TN	2014	35.56	-83.50	1997	318	3.8		2.8	5.9	Baumgardner Jr et al.,
110				1997						2003
Clingman's Dome				June-Oct						Anderson et al., 1999;
TN	2014	35.56	-83.50	1998	268	3.6		2.8	5.8	Baumgardner Jr et al.,
										2003
Clingman's Dome,	2014	25.56	92.50	June-Sept	172	27		27	5.5	Anderson et al., 1999;
TN	2014	35.56	-83.50	1999	1/3	5.7		2.7	5.5	Baumgardner Jr et al.,
Clingmon's Deals										2003
NC	1987	35.61	-83.50	1986	48	3.7				Dasch, 1988

Location	Altitude		Longitude	Period	Ν	Mean	Median	Min	Max	Reference
Columbus OU	(m)	(°IN) 20.06	(°E) 82.00	(mo/yr) May 1000	17	(pH) 2 S	(рн)	(pH) 2.5	(рн) 4 1	Purkhard at al 1004
Corona del Mar		39.90	-02.99	Iviay 1990	1/	3.0		3.5	4.1	Burkhard et al., 1994
CA		33.60	-117.87	Dec 1982	1	2.2				Jacob et al., 1985
Corvallis, OR		44.5661	-123.26	1988-1989	20	5.6	5.7	4.5	6.8	Muir, 1991
Damariscove Island, ME	<10	43.77	-69.62	July-Oct 1985	4	3.4	4.1	2.9	4.2	Kimball et al., 1988
Damariscove Island		43.7579	-69.62	1987	5	2.7		2.4	3.7	Jagels et al., 1989
Davis, CA		38.32	-121.47	Jan-Feb 1991	6	6.3		5.8	7.3	Sagebiel and Seiber, 1993
Davis, CA		38.32	-121.47	Dec 1998	9	6.1		5.5	6.5	Reilly et al., 2001
Davis, CA		38.32	-121.47	Jan 1999	43	6.3		5.3	6.8	Reilly et al., 2001
Davis, CA	50	38.5	-121.75	1998-1999	51	6.3		5.7	6.9	Moore et al., 2004
Davis, CA		38.54	-121.76	1997-2001	16	6.5	6.7	5.6	7.5	Zhang and Anastasio, 2001
Davis, CA		38.54	-121.63	Jan 2011	11		6.8	6.4	7.2	Ehrenhauser et al., 2012
Del Mar. CA		32.96	-117.27	Jan 1983	5	2.9	0.0		,	Jacob et al., 1985
Delaware Bay		39.31	-75.23	Mar 1992	2	3.1		2.9	3.8	Erel et al., 1993
Douglas Island	800	58.27	-134.5	1984-1985	20	4.5	4.8	-		Bormann et al., 1989
East coast		34.04	-77.89	Jan-Mar	11	3.9				Barth et al., 1989
Eastern+Western		10.11		1980		• •				Hegg et al., 1984a: Hegg
Washington		48.41	-119.68	1982-1983	31	3.9		3.3	5.2	et al., 1984b
Etiwanda		34.13	-117.52	May 1982	1	2.4				Richards et al., 1983
Fontana		34.10	-117.44	May 1982	3	2.8		2.7	3.4	Richards et al., 1983
Fresh Water Bay, AK (Douglas Island, AK)	25	57.88	-135.17	1984-1985	18	4.6	4.4	3.8	5.3	Weathers et al., 1988
Fresno, CA		36.74	-119.78	Dec 1995	2	6.1		5.9	6.4	Collett Jr et al., 1999
Fresno, CA		36.74	-119.78	Jan 1996	1	6		6		Collett Jr et al., 1999
Fresno, CA		36.83	-119.75	Jan 2010	11		6.7	6.4	7.3	Ehrenhauser et al., 2012
Henninger Flats, CA	780	34.18	-118.1	June 1982	42		2.9	5.4	5.7	Waldman et al., 1985
Henninger Flats, CA	780	34.18	-118.1	May-June 1982	86		3.0	5.4	5.7	Waldman et al., 1985
Henninger Flats, CA	780	34.18	-118.1	May-June 1991	21	2.8		2.5	3.9	Erel et al., 1993
Henninger Flats, CA	780	34.18	-118.1	June-July 1987	76	3.3		2.6	4.8	Munger et al., 1990
Houston, TX		29.78	-95.12	Feb 2006	11	4.3		3.2	7.2	Raja et al., 2008
Hubbard Brook,	765	43.93	-71.75	Aug 1984	1	3.0			,	Weathers et al., 1986
Hubbard Brook,	765	43.93	-71.75	1984-1985	10	3.9		3.2	4.6	Weathers et al., 1988
Huntington Beach		33.66	-117.99	May 1982	4	3.3		3.1	3.6	Richards et al., 1983
Indianapolis, IN		39.84	-86.17	1985-1986	10	3.4		2.9	4.1	Muir et al., 1986
Isle au Haut, ME	<10	44.03	-68.38	Sept 1985	2	3.6	3.6	3.4	3.8	Kimball et al., 1988
Isle au Haut, ME	<10	44.03	-68.38	1987	11	3.2		2.7	4.0	Jagels et al., 1989
Kearney Agricultural Center, CA		36.60	-119.51	Jan 1991	4	7.0		6.5	7.8	Sagebiel and Seiber, 1993
Kent Island		39.22	-73.34	1954	19	7.2		7	7.4	Houghton, 1955
Kent Island		39.22	-73.34	1987	15	3.5		3.0	5.8	Jagels et al., 1989
Kern Wildlife Refuge CA		35.76	-119.58	Dec 1995	2	7.0		6.8	7.4	Collett Jr et al., 1999
Kern Wildlife		35.76	-119.58	Jan 1996	5	7.0		6.9	7.1	Rao and Collett, 1998
La Jolla Peak CA	475	34.12	-119.05	July 1993	10	3.4		3.1	39	Rao and Collett 1995
La Jolla Peak CA	475	34.12	-119.05	June 1994	13	3.2		2.8	3.7	Rao and Collett. 1998
Lakes-of-the-		44	=1.00	1004 1007		0.2	4.2			
clouds, NH	1534	44.27	-71.32	1984-1985	35	3.7	4.0	2.9	4.8	Weathers et al., 1988
clouds, NH	1534	44.27	-71.32	1984-1985	32	3.7	4.0	2.9	4.7	Kimball et al., 1988
Lakes-of-the- clouds, NH	1534	44.27	-71.32	1984-2010	1216		4.1			Murray et al., 2013

Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	Ν	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Lawrence Berkeley	246	37.90	-122.2	July-Sept	13	4		3.4	62	Gundel et al 1994
Laboratory	240	57.50	122.2	1986	15	T		5.4	0.2	Sunder et al., 1994
Lennox, CA		33.94	-118.36	Dec 1981	11	2.8		2.7	3.0	Munger et al., 1983
Lennox, CA		33.94	-118.36	Jan 1983	5	3.6		2.7	2.6	Munger et al., 1983
Lennox, CA	000	33.94	-118.30	Jan 1981	10	3.0		2.7	3.6	Jacob et al., 1985
Loft Mountain, VA	500	38.25	-/8.0/	Aug 1984	20	3.1	3.8	3.0	5.5	Weathers et al., 1980
Long Beach CA	500	33.23	-/8.07	1964-1965 Jap 1083	20	3.0	3.0	3.0	5.5	Jacob et al. 1985
Long Beach, CA		33.77	-118.2	May 1992	1	3.0				Richards et al. 1983
Long Deach, CA		34.06	-118.25	Ian 1980	10	5.3		4.6	48	Hegg and Hobbs 1981
Los Angeles Basin	600-700	33.8	-118	May 1982	10	3		23	3.6	Richards 1995
Los Angeles Basin	600-700	33.8	-118	June 1984		3		2.5	3.6	Richards 1995
Los Angeles Basin	600-700	33.8	-118	May-June		3.4		2.9	3.8	Richards, 1995
Los Angeles, 16 sites		34.06	-118.25	Winter 1980-1982	10		3.3	2.7	7.1	Brewer et al., 1983
Lower Kaweah, CA (SNP) ¹	1856	36.57	-118.77	1985-1986	12	5.0		4.4	5.7	Collett Jr et al., 1989
Lower Kaweah, CA (SNP) ¹	1856	36.57	-118.77	1987-1988	70	4.8		3.9	6.5	Collett Jr et al., 1990b
Lower Kaweah, CA (SNP) ¹	1856	36.57	-118.77	Apr 1988	5	4.5		4.4	4.6	Collett Jr et al., 1990a
Marys Peak, OR	1245	44.5	-123.57	June-Nov 1985	14	4.7	5.2			Bormann et al., 1989
Marys Peak, OR	1249	44.43	-123.63	1984-1985	12	4.6	4.7	4.1	5.5	Weathers et al., 1988
McKittrick, CA	262	35.31	-119.62	1983-1984	58	4.0		2.7	5.2	Jacob et al., 1986a
McKittrick, CA	262	35.31	-119.62	Jan 1984	24	4.2		3.7	5.0	Jacob et al., 1986b
Mohonk Mountain, NY	467	41.78	-74.4	Aug 1984	1	2.8				Weathers et al., 1986
Mohonk Mountain, NY	467	41.78	-74.4	1984-1985	23	3.5	3.6	2.8	4.4	Weathers et al., 1988
Monterey, CA		36.6	-121.89	Sept 1987	5	5.6		5.1	6.8	Schomburg et al., 1991
Moosilauke, NH	962	44.02	-71.83	1986-1988	200	3.7				Li and Aneja, 1992; Mohnen and Vong, 1993; Vong and Guttorp, 1991
Moro Rock, CA (SNP) ¹	1965	36.55	-118.77	Apr 1988	9	4.5		4.3	4.8	Collett Jr et al., 1990a
Morro Bay, CA		35.37	-120.85	July 1982	2	6.2				Jacob et al., 1985
Mount Gibbes, (Mt.	2006	35.76	-82.29	Summer	132	3.8		2.7	5.4	Aneja et al., 1992
Mount Gibbes, (Mt.	2006	35.76	-82.29	Autumn	15	3.9		3.3	4.2	Aneja et al., 1992
Mount Gibbes, (Mt.	2006	35.76	-82.29	Summer 1987	39	4.0		3.5	4.9	Aneja et al., 1992
Mount Gibbes, (Mt. Mitchell, NC)	2006	35.76	-82.29	Autumn 1987	13	4.5		4.0	6.7	Aneja et al., 1992
Mount Gibbes, (Mt. Mitchell, NC)	2006	35.76	-82.29	Summer 1988	53	3.4		2.8	4.5	Aneja et al., 1992
Mount Gibbes, (Mt. Mitchell, NC)	2006	35.76	-82.29	Autumn 1988	46	3.9		3.1	5.3	Aneja et al., 1992
Mount Gibbes, (Mt. Mitchell, NC)	2006	35.76	-82.29	June 1993	15	3.1		2.5	3.8	DeFelice, 1997
Mount Gibbes, (Mt. Mitchell, NC)	2006	35.76	-82.29	June-Aug 1996	5	4.0		3.8	4.2	Menon et al., 2000
Mount Lafayette, NH	1220	44.16	-71.64	Aug 1984	1	3.0				Weathers et al., 1986
Mount Washington, NH		44.41	-71.31	1954	35	4.5		3	5.9	Houghton, 1955
Mount Washington, NH	1524	44.41	-71.31	Aug 1984	1	3.0				Weathers et al., 1986
Mt. Desert Rock, ME	<10	43.97	-68.13	July-Sept 1985	5	3.6	3.6	3.3	5.0	Kimball et al., 1988
Mt. Elden, AZ	2834	35.24	-111.6	2005-2007	8		6.3	5.1	6.6	Hutchings et al., 2009

Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	Ν	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Mt. Mitchell, NC	1950	35.74	-82.29	1986-1988	477	3.6				Mohnen and Vong, 1993; Vong and Guttorn, 1991
Mt. Mitchell, NC	2038	35.74	-82.29	May-Sept 1986	149	3.5		2.7	4.8	Lin and Saxena, 1991; Saxena and Lin, 1990
Mt. Mitchell, NC	2038	35.74	-82.29	May-Sept 1987	86	3.5		2.8	5.9	Lin and Saxena, 1991; Saxena and Lin, 1990
Mt. Mitchell, NC	2038	35.73	-82.27	July-Oct 1987	495	3.3		2.9	4.8	Kim and Aneja, 1992
Mt. Mitchell, NC	2038	35.73	-82.27	June-Sept 1988	978	3.4		2.4	5.6	Kim and Aneja, 1992
Mt. Mitchell, NC	2038	35.73	-82.27	May-Aug 1989	413	3.6		2.8	4.9	Kim and Aneja, 1992
Mt. Mitchell, NC	1980	35.77	-82.27	Aug 1993	16	2.9		2.7	3.3	Rao and Collett, 1995
Mt. Mitchell, NC (Polluted)	2038	35.74	-82.29	1993-1994	14	3.2		3.1	3.3	Deininger and Saxena, 1997
Mt. Mitchell, NC (Black Mountain)	2006	35.73	-82.27	Summer 1987	139	3.3		2.9	4.5	Aneja et al., 1990
Mt. Mitchell, NC (Black Mountain)	2006	35.73	-82.27	Fall 1987	47	4.1		3.6	4.5	Aneja et al., 1990
Mt. Mitchell, NC (Continental)	2038	35.74	-82.29	1993-1994	8	3.5		3.1	4.2	Deininger and Saxena, 1997
Mt. Mitchell, NC (Marine)	2038	35.74	-82.29	1993-1994	11	3.3		3.0	3.8	Deininger and Saxena, 1997
Muskegon, MI	670, 1525	43.84	-86.18	Mar 1977	2	3.8				Scott and Laulainen, 1979
Olidale, CA		35.42	-119.02	Jan 1982	3	3.2		2.1	3.1	Munger et al., 1983
Parlier, CA		36.61	-119.53	Jan 1986	5	5.7		5.4	7	Glotfelty et al., 1990
Pasadena, CA		34.14	-118.13	Dec 1981	8	3.2		2.9	5.3	Munger et al., 1983
Pasadena, CA		34.14	-118.13	Jan 1982	1	2.3				Munger et al., 1983
Pomona-Corona, CA		33.88	-117.57	May 1992	2	2.6				Richards et al., 1983
Pt. Reyes, CA		38.05	-113	Aug 1982	17	4.1				Jacob et al., 1985
Puget Sound Basin, WA		47.75	-112.48	Jan-May 1984	17	4.1		3.7	5.3	Hegg and Hobbs, 1986
Redwood National Park, CA	287	41.25	-124.03	1984-1985	13	4.3	4.4	3.7	5.2	Weathers et al., 1988
Riverside, CA	350	33.97	-117.32	Jan-Mar 1986	16	3.3		2.3	5.7	Munger et al., 1990
Roque Island, ME	<10	44.58	-67.53	July-Sept 1985	3	3.8	3.7	3.6	4.9	Kimball et al., 1988
Roque Island, ME		44.58	-67.53	1987	5	3.5		3.3	3.7	Jagels et al., 1989
Rye Harbor, NH		43	-70.75	Mar-Sept 1990	56	3.4		2.6	4.8	Klemm et al., 1994; Klemm et al., 1992
San Joaquin Valley, CA		36.74	-119.79	1983-1984	13	6.1		5.2	6.8	Miller et al., 1987
San Joaquin Valley, CA (BF, KWR, Fresno)		36.74	-119.79	1995-1996	59		6.5	5.0	7.4	Collett Jr et al., 1998
San Marcos Pass, CA		34.51	-199.82	Aug 1983	14	4.5				Jacob et al., 1985
San Nicholas Island, CA		33.25	-119.5	Aug 1982	7	3.9				Jacob et al., 1985
San Pedro Hill, CA	450	33.74	-118.41	June-July 1987	242	3.3		2.4	5.0	Munger et al., 1990
San Pedro Hill, CA	450	33.74	-118.41	June-July 1991	21	2.8		2.2	4.2	Erel et al., 1993
San Pedro Hill, CA	450	33.74	-118.41	June 1992	3	4.3		4.2	4.4	Erel et al., 1993
San Pedro Hill, CA	450	33.74	-118.41	1994	6	3.8		3.2	4.1	Siefert et al., 1998
Seal Beach, CA		33.74	-118.1	Nov 1981	2	3		3.0	3.0	Richards et al., 1983
Shenandoah National Park, VA	1037	38.62	-78.35	Sept 1990	2	3.6		3.3	4.8	Keene et al., 1995
Shenandoah, VA	1040	38.2	-78.33	1986-1988	55	3.7				Li and Aneja, 1992; Mohnen and Vong, 1993; Vong and Guttorp, 1991

Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	Ν	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Mt. Sutro, CA		37.78	-122.41	Aug 1982	1	4.0				Jacob et al., 1985
Steamboat Springs, CO	3220	40.46	-106.74	Jan 1997	27	4.3		3.9	5.1	Collett Jr et al., 2002
Steamboat Springs, CO	3220	40.46	-106.74	Jan 1997	40	5.1		3.9	6.5	Xu et al., 1999
Sugarloaf Mountain, ME	1280	45.03	-70.32	Aug-Oct 1985	14	3.4	3.9	2.9	4.9	Kimball et al., 1988
Susquehanna University, PA	-	40.79	76.88	2007-2015	146	4.7	6.5	3.1	7.4	Straub, 2017; Straub et al., 2012
Tennessee Vally, Whitetop Mountain, VA	1682	36.52	-82.08	Apr-Oct 1986	14	3.6		2.9	4.6	Joslin et al., 1988
Turtleback Dome, CA (YNP) ²	1590	37.72	-119.71	Apr-Nov 1988	43	4.5		3.8	5.2	Collett Jr et al., 1990b
University of California at Davis		38.54	-121.76	Jan-Feb 1997	2	6.8				Anastasio and McGregor, 2001
University of California at Davis		38.54	-121.76	Jan-Feb 1998	5	6.5				Anastasio and McGregor, 2001
University of California at Davis		38.54	-121.76	Jan 1999	1	6				Anastasio and McGregor, 2001
University of Michigan, Biological Station, MI	2452	45.67	-84.47	Aug 2005	19	4.4		2.2	5.2	Hill et al., 2007
Upland, CA		34.10	-117.65	Jan 1982	3	2.4		2.9	2.2	Munger et al., 1983
Visalia, CA	43	36.33	-119.29	1983-1984	13	7		5.5	7.2	Jacob et al., 1986a
Western Washington		47.61	-122.33	Apr-May 1979	23	4.3		3.7	6.5	Hegg and Hobbs, 1981
Western Washington		47.61	-122.33	1979-1981	16	4.7		4.3	7	Hegg and Hobbs, 1982
Whiteface Mountain, NY	1500	44.48	-73.9	July-Aug 1976	50	3.6		3.4	4.2	Castillo et al., 1983
Whiteface Mountain, NY	1500	44.48	-73.9	Aug-Sept 1977		3.6		2.7	4.7	Falconer and Falconer, 1980
Whiteface Mountain, NY	1500	44.48	-73.9	Aug-Sept 1979		3.5		2.7	4.7	Falconer and Falconer, 1980
Whiteface Mountain, NY	1500	44.48	-73.9	Summer 1981	114	3.5				Castillo et al., 1985
Whiteface Mountain, NY	1500	44.48	-73.9	Summer 1982	167	3.7				Mohnen and Kadlecek, 1989
Whiteface Mountain, NY	1500	44.48	-73.9	Summer 1982	68	3.9				Castillo et al., 1985
Whiteface Mountain, NY	1500	44.48	-73.9	1983	400	3.6				Mohnen and Kadlecek, 1989
Whiteface Mountain, NY	1500	44.48	-73.9	June-Aug 1983	72	3.7		3.1	4.7	Van Valin et al., 1987
Whiteface Mountain, NY	1500	44.48	-73.9	1984	249	3.5				Mohnen and Kadlecek, 1989
Whiteface Mountain, NY	1500	44.48	-73.9	Winter 1985	38	3.5				Mohnen and Kadlecek, 1989
Whiteface Mountain, NY	1500	44.48	-73.9	1984-1985	10	3.9		3.2	4.6	Weathers et al., 1988
Whiteface Mountain, NY	1483	44.38	-73.08	1986-1988	634	4.1				Li and Aneja, 1992; Mohnen and Vong, 1993; Vong and Guttorp, 1991
Whiteface Mountain, NY	1438	44.38	-73.08	1986-1988	66	3.9				Li and Aneja, 1992; Mohnen and Vong, 1993; Vong and Guttorp, 1991
Whiteface Mountain, NY	1500	44.48	-73.9	1986	375	3.6				Mohnen and Kadlecek, 1989
Whiteface Mountain, NY	1500	44.48	-73.9	Summer 1987	91	3.8				Mohnen and Kadlecek, 1989
Whiteface Mountain, NY	1512	44.39	-73.09	July 1987	16	3.5		3.1	4.4	Khwaja et al., 1995

Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	Ν	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Whiteface Mountain NV	1512	44.39	-73.09	Aug 1987	6	3.4		3.6	4	Khwaja et al., 1995
Whiteface	1512	44 39	-73.09	July-Aug	10	33		3.1	37	Husain 1989
Mountain, NY Whiteface	1512	44.39	-73.09	1988 Aug 1989	2	4.4		5.1	5.7	Husain et al., 1991;
Mountain, NY Whiteface		44.39	-73.09	July-Aug	73	3.2		2.9	4.5	Miller et al., 1993 Dutkiewicz et al., 1996
Whiteface Mountain, NY	1512	44.39	-73.09	Jun e 1992	23	3.6		3.0	4.7	Siefert et al., 1998
Whiteface Mountain, NY		44.39	-73.09	Sept-Oct	73	3.6		3.3	4	Dutkiewicz et al., 1996
Whiteface Mountain, NY	1620	44.39	-73.09	Sept 1993	4	4.6		4.4	4.7	Rao and Collett, 1995
Whiteface Mountain, NY	1512	44.39	-73.09	June-July 1994	26	3.9		3.2	5.4	Siefert et al., 1998
Whiteface Mountain, NY	1483	44.37	-73.90	June-Oct 1994	223	3.6		2.5	5.8	Anderson et al., 1999; Baumgardner Jr et al., 2003
Whiteface Mountain, NY	1483	44.37	-73.90	June-Oct 1995	523	3.7		2.6	6.5	Anderson et al., 1999; Baumgardner Jr et al., 2003
Whiteface Mountain, NY	1483	44.37	-73.90	June 1995	367	3.4		2.9	4.2	Husain et al., 2000
Whiteface Mountain, NY	1483	44.37	-73.90	June-Oct 1996	569	3.8		2.8	5.9	Anderson et al., 1999; Baumgardner Jr et al., 2003
Whiteface Mountain, NY	1483	44.37	-73.90	June-Oct 1997	393	3.7		2.9	6.1	Anderson et al., 1999; Baumgardner Jr et al., 2003
Whiteface Mountain, NY	1483	44.37	-73.90	June-Oct 1998	387	3.8		2.8	5.9	Anderson et al., 1999; Baumgardner Jr et al., 2003
Whiteface Mountain, NY	1483	44.37	-73.90	June-Sept 1999	473	3.7		2.9	6.1	Anderson et al., 1999; Baumgardner Jr et al., 2003
Whiteface Mountain, NY	1484	44.4	-73.85	July 1998	49	3.1		2.9	3.8	Moore et al., 2004
Whiteface Mountain, NY	1484	44.4	-73.85	July-Oct 1994		3.7				Aleksic et al., 2009
Whiteface Mountain, NY	1484	44.4	-73.85	May-Oct 1995		3.7				Aleksic et al., 2009
Whiteface Mountain, NY	1484	44.4	-73.85	June-Oct 1996		4.0				Aleksic et al., 2009
Whiteface Mountain, NY	1484	44.4	-73.85	June-Oct 1997		3.8				Aleksic et al., 2009
Whiteface Mountain, NY	1484	44.4	-73.85	June-Oct 1998		3.7		2.8	4.7	Aleksic et al., 2009; Rattigan et al., 2001
Whiteface Mountain, NY	1484	44.4	-73.85	June-Oct 1999		3.8				Aleksic et al., 2009
Whiteface Mountain, NY	1484	44.4	-73.85	June-Sept 2000		3.9				Aleksic et al., 2009
Whiteface Mountain, NY	1484	44.4	-73.85	June-Oct 2001		4.0				Aleksic et al., 2009
Whiteface Mountain, NY	1484	44.4	-73.85	June-Sept 2002		3.9				Aleksic et al., 2009
Whiteface Mountain, NY	1484	44.4	-73.85	July-Sept 2003		3.9				Aleksic et al., 2009
Whiteface Mountain, NY	1484	44.4	-73.85	July-Aug 2004		4.0				Aleksic et al., 2009
Whiteface Mountain, NY	1484	44.4	-73.85	June-Sept 2005		3.7				Aleksic et al., 2009
Whiteface Mountain, NY	1484	44.4	-73.85	May-Sept 2006		3.9				Aleksic et al., 2009

Location	Altitude (m)	Latitude (°N)	Longitude (°E)	Period (mo/yr)	Ν	Mean (pH)	Median (pH)	Min (pH)	Max (pH)	Reference
Whiteface Mountain, NY	1484	44.4	-73.85	Aug-Sept 2014	8	4.8		4.1	5.3	Cook et al., 2017
Whitetop Mountain, VA	1689	36.64	-81.61	Summer 1986	32	3.5		2.8	4.3	Reisinger and Imhoff, 1989
Whitetop Mountain, VA	1689	36.64	-81.61	Summer 1987	18	3.2		2.9	3.7	Reisinger and Imhoff, 1989
Whitetop Mountain, VA	1689	36.64	-81.61	1986-1988	601	3.8				Li and Aneja, 1992; Mohnen and Vong, 1993
Whitetop Mountain, VA	1686	36.64	-81.61	June-Oct 1994	141	3.8		2.8	5.4	Anderson et al., 1999; Baumgardner Jr et al., 2003
Whitetop Mountain, VA	1686	36.64	-81.61	June-Oct 1995	550	3.8		2.6	5.2	Anderson et al., 1999; Baumgardner Jr et al., 2003
Whitetop Mountain, VA	1686	36.64	-81.61	June-Oct 1996	181	3.8		2.8	5.5	Anderson et al., 1999; Baumgardner Jr et al., 2003
Whitetop Mountain, VA	1686	36.64	-81.61	June-Oct 1997	501	3.9		2.8	6.1	Anderson et al., 1999; Baumgardner Jr et al., 2003
Whitetop Mountain, VA	1686	36.64	-81.61	June-Oct 1998	271	3.7		2.7	5.3	Anderson et al., 1999; Baumgardner Jr et al., 2003
Whitetop Mountain, VA	1686	36.64	-81.61	June-Sept 1999	143	4.2		2.7	5.4	Anderson et al., 1999; Baumgardner Jr et al., 2003
Canada										
Mt. Tremblant	860	46.21	-74.56	1985	11	4.7				Schemenauer et al., 1995
Mt. Tremblant	860	46.21	-74.56	1986	31	5.0				Schemenauer et al., 1995
Mt. Tremblant	860	46.21	-74.56	1987	79	5.0				Schemenauer et al., 1995
Mt. Tremblant	860	46.21	-74.56	1988	52	4.8				Schemenauer et al., 1995
Mt. Tremblant	860	46.21	-74.56	1989	48	4.7				Schemenauer et al., 1995
Mt. Tremblant	860	46.21	-74.56	1990	75	4.9				Schemenauer et al., 1995
Mt. Tremblant	860	46.21	-74.56	1991	66	5.0				Schemenauer et al., 1995
North Bay		46.33	-79.43	Jan-Feb 1984	148		3.6	2.3	5.5	Isaac and Daum, 1987
Nova Scotia	8	44.68	-63.42	Aug 1975	15	3.4		3	6.2	Bressan and Larson, 1979
Ontario		34.05	-117.6	1988	117	3.4				Liu et al., 1993
Roundtop Ridge	850	45.09	-72.56	July-Dec 1985	2	4.0				Schemenauer, 1986
Roundtop Ridge	845	45.09	-72.56	1986	22	4.6				Schemenauer et al., 1995
Roundtop Ridge	845	45.09	-72.56	1987	52	5.1				Schemenauer et al., 1995
Roundtop Ridge	845	45.09	-72.56	1988	63	5.2				Schemenauer et al., 1995
Roundtop Ridge	845	45.09	-72.56	1989	53	5				Schemenauer et al., 1995
Roundtop Ridge	845	45.09	-72.56	1990	54	5.1				Schemenauer et al., 1995
Roundtop Ridge	845	45.09	-72.56	1991	35	4.9				Schemenauer et al., 1995
Whistler Mountain		50.06	-122.96	2010		4.4				Ervens et al., 2013

352 ¹SNP: Sequoia National Park ²YNP: Yosemite National Park

Table S9. Select data from the complete datasets used for comparing MOSAIC against ISORROPIA-II.

354 Concentrations are expressed in µg m⁻³, temperature in K and relative humidity as percent (%). Related information

is available in excel format at doi:10.23719/1504059.

ID	Na	SO ₄	TNH ₄	TNO3	Cl	Ca	K	Mg	RH	Т	Campaign, Characteristics
	$\mu g \ m^{-3}$	$\mu g \ m^{-3}$	μg m ⁻³	%	К						
1	0.000	1.490	12.851	4.729	0.071	0.000	0.000	0.039	61.5	271.093	Cabauw, High pH, High NO ₃ , Low SO ₄ ,
											Low RH
2	0.000	8.479	19.306	15.144	0.278	0.000	0.037	0.022	92.9	271.079	Cabauw, High pH, High NO ₃ , High
											SO ₄ , High RH
3	0.000	7.964	32.317	16.207	0.074	0.000	0.000	0.000	86.6	271.936	Cabauw, High pH, High NO ₃ , High
											SO ₄ , High RH
4	0.000	1.088	49.943	3.851	0.381	0.058	0.000	0.045	71.4	296.264	Cabauw, High pH, High NO ₃ , Low SO ₄ ,
											Sulfate poor, Intermediate RH
5	0.000	2.037	0.589	0.043	0.010	0.000	0.000	0.0000	88.5	297.3	SOAS, Low pH, High SO4, Low NO ₃ ,
											High RH
6	0.000	0.847	0.517	0.013	0.020	0.000	0.000	0.000	65.3	293.9	SOAS, Low pH, High SO4, Low NO ₃ ,
											Low RH
7	0.000	2.150	1.136	0.060	0.010	0.000	0.000	0.000	69.0	300.5	SOAS, Low pH, High SO4, Low NO ₃ ,
											Low RH
8	0.000	1.040	0.253	0.013	0.007	0.000	0.000	0.000	90.2	294	SOAS, Low pH, High SO4, Low NO ₃ ,
											High RH
9	0.000	0.776	1.965	1.095	0.603	0.000	0.000	0.000	60.8	288.15	CalNex, Intermediate pH, Comparable
											SO ₄ , NO ₃ , Low RH, Low PM
10	0.000	6.430	6.178	33.384	4.355	0.000	0.000	0.000	54.0	298.45	CalNex, Intermediate pH, Comparable
											SO ₄ , NO ₃ , Low RH, High PM
11	0.000	3.130	3.672	11.086	0.369	0.000	0.000	0.0000	90.2	286.883	CalNex, Intermediate pH, Comparable
											SO ₄ , NO ₃ , High RH, High PM
12	0.000	0.878	0.847	3.751	0.502	0.000	0.000	0.000	90.8	286.85	CalNex, Intermediate pH, Comparable
											SO ₄ , NO ₃ , High RH, Low PM
13	0.000	0.059	0.058	0.057	0.000	0.000	0.000	0.000	0.603	277.42	WINTER, Low RH, High SO ₄ , low pH
14	0.000	0.001	0.001	0.002	0.000	0.000	0.000	0.000	0.646	264.91	WINTER, Low RH, Low SO ₄ , low pH
15	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.868	256.02	WINTER, High RH, High SO ₄ , low pH
16	0.000	0.041	0.005	0.096	0.000	0.000	0.000	0.000	0.801	275.51	WINTER, High RH, Low SO ₄ , low pH
17	0.041	0.106	2.223	0.202	0.227	0.030	0.030	0.001	0.612	298.25	Tianjin, Low RH, High SO ₄
18	0.032	0.447	2.376	0.539	0.063	0.042	0.020	0.001	0.625	303.15	Tianjin, Low RH, Low SO ₄
19	0.031	0.209	2.035	0.182	0.140	0.034	0.017	0.001	0.595	302.05	Tianjin, High RH, High SO ₄
20	0.026	0.394	2.411	0.809	0.089	0.024	0.013	0.001	0.819	300.25	Tianjin, High RH, Low SO ₄

Table S10. Locations used in the box model intercomparison and literature evaluating fine aerosol pH in CTMs.

^		
- 4	611	
•	()()	
~	00	

Region/ Season	Specific Location(s)	Time	Observationally- constrained aerosol pHF	CMAQ fine aerosol pH _F	GEOS- Chem fine aerosol pH _F	WRF- Chem pH _F
Southeast US Summer	Centreville, AL, USA; various	Summer 2013	0.9 ± 0.6 (a), 1.1 ± 0.4 (b)	$\begin{array}{c} 1.6 \pm 0.5 \ (\mathrm{i}),\\ 0.82 \ (\mathrm{j}),\\ 1.8 \pm 1.0 \ (\mathrm{k}),\\ 0.9 \pm 0.9 \ (\mathrm{l}) \end{array}$	1.3 (o)	1.5 (r)
Eastern US Winter	Aircraft mission WINTER	February 2015	0.8 ± 1.0 (c)		1.3 (p)	
Los Angeles Basin Summer	Pasadena, CA, USA	May-June 2010	2.7 ± 0.3 (d)	3.0 ± 1.7 (i)		3.4 (r) 3.5 (s)
China Winter	Beijing, China	Winter	4.2 (e)	$4.5 \pm 0.8 \text{ (m)}$	4.3 ± 0.7 (q)	
China Summer	Tianjin, China	August 2015	3.4 ± 0.5 (f)	3.1 ± 1.5 (n)		
Netherlands	Cabauw	June, July, December 2012-2013	3.7 (g)	3.2 ± 0.7 (n)		
Mediterranean Summer/Fall	Finokalia, Crete	Aug- Nov 2012	1.25 ± 1.14 (h)	0.4 ± 1 (n)		

- 362 Data sources:
- ³Guo et al. (2015) SOAS Centreville, AL ground site ISORROPIA estimates
- ^bXu et al. (2016) SENEX aircraft summer 2013 ISORROPIA estimates
- 365 Guo et al. (2016) WINTER 2015 aircraft campaign ISORROPIA estimates
- ^dGuo et al. (2017a) PM2.5 for the last week of CalNex
- ^eGuo et al. (2017b) Beijing PM1 ISORROPIA estimates
- 368 ^fShi et al. (2019) ISORROPIA estimates
- 369 ^gGuo et al. (2018)
- ^hBougiatioti et al. (2016) excluding water associated with organics. $pH=1.38 \pm 1.1$ including organic water.
- ⁱThis work, CMAQv5.2 June 2016 predicted mean and standard deviation of hourly predictions (108×108km
 horizontal resolution)
- ^jVasilakos et al. (2018) CMAQ prediction for summer 2011 Centreville, AL
- 374 ^kCalculated from CMAQ simulations of Pye et al. (2018) for CTR June 2013 including nonvolatile cations
- 375 ¹Calculated from CMAQ simulations of Pye et al. (2018) for CTR June 2013 excluding nonvolatile cations
- 376 ^mThis work, CMAQv5.2 February 2016 predicted mean and standard deviation
- ⁿThis work, CMAQv5.2 annual average 2016
- ³⁷⁸ ^oMarais et al. (2016) SEAC4RS aircraft campaign predicted by GEOS-Chem
- 379 ^pShah et al., (2018) WINTER 2015 aircraft campaign predicted by GEOS-Chem
- 380 ^qShao et al. (2019) Beijing Autumn/Winter, mean and range, predicted by GEOS-Chem
- 381 ^rThis work, WRF-Chem with MOSAIC LWC-weighted PM_{2.5}
- 382 ^sKnote et al. (2014) CALNex, CARES WRF-Chem simulation
- 383
- 384
- 385
- 386

Table S11. Select cloud pH measurements (See Table S8) and spatially-corresponding (vertically averaged) cloud

390	pH from CTMs
-----	--------------

Location	Latitude (°)	Longitude (°)	Altitude (km)	Time Period (observed)	Cloud/fog pH _F obs	Model ¹	Vertical average
Delta Barrage, Egypt	30.2	31.12		2015-2016	(mean) 7.6	CAM-chem CMAQ	pH 5.6 5.3
Mt. Boutmezguida, Morocco	29.2	-10.02	1.23	Nov 2013-Jun 2015	7.3	CAM-chem CMAQ	3.6 6.6
Mt. Tai, China	36.3	117.22	1.55	Jun-Aug 2015	4.9	CAM-chem CMAQ	4.4 4.6
Shanghai, China	31.3	121.48		2009-2010	6.0	CAM-chem CMAQ	4.2 4.3
Fresno, CA	36.83	-119.75		Jan 2010	6.7 (median)	CAM-chem CMAQ WRF-Chem	n/a 6.4 n/a
Whiteface Mtn, NY	44.4	-73.85	1.48	Aug-Sep 2014	4.8	CAM-chem CMAQ WRF-Chem	4.2 4.6 4.6
Po Valley, Italy	44.65	11.62		Nov 2013	4.6 (median)	CAM-chem CMAQ	n/a 5.3
Puy de Dome, France	48	2	1.46	2010-2013	5.6	CAM-chem CMAQ	4.1 5.2
Near Paris, France	48.7	2.2		2012-2013	5.2	CAM-chem CMAQ	4.1 4.6
Sundsbø, Norway	60.77	5.2		Fall 2011	5.0	CAM-chem CMAQ	4.8 4.6
California Marine Stratocumulus	36.98	-123.1	0.08 - 1.0	Summer aircraft flights between 2005 and 2018	4.4	CAM-chem CMAQ WRF-Chem	3.8 5.3 5.5

Notes:

¹CAM-chem simulation time period is June 2015; CMAQ simulation time period is Jan-Dec 2016; WRF-Chem

simulation time period is June 1-15, 2013;

398 References

- Acker, K., Möller, D., Marquardt, W., Brüggemann, E., Wieprecht, W., Auel, R., and Kalaß, D: Atmospheric
- research program for studying changing emission patterns after German unification, Atmos. Environ., 32(20), 34353443, https://doi.org/10.1016/S1352-2310(98)00041-7, 1998a.
- Acker, K., Möller, D., Wieprecht, W., Kalaß, D., and Auel, R.: Investigations of ground-based clouds at the Mt.
 Brocken, Fresenius, J. Anal. Chem., 361(1), 59-64, https://doi.org/10.1007/s002160050834, 1998b.
- 404 Adzuhata, T., Inotsume, J., Okamura, T. Kikuchi, R., Ozeki, T., Kajikawa, M., and Ogawa, N.: Evaluation of ionic
- 405 pollutants of acid fog and rain using a factor analysis and back trajectories, Anal .Sci., 17(1), 71-76,
- 406 https://doi.org/10.2116/analsci.17.71, 2001a.
- 407 Adzuhata, T., Okamura, T., Inotsume, J., Kikuchi, R., Ozeki, T., Kajikawa, M., and Ogawa, N.: Chemical
- 408 characterization of acid fog and rain in northern Japan using back trajectory and oblique rotational factor analysis,
- 409 Wat. Air Soil Pol., 130(1-4), 337-342, https://doi.org/10.1023/A:1013812613373, 2001b.
- 410 Ahmed, M., Hossain, A., Akther, T., Shohel, M., and A. Salam: Chemical Composition and Source Identification of
- Fog Water at an Indo-Gangetic Plain (IGP) Outflow Location (Coastal Bhola Island), Bangladesh, Journal of
 Environmental Pollution and Management, 1, 104, 2018.
- 413 Aikawa, M., Hiraki, T., Shoga, M., and Tamaki, M.: Fog and precipitation chemistry at Mt. Rokko in Kobe, April
- 414 1997-March 1998, in: Acid Rain 2000, edited, 1517-1522, Springer, https://doi.org/10.1023/A:1013945905410,
- 415 2001.
- 416 Aikawa, M., Hiraki, T., Shoga, M., and Tamaki, M.: Chemistry of fog water collected in the Mt. Rokko area (Kobe
- 417 City, Japan) between April 1997 and March 2001, Wat. Air Soil Pol., 160(1-4), 373-393,
- 418 https://doi.org/10.1007/s11270-005-3117-1, 2005.
- 419 Aikawa, M., Hiraki, T., and Tamaki, M.: Comparative field study on precipitation, throughfall, stemflow, fog water,
- and atmospheric aerosol and gases at urban and rural sites in Japan, Sci. Total. Environ., 366(1), 275-285,
 https://doi.org/10.1016/j.scitotenv.2005.06.027, 2006.
- 422 Aleksic, N., Roy, K., Sistla, G., Dukett, J., Houck, N., and Casson, P.: Analysis of cloud and precipitation chemistry
- 423 at Whiteface Mountain, NY, Atmos. Environ., 43(17), 2709-2716, https://doi.org/10.1016/j.atmosenv.2009.02.053, 424 2009.
- Ali, K., Momin, G., Tiwari, S., Safai, P., Chate, D., and Rao, P.: Fog and precipitation chemistry at Delhi, North
 India, Atmos. Environ., 38(25), 4215-4222, https://doi.org/10.1016/j.atmosenv.2004.02.055, 2004.
- Ambade, B.: Characterization and source of fog water contaminants in central India, Nat. Hazards, 70(2), 15351552, https://doi.org/10.1007/s11069-013-0892-7, 2014.
- 429 Anastasio, C., and McGregor, K. G.: Chemistry of fog waters in California's Central Valley: 1. In situ
- 430 photoformation of hydroxyl radical and singlet molecular oxygen, Atmos. Environ., 35(6), 1079-1089, 421 https://doi.org/10.1016/S1252.2210(00)00281.8, 2001
- 431 https://doi.org/10.1016/S1352-2310(00)00281-8, 2001.
- Anderson, D. E., and Landsberg, H. E.: Detailed structure of pH in hydrometeors, Environ. Sci. Technol., 13(8),
 992-994, https://doi.org/10.1021/es60156a010, 1979.
- 434 Anderson, J. B., Baumgardner, R. E., Mohnen, V. A., and Bowser, J. J.: Cloud chemistry in the eastern United
- States, as sampled from three high-elevation sites along the Appalachian Mountains, Atmos. Environ., 33(30), 51055114, https://doi.org/10.1016/S1352-2310(99)00193-4, 999.

- 437 Aneja, V. P., Claiborn, C. S., Bradow, R. L., Paur, R. J., and Baumgardner, R. E.: Dynamic chemical
- 438 characterization of montane clouds, Atmos. Environ., 24(3), 563-572, https://doi.org/10.1016/0960-1686(90)90011439 B, 1990.
- 440 Aneja, V. P., Robarge, W. P., Claiborn, C. S., Murthy, A., Soo-Kim, D., Li, Z., and Cowling, E. B.: Chemical
- climatology of high elevation spruce-fir forests in the southern Appalachian Mountains, Environ. Pollut., 75(1), 8996, https://doi.org/10.1016/0269-7491(92)90061-e, 1992.
- 443 Asbury, C. E., McDowell, W. H., Trinidad-Pizarro, R., and Berrios, S.: Solute deposition from cloud water to the
- canopy of a Puerto Rican montane forest, Atmos. Environ., 28(10), 1773-1780, https://doi.org/10.1016/13522310(94)90139-2, 1994.
- 446 Baltensperger, U., Schwikowski, M., Jost, D., Nyeki, S., Gäggeler, H., and O. Poulida: Scavenging of atmospheric
- constituents in mixed phase clouds at the high-alpine site Jungfraujoch part I: Basic concept and aerosol scavenging
 by clouds, Atmos. Environ., 32(23), 3975-3983, https://doi.org/10.1016/S1352-2310(98)00051-X, 1998.
- Bao, B.-T., J.-X. Shu, and B.-Q. Zhu: Study on physicochemical properties of urban fog in Shanghai, Journal of
 Nanjing Institute of Meteorology, 18(1), 114-118, 1995.
- 451 Barth, M., Hegg, D., Hobbs, P., Walega, J., Kok, G., Heikes, B., and Lazrus, A.: Measurements of atmospheric gasphase and aqueous-phase hydrogen peroxide concentrations in winter on the east coast of the United States, Tellus
- 453 B, 41(1), 61-69, https://doi.org/10.3402/tellusb.v41i1.15049, 1989.
- Bates, R. G., and Robinson, R. A.: Standardization of silver-silver chloride electrodes from 0 to 60°C, Journal of
 Solution Chemistry, 9, 455–456, 10.1007/BF00647735, 1980.
- Battaglia, M. A., Douglas, S., and Hennigan, C. J.: Effect of the Urban Heat Island on Aerosol pH, Environ. Sci.
 Technol., 31, https://doi.org/10.1021/acs.est.7b0278, https://doi.org/10.1021/acs.est.7b02786, 2017.
- 458 Baumgardner Jr., R. E., Isil, S. S., Lavery, T. F., Rogers, C. M., and Mohnen, V. A.: Estimates of cloud water
- deposition at mountain acid deposition program sites in the Appalachian Mountains, J. Air Waste Manage., 53(3),
 291-308, https://doi.org/10.1080/10473289.2003.10466153, 2003.
- Behera, S. N., Betha, R., Liu, P., and Balasubramanian, R.: A study of diurnal variations of PM 2.5 acidity and
- related chemical species using a new thermodynamic equilibrium model, Sci. Total. Environ., 452-453, 286-295,
 https://doi.org/10.1016/j.scitotenv.2013.02.062, 2013.
- Beiderwieden, E., Wrzesinsky, T., and Klemm, O.: Chemical characterization of fog and rain water collected at the
 eastern Andes cordillera, Hydrol. Earth Syst. Sc. Disc., 2(3), 863-885, https://doi.org/10.5194/hess-9-185-2005,
 2005.
- Benedict, K. B., Lee, T., and Collett, J. L.: Cloud water composition over the southeastern Pacific Ocean during the
 VOCALS regional experiment, Atmos. Environ., 46, 104-114, https://doi.org/10.1016/j.atmosenv.2011.10.029,
 2012.
- Błaś, M., Sobik, M., and Twarowski, R.: Changes of cloud water chemical composition in the Western Sudety
 Mountains, Poland, Atmos. Res., 87(3-4), 224-231, https://doi.org/10.1016/j.atmosres.2007.11.004, 2008.
- 472 Błaś, M., Polkowska, Ż., Sobik, M., Klimaszewska, K., Nowiński, K., and Namieśnik, J.: Fog water chemical
- 473 composition in different geographic regions of Poland, Atmos. Res., 95(4), 455-469,
- 474 https://doi.org/10.1016/j.atmosres.2009.11.008, 2010.
- 475 Boris, A., Lee, T., Park, T., Choi, J., Seo, S., and Collett Jr., J.: Fog composition at Baengnyeong Island in the
- 476 eastern Yellow Sea: detecting markers of aqueous atmospheric oxidations, Atmos. Chem. Phys., 16(2), 437-453,
 477 https://doi.org/10.5194/acp-16-437-2016, 2016.

- Boris, A. J., Napolitano, D. C., Herckes, P., Clements, A. L., and Collett Jr. J. L.: Fogs and Air Quality on the
- 479 Southern California Coast, Aerosol Air Qual. Res., 18(1), 224-239, https://doi.org/10.4209/aaqr.2016.11.0522,
 480 2018.
- Bormann, B., Tarrant, R., McClellan, M., and Savage, T.: Chemistry of rainwater and cloud water at remote sites in
 Alaska and Oregon, J. Env. Qual., 18(2), 149-152, https://doi.org/10.2134/jeq1989.00472425001800020003x, 1989.
- 483 Borys, R., Lowenthal, D., Wetzel, M., Herrera, F., Gonzalez, A., and Harris, J.: Chemical and microphysical
- properties of marine stratiform cloud in the North Atlantic, J. Geophs. Res., 103(D17), 22073-22085,
 https://doi.org/10.1029/98JD02087, 1998.
- 486 Bougiatioti, A., Nikolaou, P., Stavroulas, I., Kouvarakis, G., Weber, R., Nenes, A., Kanakidou, M., and
- 487 Mihalopoulos, N.: Particle water and pH in the eastern Mediterranean: Source variability and implications for 488 nutrient availability, Atmos. Chem. Phys., 16, 4579-4591, https://doi.org/10.5194/acp-16-4579-201, 2016.
- 489 Brantner, B., Fierlinger, H., Puxbaum, H., and Berner, A.: Cloudwater chemistry in the subcooled droplet regime at
- 490 Mount Sonnblick (3106 m asl, Salzburg, Austria), Water Air Soil Poll., 74(3-4), 363-384,
- 491 https://doi.org/10.1007/BF00479800, 1994.
- 492 Brege, M., Paglione, M., Gilardoni, S., Decesari, S., Facchini, M. C., and Mazzoleni, L. R.: Molecular insights on
- 493 aging and aqueous-phase processing from ambient biomass burning emissions-influenced Po Valley fog and aerosol,
- 494 Atmos. Chem. Phys., 18(17), 13197-13214, https://doi.org/10.5194/acp-18-13197-2018, 2018.
- Bressan, D. J., and Larson, R. E.: The history of air forming various marine fogs off Nova Scotia in August 1975, J.
 Geophs. Res., 84(C4), 1746-1754, https://doi.org/10.1029/JC084iC04p01746, 1979.
- Brewer, R. L., Gordon, R. J., Shepard, L. S., and Ellis, E. C.: Chemistry of mist and fog from the Los Angeles urban
 area, Atmos. Environ. (1967), 17(11), 2267-2270, https://doi.org/10.1016/0004-6981(83)90224-X, 1983.
- 499 Bridges, K., Jickells, T., Davies, T., Zeman, Z., and Hunova, I.: Aerosol, precipitation and cloud water chemistry
- 500 observations on the Czech Krusne Hory plateau adjacent to a heavily industrialised valley, Atmos. Environ., 36(2),
- 501 353-360, https://doi.org/10.1016/S1352-2310(01)00388-0, 2002.
- 502 Brüggemann, E., Gnauk, T., Mertes, S., Acker, K., Auel, R., Wieprecht, W., Möller, D., Collett Jr., J., Chang, H.,
- and Galgon, D.: Schmücke hill cap cloud and valley stations aerosol characterisation during FEBUKO (I): Particle
- size distribution, mass, and main components, Atmos. Environ., 39(23-24), 4291-4303,
- 505 https://doi.org/10.1016/j.atmosenv.2005.02.013, 2005.
- 506 Buck, R. P., Rodini, S., Covington, A. K., Baucke, F. G. K., Brett, C. M., Camoes, M. F., Milton, M. J. T., Mussini,
- 507 T., Naumann, R., Pratt, K. W., Spitzer, P., and Wilson, G. S.: Measurement of pH. Definition, Standards, and
- 508 Procedures, Pure and Applied Chemistry, 74(11), 2169-2200, https://doi.org/10.1351/pac200274112169 ,2002.
- 509 Budhavant, K., Rao, P., Safai, P., Granat, L., and Rodhe, H.: Chemical composition of the inorganic fraction of
- 510 cloud-water at a high altitude station in West India, Atmos. Environ., 88, 59-65,
- 511 https://doi.org/10.1016/j.atmosenv.2014.01.039, 2014.
- 512 Burkard, R., Bützberger, P., and Eugster, W.: Vertical fogwater flux measurements above an elevated forest canopy
- at the Lägeren research site, Switzerland, Atmos. Environ., 37(21), 2979-2990, https://doi.org/10.1016/S1352-
- 514 2310(03)00254-1, 2003.
- 515 Burkhard, E., Dutkiewicz, V. A., and Husain, L.: A study of SO2, SO42- and trace elements in clear air and clouds
- above the midwestern United States, Atmos. Environ., 28(8), 1521-1533, https://doi.org/10.1016/1352-
- 517 2310(94)90211-9, 1994.
- Capel, P. D., Gunde, R., Zuercher, F., and Giger, W.: Carbon speciation and surface tension of fog, Environ. Sci.
 Technol., 24(5), 722-727, https://doi.org/10.1021/es00075a017, 1990.

- 520 Castillo, R. A., Jiusto, J. E., and Mclaren, E.: The pH and ionic composition of stratiform cloud water, Atmos.
- 521 Environ. (1967), 17(8), 1497-1505, https://doi.org/10.1016/0004-6981(83)90303-7, 1983.
- Castillo, R., Kadlecek, J., and McLaren, S.: Selected Whiteface Mountain cloud water concentrations summers 1981
 and 1982, Wat. Air Soil Pol., 24(3), 323-328, https://doi.org/10.1007/BF00161791, 1985.
- 524 Chakraborty, A., Ervens, B., Gupta, T., and Tripathi, S. N.: Characterization of organic residues of size-resolved fog
- droplets and their atmospheric implications, J. Geophs. Res., 121(8), 4317-4332,
- 526 https://doi.org/10.1002/2015JD024508, 2016.
- 527 Cheng, C., Wang, G., Meng, J., Wang, Q., Cao, J., Li, J., and Wang, J: Size-resolved airborne particulate oxalic and
- related secondary organic aerosol species in the urban atmosphere of Chengdu, China, Atmos. Res., 161-162, 134-
- 529 142, https://doi.org/10.1016/j.atmosres.2015.04.010, 2015.
- 530 Cheng, S., Yang, L., Zhou, X., Xue, L., and Gao, X: Size-fractionated water-soluble ions, situ pH and water content
- in aerosol on hazy days and the influences on visibility impairment in Jinan, China, Atmos. Environ., 45, 4631 4640, https://doi.org/10.1016/j.atmosenv.2011.05.057, 2011.
- 533 Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Pöschl,
- 534 U., Su, H., and Asia, E: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in
- 535 China., Science Advances, 2, e1601530, 1-11, https://doi.org/10.1002/2015JD024508 2016.
- Chung, Y., Kim, H., and Yoon, M.: Observations of visibility and chemical compositions related to fog, mist and
 haze in south Korea, Wat. Air Soil Pol., 111(1-4), 139-157, https://doi.org/10.1023/A:1005077415764, 1999.
- Cini, R., Prodi, F., Santachiara, G., Porcu, F., Bellandi, S., Stortini, A., Oppo, C., Udisti, R., and Pantani, F.:
 Chemical characterization of cloud episodes at a ridge site in Tuscan Appennines, Italy, Atmos. Res., 61(4), 311-
- 224 1 4 //1 //0.1 //0.1016/00160 episodes at a fuge site in Fuscar Appennines, italy, Aunos. Res., 01(4
- 540 334, https://doi.org/10.1016/S0169-8095(01)00139-9, 2002.
- Clark, K. L., Nadkarni, N. M., Schaefer, D., and Gholz, H. L.: Cloud water and precipitation chemistry in a tropical
 montane forest, Monteverde, Costa Rica, Atmos. Environ., 32(9), 1595-1603, https://doi.org/10.1016/S13522310(97)00384-1, 1998.
- Clifton, C. L., Alstein, N., and Huie, R. E.: Rate constant for the reaction of nitrogen dioxide with sulfur (IV) over
 the pH range 5.3-13, Environ. Sci. Technol., 22(5), 586-589, https://doi.org/10.1021/es00170a018, 1988.
- Collett Jr., J., Daube Jr., B. Munger, J. W., and Hoffmann, M. R.: Cloud water chemistry in Sequoia National Park,
 Atmos. Environ., 23(5), 999-1007, https://doi.org/10.1016/0004-6981(89)90303-X, 1989.
- 548 Collett Jr., J. L., Daube Jr., B. C., Gunz, D., and Hoffmann, M. R.: Intensive studies of Sierra Nevada cloudwater
- chemistry and its relationship to precursor aerosol and gas concentrations, Atmos. Environ., 24(7), 1741-1757,
 https://doi.org/10.1016/0960-1686(90)90507-J, 1990a.
- Collett Jr., J. L., Daube Jr., B. C., and Hoffmann, M. R.: The chemical composition of intercepted cloudwater in the
 Sierra Nevada, Atmos. Environ., 24(4), 959-972, https://doi.org/10.1016/0960-1686(90)90298-2, 1990b.
- 553 Collett Jr., J., Oberholzer, B., and Staehelin, J.: Cloud chemistry at Mt Rigi, Switzerland: dependence on drop size
- and relationship to precipitation chemistry, Atmos. Environ., 27(1), 33-42, https://doi.org/10.1016/0960-
- 555 1686(93)90068-A, 1993.
- Collett Jr., J. L., Hoag, K. J., Sherman, D. E., Bator, A., and Richards, L. W.: Spatial and temporal variations in San Joaquin Valley fog chemistry, Atmos. Environ., 33(1), 129-140, https://doi.org/10.1016/S1352-2310(98)00136-8, 1998.
- 559 Collett Jr., J. L., Hoag, K. J., Rao, X., and Pandis, S. N.: Internal acid buffering in San Joaquin Valley fog drops and
- its influence on aerosol processing, Atmos. Environ., 33(29), 4833-4847, https://doi.org/10.1016/S13522310(99)00221-6, 1999.

- 562 Collett Jr, J. L., Bator, A., Sherman, D. E., Moore, K. F., Hoag, K. J., Demoz, B. B., Rao, X., and Reilly, J. E.: The
- 563 chemical composition of fogs and intercepted clouds in the United States, Atmos. Res., 64(1-4), 29-40. 564 https://doi.org/10.1016/S0169-8095(02)00077-7, 2002.
- 565 Cook, R. D., Lin, Y.-H., Peng, Z., Boone, E., Chu, R. K., Dukett, J. E., Gunsch, M. J., Zhang, W., Tolic, N., and
- 566 Laskin, A.: Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds
- 567 in cloud water, Atmos. Chem. Phys., 17(24), 15167-15180, https://doi.org/10.5194/acp-17-15167-2017, 2017.
- 568 Corell, D.: Fog and rain water chemistry in the western Mediterranean basin (Valencia region, Spain), 5th International Conference on Fog, Fog Collection and Dew, Münster, Germany, 25-30 July, 2010. 569
- 570 Covington, A. K., Bates, R. G., and Durst, R. A.: Definition of pH scales, standard reference values, measurement of
- 571 pH and related terminology, Pure and Applied Chemistry, 57(3):531-542, https://doi.org/10.1351/pac198355091467,
- 1985. 572
- 573 Craig, R. L., Peterson, P. K., Nandy, L., Lei, Z., Hossain, M. A., Camarena, S., Dodson, R. A., Cook, R. D.,
- 574 Dutcher, C. S., and Ault, A. P.: Direct Determination of Aerosol pH: Size-Resolved Measurements of
- 575 Submicrometer and Supermicrometer Aqueous Particles, Anal. Chem.,
- 576 https://doi.org/10.1021/acs.analchem.8b00586, 2018.
- 577 Dall'Osto, M., Airs, R. L., Beale, R., Cree, C., Fitzsimons, M. F., Beddows, D., Harrison, R. M., Ceburnis, D.,
- 578 Dowd, C. O., Rinaldi, M., Paglione, M., Nenes, A., Decesari, S., and Simo, R.: Simultaneous Detection of
- 579 Alkylamines in the Surface Ocean and Atmosphere of the Antarctic Sympagic Environment., ACS Earth and Space 580 Chemistry, 3, 854-862, https://doi.org/10.1021/acsearthspacechem.9b00028, 2019.
- 581 Dasch, J. M.: Hydrological and chemical inputs to fir trees from rain and clouds during a 1-month study at 582 Clingmans Peak, NC, Atmos. Environ., 22(10), 2255-2262, https://doi.org/10.1016/0004-6981(89)90194-7, 1988.
- 583 Daum, P., Schwartz, S., and Newman, L.: Acidic and related constituents in liquid water stratiform clouds, J.
- 584 Geophs. Res., 89(D1), 1447-1458, https://doi.org/10.1029/JD089iD01p01447, 1984.
- 585 DeFelice, T.: Investigation of wet acidic deposition episodes capable of damaging red spruce in the Mt. Mitchell 586 State Park, Atmos. Res., 43(4), 325-344, https://doi.org/10.1016/S0169-8095(96)00042-7, 1997.
- 587 Degefie, D., El-Madany, T.-S., Held, M., Hejkal, J., Hammer, E., Dupont, J.-C., Haeffelin, M., Fleischer, E., and
- Klemm, O.: Fog chemical composition and its feedback to fog water fluxes, water vapor fluxes, and microphysical 588
- 589 evolution of two events near Paris, Atmos. Res., 164, 328-338, https://doi.org/10.1016/j.atmosres.2015.05.002, 590 2015.
- 591 Deguillaume, L., Charbouillot, T., Joly, M., Vaïtilingom, M., Parazols, M., Marinoni, A., Amato, P., Delort, A.-M.,
- 592 Vinatier, V., and Flossmann, A.: Classification of clouds sampled at the puy de Dôme (France) from 10 yr
- 593 monitoring: mean features of their physico-chemical properties, Atmos. Chem. Phys. Disc., 13(8),
- 594 https://doi.org/10.5194/acp-14-1485-2014, 2013.
- 595 Deininger, C., and Saxena, V.: A validation of back trajectories of air masses by principal component analysis of ion concentrations in cloud water, Atmos. Environ., 31(2), 295-300, https://doi.org/10.1016/1352-2310(96)00152-5, 596 597 1997.
- 598 Deutsch, F., Hoffmann, P., and Ortner, H.: Field experimental investigations on the Fe (II)-and Fe (III)-content in 599 cloudwater samples, J. Atmos. Chem., 40(1), 87-105, https://doi.org/10.1023/A:1010684628804, 2001.
- 600 Ding, G.-A., Ji, X.-M., Fang, X.-M., Fu, J.-M., Wu, F., Su, W.-H., Song, W.-Z., Li, W., Yu, X.-R., and Jiang, Z.-F.:
- Characters of cloud-fog in Lu Shan mountain, Acta Meteorol. Sin., 49(2), 190-197, 601
- 602 https://doi.org/10.11676/qxxb1991.027, 1991.
- 603 Ding, J., Zhao, P., Su, J., Dong, Q., Du, X., and Zhang, Y: Aerosol pH and its driving factors in Beijing, Atmos. 604
 - Chem. Phys., 19, 7939-7954, https://doi.org/10.5194/acp-19-7939-2019, 2019.

- 605 Dodson, L. L., and Bargach, J.: Harvesting Fresh Water from Fog in Rural Morocco: Research and Impact Dar Si
- 606 Hmad's Fogwater Project in Aït Baamrane, Procedia Engineering, 107, 186-193,
- 607 https://doi.org/10.1016/j.proeng.2015.06.073, 2015.

Dutkiewicz, V. A., Burkhard, E. Hussain, M., and Husain, L.: Scavenging and solubility of trace element bearing

aerosols in frontal clouds at Whiteface Mountain, NY, Atmos. Res., 41(3-4), 337-348, https://doi.org/10.1016/0169 8095(96)00018-X, 1996.

Eckardt, F. D., and Schemenauer, R. S.: Fog water chemistry in the Namib Desert, Namibia, Atmos. Environ.,
32(14-15), 2595-2599, https://doi.org/10.1016/S1352-2310(97)00498-6, 1998.

- 613 Ehrenhauser, F. S., Khadapkar, K., Wang, Y., Hutchings, J. W., Delhomme, O., Kommalapati, R. R., Herckes, P.,
- 614 Wornat, M. J., and Valsaraj, K. T.: Processing of atmospheric polycyclic aromatic hydrocarbons by fog in an urban
- 615 environment, J. Environ. Monitor., 14(10), 2566-2579, https://doi.org/10.1039/C2EM30336A, 2012.
- Elias, V., and Tesar, M.: Cloud-water chemistry and estimated rates of occult deposition in a forested area of the Sumava Mts (south Bohemia, Czech Republic), Ser. Proc. Rep. - Int. Assoc. Hyd. Sci., 221, 417-424, 1994.
- Elias, V., Tesar, M. and Buchtele, J.: Occult precipitation: sampling, chemical analysis and process modelling in the
- 619 Sumava Mts. (Czech Republic) and in the Taunus Mts. (Germany), J. Hydrol., 166(3-4), 409-420,
- 620 https://doi.org/10.1016/0022-1694(94)05096-G, 1995.
- Erel, Y., Pehkonen, S. O., and Hoffmann, M. R.: Redox chemistry of iron in fog and stratus clouds, J. Geophs. Res.,
 98(D10), 18423-18434, http://doi.org/10.1029/93JD01575, 1993.
- Ervens, B., Wang, Y., Eagar, J., Leaitch, W. R., Macdonald, A. M., Valsaraj, K. T., and Herckes, P.: Dissolved
- 624 organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace
- 625 gas budgets, Atmos. Chem. Phys., 13(10), 5117-5135, https://doi.org/10.5194/acp-13-5117-2013, 2013.
- Facchini, M. C., Lind, J., Orsi, G., and Fuzzi, S.: Chemistry of carbonyl compounds in Po Valley fog water, Sci.
 Total. Environ., 91, 79-86, https://doi.org/10.1016/0048-9697(90)90289-7, 1990.
- 628 Facchini, M. C., Fuzzi, S., Zappoli, S., Andracchio, A., Gelencsér, A., Kiss, G., Krivácsy, Z., Mészáros, E.,
- Hansson, H. C., and Alsberg, T.: Partitioning of the organic aerosol component between fog droplets and interstitial
 air, J. Geophs. Res., 104(D21), 26821-26832, https://doi.org/10.1029/1999JD900349, 1999.
- 631 Falconer, R., and Falconer, P.: Determination of cloud water acidity at a mountain observatory in the Adirondack
- Mountains of New York State, J. Geophs. Res., 85(C12), 7465-7470, https://doi.org/10.1029/JC085iC12p07465,
 1980.
- 634 Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., and Weber, R. J: Highly acidic ambient particles, soluble metals
- and oxidative potential: A link between sulfate and aerosol toxicity, Environ. Sci. Technol., 1-27,
 - 636 https://doi.org/10.1021/acs.est.6b06151, 2017.
 - Ferek, R. J., Lasrus, A. L., Haagenson, P. L., and Winchester, J. W: Strong and Weak Acidity of Aerosols Collected
 over the Northeastern United States, Environ. Sci. Technol., 17, 315-324, https://doi.org/10.1021/es00112a003,
 1983.
 - 640 Fernández-González, R., Yebra-Pimentel, I., Martínez-Carballo, E., Simal-Gándara, J., and Pontevedra-Pombal, X.:
 - Atmospheric pollutants in fog and rain events at the northwestern mountains of the Iberian Peninsula, Sci. Total.
 Environ., 497, 188-199, https://doi.org/10.1016/j.scitotenv.2014.07.093, 2014.
 - Fisak, J., Tesar, M., Rezacova, D., Elias, V., Weignerova, V., and Fottova, D.: Pollutant concentrations in fog and
 - low cloud water at selected sites of the Czech Republic, Atmos. Res., 64(1-4), 75-87, https://doi.org/10.1016/S0169 8095(02)00081-9, 2002.

- 646 Fisak, J., Stoyanova, V., Chaloupecký, P., Řezáčová, D., Tsacheva, T., Kupenova, T., and Marinov, M.: Soluble and
- 647 insoluble pollutants in fog and rime water samples, Soil Water Res., 4, S123-S130, https://doi.org/10.17221/473648 SWR, 2009a.
- 649 Fisak, J., Stoyanova, V., Tesar, M., Petrova, P., Daskalova, N., Tsacheva, T., and Marinov, M.: The pollutants in
- rime and fog water and in air at Milesovka Observatory (Czech Republic), Biologia, 64(3), 492-495,
- 651 https://doi.org/10.2478/s11756-009-0080-0, 2009b.
- Fowler, D., Leith, I., Binnie, J., Crossley, A., Inglis, D., Choularton, T., Gay, M., Longhurst, J., and Conland, D.:
- Orographic enhancement of wet deposition in the United Kingdom: continuous monitoring, Wat. Air Soil Pol.,
 85(4), 2107-2112, https://doi.org/10.1007/BF01186145, 1995.
- 655 Fridlind, A. M., and Jacobson, M. Z.: A study of gas-aerosol equilibrium and aerosol pH in the remote marine
- boundary layer during the First Aerosol Characterization Experiment (ACE 1), J. Geophs. Res., 105, 17325-17340,
- 657 https://doi.org/10.1029/2000JD900209, 2000.
- Fuhrer, J.: Chemistry of fogwater and estimated rates of occult deposition in an agricultural area of Central
 Switzerland, Agr. Ecosyst. Environ., 17(3-4), 153-164, https://doi.org/10.1016/0167-8809(86)90038-1, 1986.
- Fuzzi, S., Orsi, G., and Mariotti, M.: Radiation fog liquid water acidity at a field station in the Po Valley, J. Aerosol.
 Sci., 14(2), 135-138, https://doi.org/10.1016/0021-8502(83)90037-X, 1983.
- 662 Fuzzi, S., Castillo, R. A., Jiusto, J. E., and Lala, G. G.: Chemical composition of radiation fog water at Albany, New
- 663 York, and its relationship to fog microphysics, J. Geophs. Res., 89(D5), 7159-7164,
- 664 https://doi.org/10.1029/JD089iD05p07159, 1984.
- Fuzzi, S., Orsi, G., and Mariotti, M.: Wet deposition due to fog in the Po Valley, Italy, J. Atmos. Chem., 3(2), 289296, https://doi.org/10.1007/BF00210501, 1985.
- Fuzzi, S.: Fog chemistry and deposition in the Po Valley, Italy, in: Acid deposition at high elevation sites, edited,
 443-452, Springer, https://doi.org/10.1007/978-94-009-3079-7 25, 1988.
- 669 Fuzzi, S., Facchini, M., Orsi, G., Lind, J., Wobrock, W., Kessel, M., Maser, R., Jaeschke, W., Enderle, K., and
- Arends, B.: The Po valley fog experiment 1989, Tellus B, 44(5), 448-468, https://doi.org/10.1034/j.16000889.1992.t01-4-00002.x, 1992a.
- Fuzzi, S., Facchini, M. C., Orsi, G., and Ferri, D.: Seasonal trend of fog water chemical composition in the Po
 Valley, Environ. Pollut., 75(1), 75-80, https://doi.org/10.1016/0269-7491(92)90059-j, 1992b.
- 674 Fuzzi, S., Facchini, M. C., Orsi, G., Bonforte, G., Martinotti, W., Ziliani, G., Mazzalit, P., Rossi, P., Natale, P., and
- Grosa, M. M.: The NEVALPA project: a regional network for fog chemical climatology over the Po valley basin,
 Atmos. Environ., 30(2), 201-213, https://doi.org/10.1016/1352-2310(95)00298-D, 1996.
- Fuzzi, S., Mandrioli, P., and Perfetto, A.: Fog droplets—an atmospheric source of secondary biological aerosol
 particles, Atmos. Environ., 31(2), 287-290, https://doi.org/10.1016/1352-2310(96)00160-4, 1997.
- Ganor, E., Levin, Z., and Pardess, D.: Determining the acidity and chemical composition of fog, haze and cloud
 droplets in Israel, Atmos. Environ., 27(12), 1821-1832, https://doi.org/10.1016/0960-1686(93)90287-9, 1993.
- 681 Ghauri, B. M., Mirza, M. I., Richter, R., Dutkiewicz, V. A., Rusheed, A., Khan, A. R., and Husain, L.: Composition
- of aerosols and cloud water at a remote mountain site (2.8 kms) in Pakistan, Chemosphere, 3(1), 51-63,
- 683 https://doi.org/10.1016/S1465-9972(00)00038-6, 2001.
- 684 Gillett, R., and Ayers, G.: Maritime cloudwater acidity near Tasmania, Clean Air, 23(3), 106-109, 1989.

- 685 Giannoni, S. M., Rollenbeck, R., Fabian, P., and Bendix, J.: Complex topography influences atmospheric nitrate
- 686 deposition in a neotropical mountain rainforest. Atmos. Environ., 79, 385-394,
- 687 https://doi.org/10.1016/j.atmosenv.2013.06.023, 2013.
- Giannoni, S. M., Trachte, K., Rollenbeck, R., Lehnert, L., Fuchs, J., and Bendix, J.: Atmospheric salt deposition in a 688
- 689 tropical mountain rainforest at the eastern Andean slopes of south Ecuador-Pacific or Atlantic origin?, Atmos.
- 690 Chem. Phys., 16(15), 10241-10261, https://doi.org/10.5194/acp-16-10241-2016, 2016.
- 691 Gioda, A., Mayol-Bracero, O. L., Morales-García, F., Collett, J., Decesari, S., Emblico, L., Facchini, M. C.,
- Morales-De Jesús, R. J., Mertes, S., and Borrmann, S.: Chemical composition of cloud water in the Puerto Rican 692 tropical trade wind cumuli, Wat. Air Soil Pol., 200(1-4), 3-14, https://doi.org/10.1007/s11270-008-9888-4, 2009. 693
- Gioda, A., Reyes-Rodríguez, G. J., Santos-Figueroa, G., Collett, J. L., Decesari, S., Ramos, M. d. C. K., Bezerra 694
- 695 Netto, H. J., de Aquino Neto, F. R., and Mayol-Bracero, O. L.: Speciation of water-soluble inorganic, organic, and 696 total nitrogen in a background marine environment: Cloud water, rainwater, and aerosol particles, J. Geophs. Res.,
- 697 116(D5), https://doi.org/10.1029/2010JD015010, 2011.
- 698 Gioda, A., Mayol-Bracero, O. L., Scatena, F. N., Weathers, K. C., Mateus, V. L., and McDowell, W. H.: Chemical 699 constituents in clouds and rainwater in the Puerto Rican rainforest: potential sources and seasonal drivers, Atmos.
- 700 Environ., 68, 208-220, https://doi.org/10.1016/j.atmosenv.2012.11.017. 2013.
- 701 Giulianelli, L., Gilardoni, S., Tarozzi, L., Rinaldi, M., Decesari, S., Carbone, C., Facchini, M., and Fuzzi, S.: Fog
- 702 occurrence and chemical composition in the Po valley over the last twenty years, Atmos. Environ., 98, 394-401, 703 https://doi.org/10.1016/j.atmosenv.2014.08.080, 2014.
- 704 Glotfelty, D. E., Majewski, M. S., and Seiber, J. N.: Distribution of several organophosphorus insecticides and their 705 oxygen analogs in a foggy atmosphere, Environ. Sci. Technol., 24(3), 353-357, 706 https://doi.org/10.1021/es00073a010, 1990.
- 707 Gordon, C. A., Herrera, R., and Hutchinson, T. C.: Studies of fog events at two cloud forests near Caracas,
- 708 Venezuela—II. Chemistry of fog, Atmos. Environ., 28(2), 323-337, https://doi.org/10.1016/1352-2310(94)90108-2, 709 1994.
- 710 Gundel, L., Benner, W., and Hansen, A.: Chemical composition of fog water and interstitial aerosol in Berkeley, 711 California, Atmos. Environ., 28(16), 2715-2725, https://doi.org/10.1016/1352-2310(94)90443-X, 1994.
- Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite, J. R., Carlton, A. G., Lee, S. H., Bergin, M. H., 712
- 713 Ng, N. L., Nenes, A., and Weber, R. J.: Fine-particle water and pH in the southeastern United States, Atmos. Chem.
- 714 Phys., 15, 5211-5228, https://doi.org/10.5194/acp-15-5211-2015, 2015.
- 715 Guo, H., Liu, J., Froyd, K. D., Roberts, J. M., Veres, P. R., Hayes, P. L., Jimenez, J. L., Nenes, A., and Weber, R. J.:
- 716 Fine particle pH and gas - particle phase partitioning of inorganic species in Pasadena, California, during the 2010
- 717 CalNex campaign, Atmos. Chem. Phys., 17, 5703-5719, https://doi.org/10.5194/acp-17-5703-2017, 2017a.
- 718 Guo, H., Weber, R. J., and Nenes, A.: High levels of ammonia do not raise fine particle pH sufficiently to yield 719 nitrogen oxide-dominated sulfate production, Sci. Rep., 1-7, https://doi.org/10.1038/s41598-017-11704-0, 2017b.
- 720 Guo, H., Otjes, R., Schlag, P., Kiendler-Scharr, A., Nenes, A., and Weber, R. J: Effectiveness of ammonia reduction on control of fine particle nitrate, Atmos. Chem. Phys., 18, 12241-1225, https://doi.org/10.5194/acp-18-12241-2018, 721 722 2018.
- 723 Guo, J., Wang, Y., Shen, X., Wang, Z., Lee, T., Wang, X., Li, P., Sun, M. Collett Jr., J. L., and Wang, W.:
- Characterization of cloud water chemistry at Mount Tai, China: Seasonal variation, anthropogenic impact, and cloud 724 725 processing, Atmos. Environ., 60, 467-476, https://doi.org/10.1016/j.atmosenv.2012.07.016, 2012.

- He, K., Zhao, Q., Ma, Y., Duan, F., Yang, F., Shi, Z., and Chen, G.: Spatial and seasonal variability of PM 2.5
- acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols, Atmos. Chem. Phys.,
 12, 1377-1395, https://doi.org/10.5194/acp-12-1377-2012, 2012.
- He, P., Alexander, B., Geng, L., Chi, X., Fan, S., Zhan, H., Kang, H., Zheng, G., Cheng, Y., Su, H., Liu, C., and
- Xie, Z.: Isotopic constraints on heterogeneous sulfate production in Beijing haze, Atmos. Chem. Phys., 18, 5515-
- 731 5528, https://doi.org/10.5194/acp-18-5515-201, 2018.
- Hegg, D. A., and Hobbs, P. V.: Cloud water chemistry and the production of sulfates in clouds, Atmos. Environ.
 (1967), 15(9), 1597-1604, https://doi.org/10.1016/0004-6981(81)90144-X, 1981.
- Hegg, D. A., and Hobbs, P. V.: Measurements of sulfate production in natural clouds, Atmos. Environ., 16(11),
 2663-2668, https://doi.org/10.1016/0004-6981(82)90348-1, 1982.
- Hegg, D. e. A., and Hobbs, P. V.: Sulfate and nitrate chemistry in cumuliform clouds, Atmos. Environ., 20(5), 901909, https://doi.org/10.1016/0004-6981(86)90274-X, 1986.
- Hegg, D. A., Hobbs, P. V., and Radke, L. F.: Measurements of the scavenging of sulfate and nitrate in clouds,
 Atmos. Environ., 18(9), 1939-1946, https://doi.org/10.1016/0004-6981(84)90371-8, 1984a.
- 740 Hegg, D. A., Radke, L. F., and Hobbs, P. V.: Measurements of transformations in the physical and chemical
- properties of clouds associated with onshore flow in Washington State, J. Clim. Appl. Met., 23(6), 979-984,
 https://doi.org/10.1175/1520-0450(1984)023<0979:MOTITP>2.0.CO;2, 1984b.
- 743 Hemmerlein, M. T., and Perkins, T. D.: Techniques for pollution monitoring in remote sites: III. Near real-time
- 744 monitoring of cloud water conductivity and pH, Wat. Air Soil Pol., 71(1-2), 43-50,
- 745 https://doi.org/10.1007/BF00475511, 1993.
- Hennigan, C. J., Izumi, J., Sullivan, A. P., Weber, and R. J., Nenes, A.: A critical evaluation of proxy methods used
 to estimate the acidity of atmospheric particles, Atmos. Chem. Phys., 15, 2775-2790, https://doi.org/10.5194/acp-152775-2015, https://doi.org/10.5194/acp-15-2015, 2015.
- Herckes, P., Wortham, H., Mirabel, P., and Millet, M.: Evolution of the fogwater composition in Strasbourg
 (France) from 1990 to 1999, Atmos. Res., 64(1-4), 53-62, https://doi.org/10.1016/S0169-8095(02)00079-0, 2002.
- Herckes, P., Chang, H., Lee, T., and Collett, J. L.: Air pollution processing by radiation fogs, Wat. Air Soil Pol.,
 181(1-4), 65-75, https://doi.org/10.1007/s11270-006-9276-x, 2007.
- Hill, K. A., Shepson, P. B., Galbavy, E. S., Anastasio, C., Kourtev, P. S., A. Konopka, P. S., and Stirm, B. H.:
- Processing of atmospheric nitrogen by clouds above a forest environment, J. Geophs. Res., 112(D11),
 https://doi.org/10.1029/2006JD008002, 2007.
- Hitzenberger, R., Berner, A., Kromp, R., Kasper-Giebl, A., Limbeck, A., Tscherwenka, W., and Puxbaum, H.: Black
 carbon and other species at a high-elevation European site (Mount Sonnblick, 3106 m, Austria): Concentrations and
 scavenging efficiencies, J. Geophs. Res., 105(D20), 24637-24645, https://doi.org/10.1029/2000JD900349, 2000.
- Hoffmann M. R.: On the kinetics and mechanism of oxidation of aquated sulfur dioxide by ozone, Atmos. Environ.,
 20, 1145-1154, https://doi.org/10.1016/0004-6981(86)90147-2, 1986.
- Hosono, T., Okochi, H., and Igawa, M.: Fogwater chemistry at a mountainside in Japan, Bulletin of the Chemical
 Society of Japan, 67(2), 368-374, https://doi.org/10.1246/bcsj.67.368, 1994.
- 763 Houghton, H. G.: On the chemical composition of fog and cloud water, J. Meteorol., 12(4), 355-357,
- 764 https://doi.org/10.1175/1520-0469(1955)012<0355:OTCCOF>2.0.CO;2, 1955.
- Huang, Y., Guo, H., and F. Liu: The chemical composition of radiative fog-water industrial and non-industrial
 districts, Acta Geographica Sin., 47(1), 66-73, available at: http://www.geog.com.cn/EN/Y1992/V59/I1/66, 1992.

- Husain, L.: A technique for determining in-cloud formation of SO4, Geophys. Res. Lett., 16(1), 57-60,
- 768 https://doi.org/10.1029/GL016i001p00057, 1989.
- 769 Husain, L., Dutkiewicz, V., Hussain, M., Khwaja, H., Burkhard, E., Mehmood, G., G. Parekh, G., and Canelli, E.: A
- study of heterogeneous oxidation of SO2 in summer clouds, J. Geophs. Res., 96(D10), 18789-18805,
 https://doi.org/10.1029/91JD01943, 1991.
- Husain, L., Rattigan, O., Dutkiewicz, V., Das, M., Judd, C., Khan, A., Richter, R., Balasubramanian, R., Swami, K.,
 and Walcek, C.: Case studies of the SO2+ H2O2 reaction in clouds, J. Geophs. Res., 105(D8), 9831-9841,
 https://dxi.org/10.1020/1000ID001177_2000
- 774 https://doi.org/10.1029/1999JD901177, 2000.
- Hutchings, J. W., Robinson, M. S., McIlwraith, H., Kingston, J. T., and Herckes, P.: The chemistry of intercepted
- clouds in Northern Arizona during the North American monsoon season, Wat. Air Soil Pol., 199(1-4), 191-202,
 https://doi.org/10.1007/s11270-008-9871-0, 2009.
- Igawa, M., Tsutsumi, Y., Mori, T., and Okochi, H.: Fogwater chemistry at a mountainside forest and the estimation of the air pollutant deposition via fog droplets based on the atmospheric quality at the mountain base. Environ. Sci.
- 7/9 of the an portuant deposition via rog droplets based on the annosphere quarty at the mountain base, 1
 780 Technol., 32(11), 1566-1572, https://doi.org/10.1007/s11270-008-9871-0, 1998.
- Isaac, G., and Daum, P.: A winter study of air, cloud and precipitation chemistry in Ontario, Canada, Atmos.
 Environ., 21(7), 1587-1600, https://doi.org/10.1016/0004-6981(87)90320-9, 1987.
- Jacob, D. J., Waldman, J. M., Munger, J. W., and Hoffmann, M. R.: A field investigation of physical and chemical
- 784 mechanisms affecting pollutant concentrations in fog droplets, Tellus B, 36(4), 272-285,
- 785 https://doi.org/10.3402/tellusb.v36i4.14909, 1984.
- Jacob, D. J., Waldman, J. M., Munger, J. W., and Hoffmann, M. R.: Chemical composition of fogwater collected
 along the California coast, Environ. Sci. Technol., 19(8), 730-736, https://doi.org/10.1021/es00138a013, 1985.
- Jacob, D. J., Munger, J. W., Waldman, J. M., and Hoffmann, M. R.: The H2SO4-HNO3-NH3 system at high
 humidities and in fogs: 1. Spatial and temporal patterns in the San Joaquin Valley of California, J. Geophs. Res.,
 91(D1), 1073-1088, https://doi.org/10.1029/JD091iD01p01073, 1986a.
- Jacob, D. J., Waldman, J. M., Munger, J. W., and Hoffmann, M. R.: The H2SO4-HNO3-NH3 system at high
- humidities and in fogs: 2. Comparison of field data with thermodynamic calculations, J. Geophs. Res., 91(D1),
 1089-1096, https://doi.org/10.1029/JD091iD01p01089, 1986b.
- Jagels, R., Carlisle, J., Cunningham, R., Serreze, S., and Tsai, P.: Impact of acid fog and ozone on coastal red
 spruce, Wat. Air Soil Pol., 48(1-2), 193-208, https://doi.org/10.1007/BF00282378, 1989.
- Jia, S., Wang, X., Zhang, Q., Sarkar, S., Wu, L., Huang, M., and Zhang, J.: Technical note: Comparison and
 interconversion of pH based on different standard states for aerosol acidity characterization, Atmos. Chem. Phys.,
 18, 11125-11133, https://doi.org/10.5194/acp-18-11125-2018, 2018.
- Jiang, Y., Wang, Q., Xu, X., and Wang, Z.: Study on the Fog Weather Process Ionic Species Concentration
 Variation of The Fog Water in Beijing, paper presented at 5th International Conference on Fog, Fog Collection and
- Dew, 25-30 July 2010, Münster, Germany, http://www.fogconference.org, id. FOGDEW2010-22, 2010.
- Johnson, C. A., Sigg, L., and Zobrist, J.: Case studies on the chemical composition of fogwater: the influence of
- local gaseous emissions, Atmos. Environ. (1967), 21(11), 2365-2374, https://doi.org/10.1016/0004-6981(87)903714, 1987.
- Joos, F., and Baltensperger, U.: A field study on chemistry, S (IV) oxidation rates and vertical transport during fog conditions, Atmos. Environ., 25(2), 217-230, https://doi.org/10.1016/0960-1686(91)90292-F, 1991.
- Joslin, J., McDuffie, C., and Brewer, P.: Acidic cloud water and cation loss from red spruce foliage, Wat. Air Soil
 Pol., 39(3-4), 355-363, https://doi.org/10.1007/BF00279480, 1988.

- Kaul, D., Gupta, T., S. Tripathi, T., Tare, V., and Collett Jr., J.: Secondary organic aerosol: a comparison between
 foggy and nonfoggy days, Environ. Sci. Technol., 45(17), 7307-7313, https://doi.org/10.1021/es201081d, 2011.
- 811 Keene, W. C., Mosher, B. W., Jacob, D. J., Munger, J. W., Talbot, R. W., Artz, R. S., Maben, J. R., Daube, B. C.,
- and Galloway, J. N.: Carboxylic acids in clouds at a high-elevation forested site in central Virginia, J. Geophs. Res.,
 100(D5), 9345-9357, https://doi.org/10.1029/94JD01247, 1995.
- Khemani, L., Momin, G., Naik, M. S., Rao, P. P., Safai, P., and Murty, A.: Influence of alkaline particulates on pH
 of cloud and rain water in India, Atmos. Environ., 21(5), 1137-1145, https://doi.org/10.1016/0004-6981(87)90241-1,
 1987.
- Khwaja, H. A., Brudnoy, S., and Husain, L.: Chemical characterization of three summer cloud episodes at Whiteface
 Mountain, Chemosphere, 31(5), 3357-3381, https://doi.org/10.1016/0045-6535(95)00187-D, 1995.
- Kim, D. S., and Aneja, V. P.: Chemical composition of clouds at Mt. Mitchell, North Carolina, USA, Tellus B,
 44(1), 41-53, https://doi.org/10.3402/tellusb.v44i1.15421, 1992.
- Kim, M.-G., Lee, B.-K., and Kim, H.-J.: Cloud/fog water chemistry at a high elevation site in South Korea, J.
 Atmos. Chem., 55(1), 13-29, https://doi.org/10.1007/s10874-005-9004-8, 2006.
- 823 Kimball, K. D., Jagels, R., Gordon, G. A., Weathers, K. C., and Carlisle, J.: Differences between New England
- coastal fog and mountain cloud water chemistry, Wat. Air Soil Pol., 39(3-4), 383-393,
- 825 https://doi.org/10.1007/BF00279483, 1988.
- Klemm, O., and Wrzesinsky, T.: Fog deposition fluxes of water and ions to a mountainous site in Central Europe,
 Tellus B, 59(4), 705-714, https://doi.org/10.1111/j.1600-0889.2007.00287.x, 2007.
- Klemm, O., Talbot, R., and Klemm, K.: Sulfur dioxide in coastal New England fog, Atmos. Environ., 26(11), 2063 2075, https://doi.org/10.1016/0960-1686(92)90091-X, 1992.
- Klemm, O., Bachmeier, A., Talbot, R., and Klemm, K.: Fog chemistry at the New England coast: influence of air
 mass history, Atmos. Environ., 28(6), 1181-1188, https://doi.org/10.1016/1352-2310(94)90295-X, 1994.
- 832 Klemm, O., Tseng, W.-T., Lin, C.-C., Klemm, K. I., and Lin, N.-H. G.: pH control in fog and rain in East Asia:
- Temporal advection of clean air masses to Mt. Bamboo, Taiwan, Atmosphere, 6(11), 1785-1800,
- 834 https://doi.org/10.3390/atmos6111785, 2015.
- Kmiec, G., Zwozdziak, A., and Zwozdziak, J.: Study of cloud and precipitation chemistry at high elevation in the
 Sudeten mountains, Poland, WIT Trans. Ecol. Envir., 21, https://doi.org/10.2495/AIR970871, 1997.
- 837 Knote, C., Hodzic, A., Jimenez, J. L., Volkamer, R., Orlando, J. J., Baidar, S., Brioude, J., Fast, J., Gentner, D. R.,
- Goldstein, A. H., Hayes, P. L., Knighton, W. B., Oetjen, H., Setyan, A., Stark, H., Thalman, R., Tyndall, G.,
- 839 Washenfelder, R., Waxman, E., and Zhang, Q.: Simulation of semi-explicit mechanisms of SOA formation from
- glyoxal in aerosol in a 3-D model, Atmos. Chem. Phys., 14, 6213-6239, https://doi.org/10.5194/acp-14-6213-2014,
 2014.
- Kolb, D.: The pH concept, J. Chem. Educ., 56, 49, https://doi.org/10.1021/ed056p49, 1979.
- Kotronarou, A., and Sigg, L.: Sulfur dioxide oxidation in atmospheric water: role of iron (II) and effect of ligands,
 Environ. Sci. Technol., 27(13), 2725-2735, https://doi.org/10.1021/es00049a011, 1993.
- 845 Kroll, J. H., Cross, E. S., Hunter, J. F., Sidhant, P., TREX XII, TREX XI, Wallace, L. M. M., Croteau, P. L., Jayne,
- J. T., Worsnop, D. R., Heald, C. L., Murphy, J. G., and Frankel, S. L.: Atmospheric evolution of sulfur emissions
- from Kilauea: Real-time measurements of oxidation, dilution, and neutralization within a volcanic plume, Environ.
- 848 Sci. Technolo., 49, 4129-4137, https://doi.org/10.1021/es506119x, 2015.

- 849 Lacaux, J., Loemba-Ndembi, J., Lefeivre, B., Cros, B., and Delmas, R.: Biogenic emissions and biomass burning
- 850 influences on the chemistry of the fogwater and stratiform precipitations in the African equatorial forest, Atmos.
- 851 Environ., 26(4), 541-551, https://doi.org/10.1016/0960-1686(92)90167-J, 1992.
- Laj, P., Fuzzi, S., Facchini, M., Lind, J., Orsi, G., Preiss, M., Maser, R., Jaeschke, W., Seyffer, E., and Helas, G.:
- Cloud processing of soluble gases, Atmos. Environ., 31(16), 2589-2598, https://doi.org/10.1016/S1352-2310(97)00040-X, 1997.
- 2310(97)00040-X, 1997.
- Lakhani, A., Parmar, R. S., Satsangi, G. S., and Prakash, S.: Chemistry of fogs at Agra, India: Influence of soil
- particulates and atmospheric gases, Environ. Monit. Assess., 133(1-3), 435-445, https://doi.org/10.1007/s10661 006-9598-6, 2007.
- Lammel, G., and Metzig, G.: Multiphase chemistry of orographic clouds: observations at subalpine mountain sites,
 Fresenius, J. Anal. Chem., 340(9), 564-574, https://doi.org/10.1007/BF00322431, 1991.
- Lange, C. A., J. Matschullat, J., Zimmermann, F., Sterzik, G., and Wienhaus, O.: Fog frequency and chemical
- composition of fog water—a relevant contribution to atmospheric deposition in the eastern Erzgebirge, Germany,
 Atmos. Environ., 37(26), 3731-3739, https://doi.org/10.1016/S1352-2310(03)00350-9, 2003.
- Lazrus, A., Baynton, H., and Lodge Jr., J.: Trace constituents in oceanic cloud water and their origin, Tellus, 22(1),
 106-114, https://doi.org/10.1111/j.2153-3490.1970.tb01941.x, 1970.
- Lee, Y.-N., and Schwartz, S. E.: Kinetics of oxidation of aqueous sulfur (IV) by nitrogen dioxide, in: Precipitation

Scavenging, Dry Deposition and Resuspension, vol. 1, edited by: Pruppacher, H. R., Semonin, R. G., and Slinn, W.
G. N., 453-470, Elsevier Sci., New York, 1983.

- Lei, H.-C., Tanner, P. A., Huang, M.-Y., Shen, Z.-L., and Wu, Y.-X.: The acidification process under the cloud in
- southwest China: observation results and simulation, Atmos. Environ., 31(6), 851-861,
- 870 https://doi.org/10.1016/S1352-2310(96)00247-6, 1997.
- Li, J., Wang, X., Chen, J., Zhu, C., Li, W., Li, C., Liu, L., Xu, C., Wen, L., and Xue, L.: Chemical composition and
- droplet size distribution of cloud at the summit of Mount Tai, China, Atmos. Chem. Phys., 17(16), 9885-9896,
 https://doi.org/10.5194/acp-17-9885-2017, 2017.
- Li, P., Li, X., Yang, C., Wang, X., Chen, J., and Collett Jr., J. L.: Fog water chemistry in Shanghai, Atmos. Environ.,
 45(24), 4034-4041, https://doi.org/10.1016/j.atmosenv.2011.04.036, 2011.
- 876 Li, T., Wang, Z., Wang, Y., Wu, C., Liang, Y., Xia, M., Yu, C., Yun, H., Wang, W., Wang, Y., Guo, J., Herrmann,
- H., and Wang, T.: Chemical characteristics of cloud water and the impacts on aerosol properties at a subtropical
 mountain site in Hong Kong SAR, Atmos. Chem. Phys., 20, 391-407, https://doi.org/10.5194/acp-20-391-2020,
 2020.
- Li, W., Wang, Y., Collett Jr., J. L., Chen, J., Zhang, X., Wang, Z., and Wang, W.: Microscopic evaluation of trace
- metals in cloud droplets in an acid precipitation region, Environ. Sci. Technol., 47(9), 4172-4180,
 https://doi.org/10.1021/es304779t, 2013.
- Li, Y., Zhang, G.-Z., Pu, M.-J., Zhu, B., and Li, Z.-H.: The chemical composition of fog water in the winter of 2006 of Nanjing, China Environmental Science, 28(5), 395-400, 2008.
- Li, Z., and Aneja, V. P.: Regional analysis of cloud chemistry at high elevations in the eastern United States, Atmos.
 Environ., 26(11), 2001-2017, https://doi.org/10.1016/0960-1686(92)90085-Y, 1992.
- Li, Z.-H., and Peng, Z.-G.: Physical and chemical characteristics of the Chongqing winter fog, Acta Meteorol. Sin.,
 52(4), 477-483, 1994.
- Li, Z.-H., Dong, S.-N., and Peng, Z.-G.: Spatial/Temporal variabilities of chemical constituents fog water sampled in Chongqing, Journal of Nanjing Institute of Meteorology, 19(1), 63-68, 1996.

- 891 Lin, N.-H., and Saxena, V.: In-cloud scavenging and deposition of sulfates and nitrates: Case studies and
- 892 parameterization, Atmos. Environ., 25(10), 2301-2320, https://doi.org/10.1016/0960-1686(91)90105-G, 1991.
- Liu, H.-J., Wang, W., Gao, J.-H., Pang, Y., Wang, M., and Tang, D.: Preliminary Study on the Characteristics of
 Acid Fog in Minnan Area, Huanjing Kexue Yanjiu, 9, 30-32, 1996.
- Liu, P., Leaitch, W., Macdonald, A., Isaac, G., Strapp, J., and Wiebe, H. A.: Sulphate production in summer cloud over Ontario, Canada, Tellus B, 45(4), 368-389, https://doi.org/10.3402/tellusb.v45i4.15736, 1993.
- Liu, M., Song, Y., Zhou, T., Xu, Z., Yan, C., Zheng, M., Wu, Z., Hu, M., Wu, Y., and Zhu, T.: Fine particle pH
- during severe haze episodes in northern China, Geophys. Res. Lett., 44, 5213–5221,
- 899 https://doi.org/10.1002/2017GL073210, 2017.
- 900 Liu, X.-H., Wai, K.-M., Y. Wang, Zhou, J., Li, P.-h., Guo, J., Xu, P.-j., and Wang, W.-X.: Evaluation of trace
- 901 elements contamination in cloud/fog water at an elevated mountain site in Northern China, Chemosphere, 88(5),
- 902 531-541, https://doi.org/10.1016/j.chemosphere.2012.02.015, 2012.
- Löflund, M., Kasper-Giebl, A., Schuster, B., Giebl, H., Hitzenberger, R., and Puxbaum, H.: Formic, acetic, oxalic,
 malonic and succinic acid concentrations and their contribution to organic carbon in cloud water, Atmos. Environ.,
 26(2) 1552 1550 https://doi.org/10.1016/01052.221060100572.0.2002
- 905 36(9), 1553-1558, https://doi.org/10.1016/S1352-2310(01)00573-8, 2002.
- Marais, E. A., Jacob, D. J., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W., Krechmer, J., Zhu, L., Kim, P.
- 907 S., Miller, C. C., Fisher, J. A., Travis, K., Yu, K., Hanisco, T. F., Wolfe, G. M., Arkinson, H. L., Pye, H. O. T.,
- 908 Froyd, K. D., Liao, J., and McNeill, V. F.: Aqueous-phase mechanism for secondary organic aerosol formation from

909 isoprene: application to the southeast United States and co-benefit of SO2 emission controls, Atmos. Chem. Phys.,

- 910 16, 1603-1618, https://doi.org/10.5194/acp-16-1603-2016, 2016.
- Martin, L. R., and Hill, M. W.: The iron catalyzed oxidation of sulfur: reconciliation of the literature rates, Atmos.
 Environ., 21, 1487-1490, https://doi.org/10.1016/0004-6981(67)90100-X, 1987.
- 913 Martin, L. R., Hill, M. W., Tai, A. F., and Good, T. W.: The iron catalyzed oxidation of sulfur (IV) in aqueous
- solution: differing effects of organics at high and low pH, J. Geophs. Res., 96, 3085-3097,
- 915 https://doi.org/10.1029/90JD02611, 1991.
- 916 Masiol M., Squizzato S., Formenton G., Md Badiuzzaman K., Hopke P.K., Nenes A., Pandis S.N., Tositti L.,
- 917 Benetello F., Visin F., and Pavoni B.: Hybrid multiple-site mass closure and source apportionment of PM_{2.5} and
- 918 aerosol acidity at major cities in the Po Valley, Sci. Total. Environ., 704, 135287,
- 919 https://doi.org/10.1016/j.scitotenv.2019.135287, 2020.
- McArdle, J.V., and Hoffmann, M.R.: Kinetics and mechanism of the oxidation of aquated sulfur dioxide by hydrogen peroxide at low pH, J. Phys. Chem., 87, 5425-5429, https://doi.org/10.1021/j150644a024, 1983.
- Meinrath, G., and Spitzer, P.: Uncertainties in Determination of pH, Microchim. Acta, 135(3-4):155,
 https://doi.org/10.1007/s006040070, 2000.
- Menon, S., Saxena, V., and Logie, B.: Chemical heterogeneity across cloud droplet size spectra in continental and
- 925 marine air masses, J. Appl. Metorol., 39(6), 887-903, https://doi.org/10.1175/1520-
- 926 0450(2000)039<0887:CHACDS>2.0.CO2, 2000.
- Michna, P., Werner, R. A., and Eugster, W.: Does fog chemistry in Switzerland change with altitude?, Atmos. Res.,
 151, 31-44, https://doi.org/10.1016/j.atmosres.2014.02.008, 2015.
- Miller, D. R., Byrd, J. E., and Perona, M. J.: The source of Pb, Cu, and Zn in fogwater, Wat. Air Soil Pol., 32(3-4),
 329-340, https://doi.org/10.1007/BF00225119, 1987.

- 931 Miller, E. C., Panek, J. A., Friedland, A. J., Kadlecek, J., and Mohnen, V. A.: Atmospheric deposition to a high-
- elevation forest at Whiteface Mountain, New York, USA, Tellus B, 45(3), 209-227,
- 933 https://doi.org/10.3402/tellusb.v45i3.15725, 1993.
- Millet, M., A. Sanusi, and H. Wortham: Chemical composition of fogwater in an urban area: Strasbourg (France),
 Environ. Pollut., 94(3), 345-354, https://doi.org/10.1016/S0269-7491(96)00064-4, 1996.
- 936 Millet, M., Wortham, H., Sanusi, A., and Mirabel, P.: Low molecular weight organic acids in fogwater in an urban
- area: Strasbourg (France), Sci. Total. Environ., 206(1), 57-65, https://doi.org/10.1016/S0048-9697(97)00216-7,
 1997.
- Minami, Y., and Ishizaka, Y.: Evaluation of chemical composition in fog water near the summit of a high mountain
 in Japan, Atmos. Environ., 30(19), 3363-3376, https://doi.org/10.1016/1352-2310(96)00029-5, 1996.
- Minghua, L. D. C., and Demin, S.: Study on air pollution and composition of fog in Shanghai, Shanghai
 Environmental Science, 3, 005, 1999.
- Mo, T.-L., Xu, S.-Z., and Chen, F.: The acidity and chemical composition of fog-water over Zhoushan region,
 Shanghai Environmental Science, 8(8), 22-26, 1989.
- Möller, D.: 15 Jahre Wolkenforschung auf dem Brocken ein Beitrag zur chemischen, Klimatologie. Rep., available
 at: https://lau.sachsen-
- 947 anhalt.de/fileadmin/Bibliothek/Politik_und_Verwaltung/MLU/LAU/Wir_ueber_uns/Veranstaltungen/Archiv/2006/
- Dateien/Brocken_Magdeburg_Vortrag_08.11.07.pdf, 2007.
- Mohnen, V. A., and Kadlecek, J. A.: Cloud chemistry research at Whiteface Mountain, Tellus B, 41(1), 79-91,
 https://doi.org/10.3402/tellusb.v41i1.15052, 1989.
- Mohnen, V. A., and Vong, R. J.: A climatology of cloud chemistry for the eastern United States derived from the mountain cloud chemistry project, Environ. Rev., 1(1), 38-54, https://doi.org/10.1139/a93-005, 1993.
- 953 Moore, K. F., Sherman, D. E., Reilly, J. E., and Collett, J. L.: Drop size-dependent chemical composition in clouds
- and fogs. Part I. Observations, Atmos. Environ., 38(10), 1389-1402,
- 955 https://doi.org/10.1016/j.atmosenv.2003.12.013, 2004.
- Mrose, H.: Measurements of pH, and chemical analyses of rain-, snow-, and fog-water, Tellus, 18(2-3), 266-270,
 https://doi.org/10.3402/tellusa.v18i2-3.9626, 1966.
- Muir, P. S.: Fogwater chemistry in a wood-burning community, Western Oregon, J. Air Waste Manage., 41(1), 3238, https://doi.org/10.1080/10473289.1991.10466822, 1991.
- 960 Muir, P. S., Wade, K. A., Carter, B. H., Armentano, T. V., and Pribush, R. A.: Fog chemistry at an urban
- midwestern site, Journal of the Air Pollution Control Association, 36(12), 1359-1361, available at: http://pascal francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8211686, 1986.
- Munger, J. W.: The Chemical Composition of Fogs and Clouds in Southern California, Atmos. Res., 64, 29-4,
 available at: https://thesis.library.caltech.edu/629/1/Munger jw 1989.pdf, 1989.
- Munger, J. W., Jacob, D. J., Waldman, J. M., and Hoffmann, M. R.: Fogwater chemistry in an urban atmosphere, J.
 Geophs. Res., 88(C9), 5109-5121, https://doi.org/10.1029/JC088iC09p05109, 1983.
- Munger, J. W., Collett Jr., J., Daube Jr., B., and Hoffmann, M. R.: Fogwater chemistry at Riverside, California,
 Atmos. Environ. 24(2), 185-205, https://doi.org/10.1016/0957-1272(90)90025-P, 1990.
- 969 Munzert, K.: Chemistry of cloud water and precipitation at an Alpine mountain station, in Acid Deposition at High
- 970 Elevation Sites, edited, 395-401, Springer, https://doi.org/10.1007/978-94-009-3079-7_21, 1988.

- 971 Murphy, J., Gregoire, P. K., Tevlin, A. G., Wentworth, G. R., Ellis, R. A., Markovic, M. Z., and Vandenboer, T.:
- 972 Observational constraints on particle acidity using measurements and modelling of particles and gases, Faraday
- 973 Discuss., https://doi.org/10.1039/C7FD00086C, 2017.
- 974 Murray, G. L., Kimball, K. D., Hill, L. B., Hislop, J. E., and Weathers, K. C.: Long-term trends in cloud and rain
- chemistry on Mount Washington, New Hampshire, Water Air Soil Poll., 224(9), 1653,
- 976 https://doi.org/10.1007/s11270-013-1653-7, 2013.
- 977 Nah, T., Guo, H., Sullivan, A. P., Chen, Y., Tanner, D. J., Nenes, A., Russell, A., Ng, N. L., Huey, L. G., and
- 978 Weber, R. J.: Characterization of aerosol composition, aerosol acidity, and organic acid partitioning at an
- agriculturally intensive rural southeastern US site, Atmos. Chem. Phys., 18, 11471-11491,
- 980 https://doi.org/10.5194/acp-18-11471-2018, 2018.
- Nam, J.-C., Oh, S.-N., Choi, J.-C., Kim, J., and Chun, Y.: Monitoring of acid rain over Korean Peninsula, Wat. Air
 Soil Pol., 130(1-4), 433-438, https://doi.org/10.1023/A:1013897604712, 2001.
- Nath, S., and Yadav, S.: A Comparative Study on Fog and Dew Water Chemistry at New Delhi, India, Aerosol
 Aerosol Air Qual. Res., 18(1), 26-36, https://doi.org/10.4209/aaqr.2017.01.0033, 2018.
- 985 Nieberding, F., Breuer, B., Braeckevelt, E., Klemm, O., Song, Q., and Zhang, Y.: Fog Water Chemical Composition
- on Ailaoshan Mountain, Yunnan Province, SW China, Aerosol Air Qual. Res., 18(1), 37-48,
- 987 https://doi.org/10.4209/aaqr.2017.01.0060, 2018.
- Ogawa, N., Kikuchi, R., Okamura, T., Adzuhata, T., Kajikawa, M., and Ozeki, T.: Cloud droplet size dependence of
 the concentrations of various ions in cloud water at a mountain ridge in northern Japan, Atmos. Res., 51, 77-80,
 https://doi.org/10.1016/S0169-8095(99)00002-2, 1999.
- Ogren, J., and Rodhe, H.: Measurements of the chemical composition of cloudwater at a clean air site in central
 Scandinavia, Tellus B, 38(3-4), 190-196, https://doi.org/10.1111/j.1600-0889.1986.tb00186.x, 1986.
- Okita, T.: Concentration of sulfate and other inorganic materials in fog and cloud water and in aerosol, Journal of
 the Meteorological Society of Japan, 46(2), 120-127, https://doi.org/10.2151/jmsj1965.46.2_120, 1968.
- Olivier, J.: Fog-water harvesting along the West Coast of South Africa: A feasibility study, Water SA, 28(4), 349360, http://dx.doi.org/10.4314/wsa.v28i4.4908, 2002.
- Olivier, J., and De Rautenbach, C.: The implementation of fog water collection systems in South Africa, Atmos.
 Res., 64(1-4), 227-238, https://doi.org/10.1016/S0169-8095(02)00094-7, 2002.
- Parungo, F., Nagamoto, C., Nolt, I., Dias, M. and Nickerson, E.: Chemical analysis of cloud water collected over
 Hawaii, J. Geophs. Res., 87(C11), 8805-8810, https://doi.org/10.1029/JC087iC11p08805, 1982.
- Pathak, R. K., Yao, X. H., Lau, A. K. H., and Chan, C. K.: Acidity and concentrations of ionic species of PM2.5 in
 Hong Kong, Atmos. Environ., 37, 1113-1124, https://doi.org/10.1016/S1352-2310(02)00958-5, 2003.
- Pathak, R. K., Yao, X., and Chan, C. K.: Sampling Artifacts of Acidity and Ionic Species in PM 2.5, Environ. Sci.
 Technol., 38, 254-259, https://doi.org/10.1021/es0342244, 2004.
- 1005 Pathak, R. K., Wu, W. S., and Wang, T.: Summertime PM 2.5 ionic species in four major cities of China: nitrate
- 1006 formation in an ammonia-deficient atmosphere, Atmos. Chem. Phys., 9, 1711-1722, https://doi.org/10.5194/acp-9-1007 1711-2009, 2009.
- 1008 Plessow, K., Acker, K., Heinrichs, H., and Moller, D.: Time study of trace elements and major ions during two
- 1009 cloud events at the Mt. Brocken, Atmos. Environ., 35(2), 367-378, https://doi.org/10.1016/s1352-2310(00)00134-5,
 1010 2001.

- Post, D., Bridgman, H. A., and Ayers, G.: Fog and rainwater composition in rural SE Australia, J. Atmos. Chem.,
 13(1), 83-95, https://doi.org/10.1007/BF00048102, 1991.
- 1013 Pszenny, A. A. P., Moldanová, J., Keene, W. C., Sander, R., Maben, J. R., Martinez, M., Crutzen, P. J., Perner, D.,
- and Prinn, R. G.: Halogen cycling and aerosol pH in the Hawaiian marine boundary layer, Atmos. Chem. Phys., 4,
 147-168, https://doi.org/10.5194/acp-4-147-2004, 2004.
- Pye, H. O. T., Zuend, A., Fry, J. L., Isaacman-vanwertz, and G., Capps, S. L.: Coupling of organic and inorganic
 aerosol systems and the effect on gas particle partitioning in the southeastern US, Atmos. Chem. Phys., 357-370,
 https://doi.org/10.5194/acp-18-357-2018, 2018.
- 1019 Qian, G.-W., Ishizaka, Y., Minami, Y., Kurahashi, Y., Tjandradewi, B. I., and Takenaka, C.: Transformation of
- 1020 individual aerosol particles in acidic fog evolution, J. Meteorol. Soc. Jap., 70(2), 711-722,
- 1021 https://doi.org/10.2151/jmsj1965.70.2_711, 1992.
- Radojevic, M., Tyler, B. J., Wicks, A. J., Gay, M. J., and Choularton, T. W.: Field studies of the SO2 aqueous S(IV)
 equilibrium in clouds, Atmos. Environ., 24(2), 323-328, https://doi.org/10.1016/0960-1686(90)90112-z, 1990.
- 1024 Raja, S., Ravikrishna, R., Kommalapati, R., and Valsaraj, K.: Monitoring of fogwater chemistry in the gulf coast
- 1025 urban industrial corridor: Baton Rouge (Louisiana), Environ. Monit. Assess., 110(1-3), 99-120, https://doi.org/10.1007/s10661.005.6281.2.2005
- 1026 https://doi.org/10.1007/s10661-005-6281-2, 2005.
- 1027 Raja, S., Raghunathan, R., Yu, X.-Y., Lee, T., J. Chen, T., Kommalapati, R. R., Murugesan, K., Shen, X.,
- Qingzhong, Y., and Valsaraj, K. T.: Fog chemistry in the Texas–Louisiana gulf coast corridor, Atmos. Environ.,
 42(9), 2048-2061, https://doi.org/10.1016/j.atmosenv.2007.12.004, 2008.
- 1030 Rao, X., and Collett, J. L. J.: Behavior of S (IV) and formaldehyde in a chemically heterogeneous cloud, Environ.
- 1031 Sci. Technol., 29(4), 1023-1031, 1023-31, https://doi.org/10.1021/es00004a024, 1995.
- Rao, X., and Collett, J. L.: The drop size-dependence of iron and manganese concentrations in clouds and fogs:
 Implications for sulfate production, J. Atmos. Chem., 30(2), 273-289, https://doi.org/10.1023/A:1006044614291,
 1998.
- 1035 Rattigan, O., Reilly, J., Judd, C., Moore, K. F., Das, M., Sherman, D. E., Dutkiewicz, V. A., Collett, J. L., and
- Husain, L.: Sulfur dioxide oxidation in clouds at Whiteface Mountain as a function of drop size, J. Geophs. Res.,
 106(D15), 17347-17358, https://doi.org/10.1029/2000JD900807, 2001.
- 1038 Reilly, J. E., Rattigan, O. V., Moore, K. F., Judd, C., Sherman, D. E., Dutkiewicz, V. A., Kreidenweis, S. M.,
- 1039 Husain, L., and Collett Jr., J. L.: Drop size-dependent S (IV) oxidation in chemically heterogeneous radiation fogs,
- 1040 Atmos. Environ., 35(33), 5717-5728, https://doi.org/10.1016/S1352-2310(01)00373-9, 2001.
- 1041 Reisinger, L. M., and Imhoff, R. E.: Analysis of summertime cloud water measurements made in a southern
 1042 Appalachian spruce forest, Wat. Air Soil Pol., 45(1-2), 1-15, https://doi.org/10.1007/BF00208573, 1989.
- Reyes-Rodríguez, G. J., Gioda, A., Mayol-Bracero, O. L., and Collett Jr., J.: Organic carbon, total nitrogen, and water-soluble ions in clouds from a tropical montane cloud forest in Puerto Rico, Atmos. Environ., 43(27), 4171-
- 1045 4177, https://doi.org/10.1016/j.atmosenv.2009.05.049, 2009.
- Richards, L. W.: Airborne chemical measurements in nighttime stratus clouds in the Los Angeles Basin, Atmos.
 Environ., 29(1), 27-46, https://doi.org/10.1016/1352-2310(94)00218-A, 1995.
- 1048 Richards, L., Anderson, J., Blumenthal, D., McDonald, J., Kok, G., and Lazrus, A.: Hydrogen peroxide and sulfur
- 1049 (IV) in Los Angeles cloud water, Atmos. Environ. (1967), 17(4), 911-914, https://doi.org/10.1016/0004-1050 6981(83)90458-4, 1983.
- Sagebiel, J. C., and Seiber, J. N.: Studies on the occurrence and distribution of wood smoke marker compounds in
 foggy atmospheres, Environ. Toxicol. Chem., 12(5), 813-822, https://doi.org/10.1002/etc.5620120504, 1993.

- 1053 Salem, T. A., Omar, M., and El Gammal, H. A. A.: Evaluation of fog and rain water collected at Delta Barrage,
- 1054 Egypt as a new resource for irrigated agriculture, J. Afr. Earth Sci., 135, 34-40,
- 1055 https://doi.org/10.1016/j.jafrearsci.2017.08.012, 2017.
- Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399-1057
 4981, https://doi.org/10.5194/acp-15-4399-2015, 2015.
- Sanhueza, E., Santana, M., and Hermoso, M.: Gas-and aqueous-phase formic and acetic acids at a tropical cloud
 forest site, Atmos. Environ., 26(8), 1421-1426, https://doi.org/10.1016/0960-1686(92)90127-7, 1992.
- 1060 Sasakawa, M., and Uematsu, M.: Chemical composition of aerosol, sea fog, and rainwater in the marine boundary
- 1061 layer of the northwestern North Pacific and its marginal seas, J. Geophs. Res., 107(D24),
- 1062 https://doi.org/10.1029/2001JD001004, 2002.
- Sasakawa, M., and Uematsu, M.: Relative contribution of chemical composition to acidification of sea fog (stratus) over the northern North Pacific and its marginal seas, Atmos. Environ., 39(7), 1357-1362,
- 1065 https://doi.org/10.1016/j.atmosenv.2004.11.039, 2005.
- Saxena, V., and Lin, N.-H.: Cloud chemistry measurements and estimates of acidic deposition on an above
 cloudbase coniferous forest, Atmos. Environ., 24(2), 329-352, https://doi.org/10.1016/0960-1686(90)90113-2, 1990.
- Saxena, V., Ruggiero, F., and Parungo, F.: Airborne measurements of the Antarctic cloud water acidity, Antarct. J.
 US, 20, 201-203, 1985.
- Schemenauer, R. S.: Acidic deposition to forests: The 1985 chemistry of high elevation fog (CHEF) project, Atmos.
 Ocean, 24(4), 303-328, https://doi.org/10.1080/07055900.1986.9649254, 1986.
- Schemenauer, R. S., and Cereceda, P.: Monsoon cloudwater chemistry on the Arabian Peninsula, Atmos. Environ.,
 26(9), 1583-1587, https://doi.org/10.1016/0960-1686(92)90058-S, 1992a.
- Schemenauer, R. S., and Cereceda, P.: The quality of fog water collected for domestic and agricultural use in Chile,
 J. Appl. Metorol., 31(3), 275-290, https://doi.org/10.1175/1520-0450(1992)031<0275:TQOFWC>2.0.CO;2, 1992b.
- Schemenauer, R. S., Banic, C. M., and Urquizo, N.: High elevation fog and precipitation chemistry in southern
 Quebec, Canada, Atmos. Environ., 29(17), 2235-2252, https://doi.org/10.1016/1352-2310(95)00153-P, 1995.
- Schmitt, G.: The temporal distribution of trace element concentrations in fogwater during individual fog events, in:
 Atmospheric pollutants in forest areas, edited, 129-141, Springer, https://doi.org/10.1007/978-94-009-4736-8_11,
 1986.
- 1081 Schmitt, G.: Comparison of wet deposition inputs via rain and fog interception at a high elevated forest site, in:
- Mechanisms and Effects of Pollutant-Transfer into Forests, edited, 213-220, Springer, https://doi.org/10.1007/978 94-009-1023-2 24, 1989.
- Schomburg, C. J., Glotfelty, D. E., and Seiber, J. N.: Pesticide occurrence and distribution in fog collected near
 Monterey, California, Environ. Sci. Technol., 25(1), 155-160, https://doi.org/10.1021/es00013a018, 1991.
- 1086 Schrimpff, E.: Waldsterben infolge hoher Schadstoffkonzentrationen im Nebel, Staub Reinhalt Luft, 43, 240, 1983.
- 1087 Schunk, C., Trautwein, P., Hruschka, H., Frost, E., Dodson, L., Derhem, A., Bargach, J., and Menzel, A.: Testing
- 1088 Water Yield, Efficiency of Different Meshes and Water Quality with a Novel Fog Collector for High Wind Speeds,
- 1089 Aerosol Air Qual. Res., 18(1), 240-253, https://doi.org/10.4209/aaqr.2016.12.0528,
- 1090 https://doi.org/10.4209/aaqr.2016.12.0528, 2018.
- 1091 Scott, B., and Laulainen, N.: On the concentration of sulfate in precipitation, J. Appl. Metorol., 18(2), 138-147,
- 1092 https://doi.org/10.1175/1520-0450(1979)018<0138:OTCOSI>2.0.CO;2, 1979.

- 1093 Scott, W.: The pH of cloud water and the production of sulfate, Atmos. Environ., 12(4), 917-921,
- 1094 https://doi.org/10.1016/0004-6981(78)90030-6, 1978.
- 1095 Sedlak, D. L., Hoigne, J., David, M. M., Colvile, R. N., Seyffer, E., Acker, K., Wiepercht, W., Lind, J. A., and
- Fuzzi, S.: The cloudwater chemistry of iron and copper at Great Dun Fell, UK, Atmos. Environ., 31(16), 2515-2526,
 https://doi.org/10.1016/s1352-2310(96)00080-5, 1997.
- 1098 Shah, V., Jaegl, L., Thornton, J. A., Lopez-Hilfiker, F. D., Lee, B. H., Schroder, J. C., Campuzano-Jost, P., Jimenez,
- 1099 J. L., and Guo, H., Sullivan, A. P., Weber, R. J., Green, J. R., Fiddler, M. N., Bililign, S., Campos, T. L., Stell, M.,
- 1100 Weinheimer, A. J., Montzka, D. D., and Brown, S. S.: Chemical feedbacks weaken the wintertime response of
- 1101 particulate sulfate and nitrate to emissions reductions over the eastern United States, Proceedings of the National
- 1102 Academy of Sciences, 115, 32, https://doi.org/10.1073/pnas.1803295115, 8110-8115, 2018.
- 1103 Shao, J., Chen, Q., Wang, Y., Lu, X., He, P., Sun, Y., Shah, V., Martin, R. V., Philip, S., Song, S., Zhao, Y., Xie, Z.,
- 1104 Zhang, L., and Alexander, B.: Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze
- 1105 events: air quality model assessment using observations of sulfate oxygen isotopes in Beijing, Atmos. Chem. Phys.,
- 1106 19, 6107-6123, https://doi.org/10.5194/acp-19-6107-2019, 2019.
- 1107 Shen, X., Lee, T., Guo, J., Wang, X., Li, P., Xu, P., Wang, Y., Ren, Y., Wang, W., and Wang, T.: Aqueous phase
- 1108 sulfate production in clouds in eastern China, Atmos. Environ., 62, 502-511,
- 1109 https://doi.org/10.1016/j.atmosenv.2012.07.079, 2012.
- Shen, Z., Wu, Y., Huang, M., Xiao, H., and Lei, H.: Measurement and research on cloudwater over severe acid rain
 areas of China, Chinese Sci. Bull., 41(20), 1726-1729, 1996.
- 1112 Shi, G., Xu, J., Peng, X., Sun, R., Chen, K., Tian, Y., Guan, X., Feng, Y., Yu, H., Nenes, A., and Russell, A. G.: pH
- 1113 of Aerosols in a Polluted Atmosphere: Source Contributions to Highly Acidic Aerosol, Environ. Sci. Technol.,
- 1114 https://doi.org/10.1021/acs.est.6b05736, 2017.
- 1115 Shi, X., Nenes, A., Xiao, Z., Song, S., Yu, H., Shi, G., Zhao, Q., Chen, K., Feng, Y., and Russell, A. G.: High-
- resolution data sets unravel the effects of sources and meteorological conditions on nitrate and its gas-particle
 Partitioning, Environ. Sci. Technol., 53, 3048-3057, https://doi.org/10.1021/acs.est.8b06524, 2019.
- 1118 Siefert, R. L., Johansen, A. M., Hoffmann, M. R., and Pehkonen, S. O.: Measurements of trace metal (Fe, Cu, Mn,
- 1119 Cr) oxidation states in fog and stratus clouds, J. Air Waste Manage., 48(2), 128-143,
- 1120 https://doi.org/10.1080/10473289.1998.10463659, 1998.
- 1121 Simon, S., Klemm, O., El-Madany, T., Walk, J., Amelung, K., Lin, P.-H., Chang, S.-C., Lin, N.-H., Engling, G., and
- Hsu, S.-C.: Chemical composition of fog water at four sites in Taiwan, Aerosol Air Qual. Res., 16, 618-631,
 https://doi.org/10.4209/aaqr.2015.03.0154, 2016.
- Skybova, M.: Chemical composition of fog/cloud and rain water in the Beskydy Mountains-Czech Republic, Fresen.
 Environ. Bull., 15(5), 448-451, available at: https://is.muni.cz/th/avk3s/Horizontalni_depozice.pdf, 2006.
- 1126 Song, S., Gao, M., Xu, W., Shao, J., Shi, G., Wang, S., and Wang, Y.: Fine-particle pH for Beijing winter haze as
- 1127 inferred from different thermodynamic equilibrium models, Atmos. Chem. Phys., 18, 7423-7438,
- 1128 https://doi.org/10.5194/acp-18-7423-2018, 2018.
- 1129 Squizzato, S., Masiol, M., Brunelli, A., Pistollato, S., Tarabotti, E., Rampazzo, G., and Pavoni, B.: Factors
- determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy), Atmos. Chem.
 Phys., 13, 1927-1939, https://doi.org/10.5194/acp-13-1927-2013, 2013.
- Straub, D. J.: Radiation fog chemical composition and its temporal trend over an eight year period, Atmos. Environ.,
 148, 49-61, https://doi.org/10.1016/j.atmosenv.2016.10.031, 2017.
- 1134 Straub, D. J., Lee, T., and Collett, J. L.: Chemical composition of marine stratocumulus clouds over the eastern
- 1135 Pacific Ocean, J. Geophs. Res., 112(D4), https://doi.org/10.1029/2006JD007439, 2007.

- Straub, D. J., Hutchings, J. W., and Herckes, P.: Measurements of fog composition at a rural site, Atmos. Environ.,
 47, 195-205, https://doi.org/10.1016/j.atmosenv.2011.11.014, 2012.
- 1138 Sun, M., Wang, Y., Wang, T., Fan, S., Wang, W., Li, P., Guo, J., and Li, Y.: Cloud and the corresponding
- precipitation chemistry in south China: Water-soluble components and pollution transport, J. Geophs. Res.,
 1140 115(D22), https://doi.org/10.1029/2010JD014315, 2010.
- 1141 Tan, T., Hu, M., Li, M., Guo, Q., Wu, Y., Fang, X., Gu, F., Wang, Y., and Wu, Z.: New insight into PM 2.5
- pollution patterns in Beijing based on one-year measurement of chemical compositions, Sci. Total. Environ., 621,
 734-743, https://doi.org/10.1016/j.scitotenv.2017.11.208, 2018.
- Tang, L.-L., Niu, S.-J., Fan, S.-X., Xu, X.-F., Jin, S.-H., and Xu, J.: Air pollution and mercury characteristic of fog
 water on fog day in Nanjing suburban, Environ. Chem., 27(1), 105-109, 2008.
- 1146 Tao, Y., and Murphy, J. G.: The sensitivity of PM2.5 acidity to meteorological parameters and chemical
- composition changes: 10-year records from six Canadian monitoring sites, Atmos. Chem. Phys., 19, 9309-9320,
 https://doi.org/10.5194/acp-19-9309-2019, 2019.
- 1149 Thalmann, E., Burkard, R., Wrzesinsky, T., Eugster, W., and Klemm, O.: Ion fluxes from fog and rain to an
- 1150 agricultural and a forest ecosystem in Europe, Atmos. Res., 64(1-4), 147-158, https://doi.org/10.1016/s0169-
- 1151 8095(02)00087-x, 2002.
- Tian, S., Pan, Y., and Wang, Y.: Ion balance and acidity of size-segregated particles during haze episodes in urban
 Beijing, Atmos. Res., 201, 159-167, https://doi.org/10.1016/j.atmosres.2017.10.016, 2018.
- Trautner, F., Reischl, A., and Hutzinger, O.: Nitrierte Phenole in Nebelwasser, Umweltwissensch Schadstoff-Forsch,
 1(3), 10, https://doi.org/10.1007/BF02983902, 1989.
- 1156 Valle-Díaz, C. J., Torres-Delgado, E., Colón-Santos, S. M., Lee, T., Collett Jr., J. L., McDowell, W. H., and Mayol-
- 1157 Bracero, O. L.: Impact of long-range transported African dust on cloud water chemistry at a tropical montane cloud
- 1158 forest in northeastern Puerto Rico, Aerosol Air Qual. Res., 16(3), 653-664,
- 1159 https://doi.org/10.4209/aaqr.2015.05.0320, 2016.
- 1160 van Pinxteren, D., Fomba, K. W., Mertes, S., Müller, K., Spindler, G., Schneider, J., Lee, T., Collett, J. L., and
- 1161 Herrmann, H.: Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and
- droplet size dependence of inorganic ions and dissolved organic carbon, Atmos. Chem. Phys., 16(5), 3185-3205,
- 1163 https://doi.org/10.5194/acp-16-3185-2016, 2016.
- Van Valin, C., Wellman, D., and Stearns, L.: Aerosol and cloudwater properties at whiteface mountain, New York,
 Wat. Air Soil Pol., 34(4), 369-383, https://doi.org/10.1007/BF00282738, 1987.
- 1166 Vasconcellos, P. C., Gonçalves, F. L., Avila, S. G., Censon, V. K., and Bauer, H.: The Chemical Composition of
- Winter Fogs at São Paulo Highway Sites, J. Brazil. Chem. Soc., 29(9), 1951-1958, http://dx.doi.org/10.21577/0103 5053.20180072, 2018.
- Vasilakos, P., Russell, A., Weber, R., and Nenes, A.: Understanding nitrate formation in a world with less sulfate,
 Atmos. Chem. Phys., 18, 12765-12775, https://doi.org/10.5194/acp-18-12765-2018, 2018.
- 1171 Verhoeven, W., Herrmann, R., Eiden, R., and Klemm, O.: A comparison of the chemical composition of fog and
- rainwater collected in the Fichtelgebirge, Federal Republic of Germany, and from the South Island of New Zealand, Theor. Appl. Climatol., 38(4), 210-221, https://doi.org/10.1007/BF00867414, 1987.
- 1174 Vieira-Filho, M., Pedrotti, J. J., and Fornaro, A.: Water-soluble ions species of size-resolved aerosols: Implications
- 1175 for the atmospheric acidity in São Paulo megacity, Brazil. Atmos. Res. 181, 281-287,
- 1176 https://doi.org/10.1016/j.atmosres.2016.07.006, 2016.

- Vong, R. J., and Guttorp, P.: Co-occurrence of ozone and acidic cloudwater in high-elevation forests, Environ. Sci.
 Technol., 25(7), 1325-1329, 1991.
- 1179 Vong, R. J., Baker, B. M., Brechtel, F. J., Collier, R. T., Harris, J. M., Kowalski, A. S., McDonald, N. C., and
- 1180 Meinnes, L. M.: Ionic and trace element composition of cloud water collected on the Olympic Peninsula of
- 1181 Washington State, Atmos. Environ., 31(13), 1991-2001, https://doi.org/10.1016/S1352-2310(96)00337-8, 1997.
- 1182 Waldman, J. M., Munger, J. W., Jacob, D. J., and Hoffmann, M. R.: Chemical characterization of stratus cloudwater
- and its role as a vector for pollutant deposition in a Los Angeles pine forest, Tellus B, 37(2), 91-108,
- 1184 https://doi.org/10.3402/tellusb.v37i2.15001, 1985.
- 1185 Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy, M., Hu, M., and Lin, Y.: Persistent sulfate formation from
- London Fog to Chinese haze, Proceedings of the National Academy of Sciences, 113, 13630-13635,
- 1187 https://doi.org/10.1073/pnas.1616540113, 2016.
- 1188 Wang, H., Ding, J., Xu, J., Wen, J., Han, J., Wang, K., Shi, G., Feng, Y., Ivey, C. E., Wang, Y., Nenes, A., Zhao, Q.,
- and Russell, A. G.: Aerosols in an arid environment : The role of aerosol water content, particulate acidity,
 precursors, and relative humidity on secondary inorganic aerosols, Sci. Total. Environ., 646, 564-572,
- 1191 https://doi.org/10.1016/j.scitotenv.2018.07.321, 2019.
- 1192 Wang, X., Chen, J., Sun, J., Li, W., Yang, L., Wen, L., Wang, W., Wang, X., Collett Jr., J. L., and Shi, Y.: Severe
- haze episodes and seriously polluted fog water in Ji'nan, China, Sci. Total. Environ., 493, 133-137,
 https://doi.org/10.1016/j.scitotenv.2014.05.135, 2014.
- 1195 Wang, Y., Guo, J., Wang, T., Ding, A., Gao, J., Zhou, Y., Collett Jr., J. L., and Wang, W.: Influence of regional
- pollution and sandstorms on the chemical composition of cloud/fog at the summit of Mt. Taishan in northern China,
 Atmos. Res., 99(3-4), 434-442, https://doi.org/10.1016/j.atmosres.2010.11.010, 2011.
- Wang, Y. L., Zhang, J. W., Marcotte, A. R., Karl, M., Dye, C., and Herckes, P.: Fog chemistry at three sites in
 Norway, Atmos. Res., 151, 72-81, https://doi.org/10.1016/j.atmosres.2014.04.016, 2015.
- Watanabe, K., Ishizaka, Y., and Takenaka, C.: Chemical composition of fog water near the summit of Mt. Norikura
 in Japan, J. Meterol. Soc. Jpn., 77(5), 997-1006, https://doi.org/10.2151/jmsj1965.77.5_997, 1999.
- Watanabe, K., Ishizaka, Y., Minami, Y., and Yoshida, K.: Peroxide concentrations in fog water at mountainous sites
 in Japan, in: Acid Rain 2000, edited, 1559-1564, Springer, https://doi.org/10.1007/978-94-007-0810-5_107, 2001a.
- Watanabe, K., Ishizaka, Y., and Takenaka, C.: Chemical characteristics of cloud water over the Japan Sea and the Northwestern Pacific Ocean near the central part of Japan: airborne measurements, Atmos. Environ., 35(4), 645-
- 1206 655, https://doi.org/10.1016/S1352-2310(00)00358-7, 2001b.
- 1207 Watanabe, K., Takebe, Y., Sode, N., Igarashi, Y., Takahashi, H., and Dokiya, Y.: Fog and rain water chemistry at
- 1208 Mt. Fuji: A case study during the September 2002 campaign, Atmos. Res., 82(3-4), 652-662,
- 1209 https://doi.org/10.1016/j.atmosres.2006.02.021, 2006.
- 1210 Watanabe, K., Honoki, H., Iwai, A., Tomatsu, A., Noritake, K., Miyashita, N., Yamada, K., Yamada, H.,
- 1211 Kawamura, H., and Aoki, K.: Chemical characteristics of fog water at Mt. Tateyama, near the coast of the Japan Sea
- 1212 in central Japan, Water Air Soil Poll., 211(1-4), 379-393, https://doi.org/10.1007/s11270-009-0307-2, 2010.
- 1213 Watanabe, K., Honoki, H., Iwama, S., Iwatake, K., Mori, S., Nishimoto, D., Komori, S., Saito, Y., Yamada, H., and
- 1214 Uehara, Y.: Chemical composition of fog water at Mt. Tateyama near the coast of the Japan Sea in central Japan,
- 1215 Erdkunde, 233-245, https://doi.org/10.2307/23069696, 2011.
- 1216 Weathers, K. C., and Likens, G. E.: Clouds in southern Chile: an important source of nitrogen to nitrogen-limited 1217 ecosystems?, Environ. Sci. Technol., 31(1), 210-213, https://doi.org/10.1021/es9603416, 1996.

- 1218 Weathers, K. C., Likens, G. E., Bormann, F. H., Eaton, J. S., Bowden, W. B., Andersen, J. L., Cass, D. A.,
- Galloway, J. N., Keene, W. C., and Kimball, K. D.: A regional acidic cloud/fog water event in the eastern United
 States, Nature, 319(6055), 657, https://doi.org/10.1038/319657a0, 1986.
- 1221 Weathers, K. C., Likens, G. E., Bormann, F. H., Bicknell, S. H., Bormann, B. T., Daube, B. C., Eaton, J. S.,
- 1222 Galloway, N., and Keene, W. C.: Cloudwater chemistry from ten sites in North America, Environ. Sci. Technol.,
- 1223 22(9), 1018-1026, https://doi.org/10.1021/es00174a004 1988.
- Weber, R. J., Guo, H., Russell, A. G., and Nenes, A.: High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years., Nat. Geosci. 9, 282-285, https://doi.org/10.1038/ngeo2665, 2016.
- 1226 Wilkinson, J., Reynolds, B., Neal, C., Hill, S., Neal, M., and Harrow, M.: Major, minor and trace element
- 1227 composition of cloudwater and rainwater at Plynlimon, Hydrol. Earth Syst. Sci., 1(3), 557-569,
 1228 https://doi.org/10.5194/hess-1-557-1997, 1997.
- 1229 Winiwarter, W., Puxbaum, H., Fuzzi, S., Facchini, M. C., Orsi, G., Beltz, N., Enderle, K., and Jaeschke, W.:
- Organic acid gas and liquid-phase measurements in Po Valley fall-winter conditions in the presence of fog, Tellus B,
 40(5), 348-357, https://doi.org/10.1111/j.1600-0889.1988.tb00109.x, 1988.
- 1232 Wirgot, N., Vinatier, V., Deguillaume, L., Sancelme, M., and Delort, A. M.: H2O2 modulates the energetic
- 1233 metabolism of the cloud microbiome, Atmos. Chem. Phys., 17(24), 14841-14851, https://doi.org/10.5194/acp-17-1234 14841-2017, 2017.
- Wobrock, W., et al.: The Kleiner-Feldberg cloud experiment 1990 An overview, J. Atmos. Chem., 19(1-2), 3-35,
 https://doi.org/10.1007/bf00696581, 1994.
- Wrzesinsky, T., and Klemm, O.: Summertime fog chemistry at a mountainous site in central Europe, Atmos.
 Environ., 34(9), 1487-1496, https://doi.org/10.1016/s1352-2310(99)00348-9, 2000.
- Wu, D., Deng, X.-J., Ye, Y.-X., and Mao, W.-K.: The study on fog-water chemical composition in Dayaoshan of
 Naniling Mountain, Acta Meteorol. Sin., 62(4), 476-485, https://doi.org/10.11676/qxxb2004.048, 2004.
- Wu, D., Li, F., Deng, X.-J., Bi, X.-Y., Wang, X.-H., and Huang, X.-Y.: Study on the chemical characteristics of
 polluting fog in Guangzhou area in spring, J. Trop. Meteorol., 15(1), 68-72, https://doi.org/10.3969/j.issn.10068775.2009.01.011, 2009.
- 1244 Xu, F., Niu, S.-J., Zhang, Y., Yue, Y.-Y., Zhao, L.-J., and Cai, S.-Q.: Analyses on chemical characteristic of spring 1245 sea fog water on Donghai Island in Zhanjiang, China, China Environmental Science, 31(3), 353-360, 2011.
- 1246 Xu, G., Sherman, D. E., Andrews, E., Moore, K., Straub, D., Hoag, K., and Collett Jr., J.: The influence of chemical
- heterogeneity among cloud drop populations on processing of chemical species in winter clouds, Atmos. Res., 51(2),
 119-140, https://doi.org/10.1016/S0169-8095(99)00004-6, 1999.
- 1249 Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R., Isaacman-vanwertz, G.,
- 1250 Kreisberg, N. M., Knote, C., Olson, K., Koss, A., and Goldstein, A. H.: Effects of anthropogenic emissions on
- aerosol formation from isoprene and monoterpenes in the southeastern United States, Proceedings of the National
- 1252 Academy of Sciences, 112, 37-42, https://doi.org/10.1073/pnas.1417609112, 2015.
- 1253 Xu, L., Middlebrook, A. M., Liao, J., de Gouw, J. A., Guo, H. Y., Weber, R. J., Nenes, A., Lopez-Hilfiker, F. D.,
- 1254 Lee, B. H., Thornton, J. A., Brock, C. A., Neuman, J. A., Nowak, J. B., Pollack, I. B., Welti, A., Graus, M.,
- 1255 Warneke, C., and Ng, N. L.: Enhanced formation of isoprene-derived organic aerosol in sulfur-rich power plant
- 1256 plumes during Southeast Nexus, J. Geophys. Res.-Atmos., 121, 11137-11153,
- 1257 https://doi.org/10.1002/2016jd025156, 2016.
- Xue, H., Goncalves, M. d. L. S., Reutlinger, M., Sigg, L., and Stumm, W.: Copper (I) in fogwater: Determination
 and interactions with sulfite, Environ. Sci. Technol., 25(10), 1716-1722, 1991.

- Xue, J., Lau, A. K. H., and Zhen, J.: A study of acidity on PM 2.5 in Hong Kong using online ionic chemical
 composition measurements, Atmos. Environ. 45, 7081-7088, https://doi.org/10.1016/j.atmosenv.2011.09.040, 2011.
- 1262 Yamaguchi, T., Katata, G., Noguchi, I., Sakai, S., Watanabe, Y., Uematsu, M., and Furutani, H.: Long-term
- 1263 observation of fog chemistry and estimation of fog water and nitrogen input via fog water deposition at a
- mountainous site in Hokkaido, Japan, Atmos. Res., 151, 82-92, https://doi.org/10.1016/j.atmosres.2014.01.023,
 2015.
- 1265 2015

Yang, J., Xie, Y.-J., Shi, C.-E., Liu, D.-Y., Niu, S.-J., and Li, Z.-H.: Ion composition of fog water and its relation to
 air pollutants during winter fog events in Nanjing, China, Pure and Applied Geophysics, 169(5-6),

- 1268 https://doi.org/1037-1052, 10.1007/s00024-011-0342-y, 2012.
- Yao, X., Yan, T., Fang, M., and Chan, C. K.: Comparison of thermodynamic predictions for in situ pH in PM 2.5,
 Atmos. Environ., 40, 2835-2844, https://doi.org/10.1016/j.atmosenv.2006.01.006, 2006.
- Yao, X., Ling, T. Y., Fang, M., Ã, and Chan, C. K.: Size dependence of in situ pH in submicron atmospheric
 particles in Hong Kong, Atmos. Environ., 41, 382-393, https://doi.org/10.1016/j.atmosenv.2006.07.037, 2007.
- 1273 Young, A. H., Keene, W. C., Pszenny, A. A. P., Sander, R., Thornton, J. A., Riedel, T. P., and Maben, J. R.: Phase
- 1274 partitioning of soluble trace gases with size-resolved aerosols in near-surface continental air over northern Colorado,
- 1275 USA, during winter, J. Geophys. Res.-Atmos., 118, 9414-9427, https://doi.org/10.1002/jgrd.50655, 2013.
- 1276 Zapletal, M., Kunak, D., and Chroust, P.: Chemical characterization of rain and fog water in the Cervenohorske
- 1277 sedlo (Hruby Jesenik Mountains, Czech Republic), Water Air Soil Poll., 186(1-4), 85-96,
- 1278 https://doi.org/10.1007/s11270-007-9467-0, 2007.
- 1279 Zellner, R., Herrmann, H., Exner, M., Jacobi, H.-W., Raabe, G. and Reese, A.,: Formation and Reactions of
- Oxidants in the Aqueous Phase, in P. Warneck (ed), Heterogeneous and Liquid Phase Processes, 146 152,
 Springer, Berlin, 1996.
- Zhang, Q., and Anastasio, C.: Chemistry of fog waters in California's Central Valley—Part 3: concentrations and
 speciation of organic and inorganic nitrogen, Atmos. Environ., 35(32), 5629-5643, https://doi.org/10.1016/S1352 2310(01)00337-5, 2001.
- Zhang, Q., Jimenez, J. L., Worsnop, D. R., and Canagaratna, M.: A Case Study of Urban Particle Acidity and Its
 Influence on Secondary Organic Aerosol, Environ. Sci. Technol., 41, 3213-3219, https://doi.org/10.1021/es061812j,
- 1287 2007.
- Zhu, X., Prospero, J. M., Millero, F. J., Savoie, D. L., and Brass, G. W.: The solubility of ferric ion in marine
 mineral aerosol solutions at ambient relative humidities, Mar. Chem., 38, 91-107, https://doi.org/10.1016/03044203(92)90069-M, 1992.
- Zhu, B., Li, Z.-H., Huang, J.-P., Yang, J., Huang, Y.-S., and Huang, Y.-R.: Chemical compositions of the fogs in the
 city and suburban of Xishuang banna, Acta Scientiae Circumstantiae, 20(3), 316-321, https://doi.org/025322468
 (2000)20320316206, 2000.
- Zhu, C., Chen, J., Wang, X., Li, J., Wei, M., Xu, C., Xu, X., Ding, A., and Collett Jr., J. L.: Chemical Composition
 and Bacterial Community in Size-Resolved Cloud Water at the Summit of Mt. Tai, China, Aerosol Air Qual. Res.,
 18(1), 1-14, https://doi.org/10.4209/aaqr.2016.11.0493, 2018.
- Zimmermann, L., and Zimmermann, F.: Fog deposition to Norway Spruce stands at high-elevation sites in the
 Eastern Erzgebirge (Germany), J. Hydrol., 256(3-4), 166-175, https://doi.org/10.1016/s0022-1694(01)00532-7,
 2002.
- 1300Zuend, A.: Modelling the thermodynamics of mixed organic-inorganic aerosols to predict water activities and phase1301separations, PhD thesis, Swiss Federal Institute of Technology in Zurich , https://doi.org/10.3929/ethz-a-005582922,
- 1302 2007.

- 1304 Zuo, Y.: Light-induced oxidation of bisulfite-aldehyde adducts in real fog water, Naturwissenschaften, 81(11), 505-507, https://doi.org/10.1007/BF01132683, 1994.