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Abstract. Acidity, defined as pH, is a central component
of aqueous chemistry. In the atmosphere, the acidity of
condensed phases (aerosol particles, cloud water, and fog
droplets) governs the phase partitioning of semivolatile gases
such as HNO3, NH3, HCl, and organic acids and bases
as well as chemical reaction rates. It has implications for
the atmospheric lifetime of pollutants, deposition, and hu-
man health. Despite its fundamental role in atmospheric pro-
cesses, only recently has this field seen a growth in the num-
ber of studies on particle acidity. Even with this growth,
many fine-particle pH estimates must be based on thermo-
dynamic model calculations since no operational techniques
exist for direct measurements. Current information indicates
acidic fine particles are ubiquitous, but observationally con-
strained pH estimates are limited in spatial and temporal cov-
erage. Clouds and fogs are also generally acidic, but to a
lesser degree than particles, and have a range of pH that is
quite sensitive to anthropogenic emissions of sulfur and ni-
trogen oxides, as well as ambient ammonia. Historical mea-
surements indicate that cloud and fog droplet pH has changed
in recent decades in response to controls on anthropogenic
emissions, while the limited trend data for aerosol parti-
cles indicate acidity may be relatively constant due to the
semivolatile nature of the key acids and bases and buffer-
ing in particles. This paper reviews and synthesizes the cur-
rent state of knowledge on the acidity of atmospheric con-
densed phases, specifically particles and cloud droplets. It in-
cludes recommendations for estimating acidity and pH, stan-
dard nomenclature, a synthesis of current pH estimates based
on observations, and new model calculations on the local and
global scale.

1 The importance of atmospheric acidity

Human activity and natural processes result in emissions of
sulfur, nitrogen, ammonia, dust, and other compounds that
affect the composition of the Earth’s atmosphere. The acid-
ity of suspended atmospheric media, particles and droplets,
influences many processes that involve the atmosphere and
all aspects of the Earth system (e.g., watersheds, marine
and terrestrial ecosystems) that interface with it (see Fig. 1).
Aerosols (also referred to as particulate matter, PM) and
cloud droplets throughout the atmosphere exhibit a wide
range of acidity, each spanning 5 orders of magnitude or
more in molality units, or 5 units of pH (Fig. 2). Some an-
thropogenic emissions (sulfur dioxide, nitrogen oxides, or-
ganic acids) increase acidity while others (ammonia; non-
volatile cations, NVCs; amines) reduce acidity. The orders-
of-magnitude differences in water content between aerosols
and clouds lead to distinctly different acidity levels in these
media, as well as their response to changes in precursor con-
centrations. The ability of a chemical species to affect par-
ticle or cloud droplet acidity is driven by both its degree of

acidity (or basicity), reflected in the dissociation (or associa-
tion) constant, and by volatility, with less volatile compounds
partitioning to a greater degree into liquid aerosols and cloud
droplets. Semivolatile species, for which significant frac-
tions typically exist in both the gas and condensed phases,
include ammonia (NH3), nitric acid (HNO3), hydrochloric
acid (HCl), and low-molecular-weight organic acids (formic,
acetic, oxalic, malonic, succinic, glutaric, and maleic acids)
and/or bases (e.g., amines). Sulfuric acid (H2SO4), by con-
trast, has extremely low volatility and can be treated as en-
tirely in the condensed phase for most applications. Metal
cations, including those found in dust and sea salt, are also
essentially nonvolatile. The abundance of these various con-
stituents is a function of emission source and atmospheric
processing and ultimately dictates the pH of fine particles
(Figs. 1, 2).

Although aerosol and cloud acidity are distinct in many
ways, aerosol forms in part from cloud evaporation, and so
aerosol composition and acidity may be directly affected by
cloud chemistry. Similarly, cloud droplets and ice crystals
nucleate on preexisting particles, and therefore much of the
material that modulates cloud acidity originates from the pre-
cursor aerosol. Cloud droplets can collide with surfaces re-
sulting in occult deposition (Dollard et al., 1983) or precip-
itation in the form of rain. With these connections in mind,
both aerosol and cloud acidity are important to human health,
ecosystem health and productivity, climate, and environmen-
tal management.

The acidity of atmospheric deposition for dry, wet, and
occult (wind-driven cloud water) pathways is directly af-
fected by aerosol and cloud pH (Fig. 1). Thus, programs
designed to reduce acid rain (e.g., the Acid Rain Program
under Title IV of the 1990 Clean Air Act Amendments in
the US) have had implications for particle and cloud droplet
acidity. In terrestrial ecosystems, direct effects of acid depo-
sition to foliage include leaching of cations, altered stom-
atal function, and changes in wax structure (Cape, 1993).
Acid deposition can exacerbate soil acidification (Binkley
and Richter, 1987), resulting in loss of soil base cations,
leaching of nitrate, and mobilization of aluminum, affecting
terrestrial ecosystem health and the quality of water deliv-
ered to streams and lakes (Driscoll et al., 2007). Apart from
reactive nitrogen, atmospheric deposition is also a significant
source of limiting and trace nutrients such as phosphorus (P),
iron (Fe), and copper (Cu), especially in the remote oceans
(Mahowald et al., 2008; Myriokefalitakis et al., 2018). While
mineral dust is a major source of these nutrients, combus-
tion sources also emit iron, copper and other trace metals
(Reff et al., 2009; Ito et al., 2019). Acid processing of aerosol
prior to deposition may greatly enhance the solubility of all
these compounds, increasing their bioavailability and ecosys-
tem impacts (Meskhidze et al., 2003; Nenes et al., 2011;
Kanakidou et al., 2018). For example, dust aerosols coated by
acidic sulfate and nitrate show increased Fe solubility com-
pared to fresh dust particles, particularly in the fine mode,

Atmos. Chem. Phys., 20, 4809–4888, 2020 www.atmos-chem-phys.net/20/4809/2020/



H. O. T. Pye et al.: The acidity of atmospheric particles and clouds 4811

Figure 1. Sources and receptors of aerosol and cloud droplet acidity. Major primary sources and occurrence in the atmosphere are identified
in bold red text: sea salt, dust, and biomass burning (sources); and aerosols, fog droplets, cloud droplets, and precipitation (occurrence).
Key aerosol processes are indicated by arrows and gray text: nucleation/growth, light scattering, cloud condensation nuclei (CCN) and ice
nuclei (IN) activation, and gas–particle partitioning. Sinks (wet, dry, and occult deposition) are indicated by blue lines and text. The effects
that aerosols have in the atmosphere, and on terrestrial and marine ecosystems and human health, are highlighted in pale yellow boxes.
Approximate pH ranges of aqueous aerosols and droplets, seawater, and terrestrial surface waters are also given.

the deposition of which may promote phytoplankton blooms
in nutrient-limited regions of the oceans (Meskhidze et al.,
2005). The same process occurs for P (e.g., Nenes et al.,
2011; Stockdale et al., 2016); however, the extent to which
particle pH may similarly increase the solubility and amount
of organic forms of nitrogen and phosphorus, a potentially
large source to ecosystems (Jickells et al., 2013), is not well
known (Kanakidou et al., 2018). Deposition of trace nutri-
ents from acid-promoted dissolution into regions of the ocean
where the nutrients are not limiting to biological productiv-
ity may enhance productivity in nutrient-limited regions by
means of long-range transport by ocean currents. Such a re-
distribution of nutrients can have important implications for
the biogeochemistry of the ocean, the oxygenation state, and
the carbon cycle (Ito et al., 2016).

Aerosol acidity is also a governing factor for atmospheric
dry deposition of inorganic reactive nitrogen species, which
is a key nutrient driving primary productivity in terrestrial
and marine ecosystems. The hydrogen ion activity in aque-
ous aerosols affects the partitioning of total nitrate (TNO3 =

HNO3+NO−3 ) and total ammonium (TNH4 = NH3+NH+4 )
between the gas and aerosol phases. Given the much larger
deposition velocity of gases compared to submicrometer
aerosols, pH-mediated partitioning influences the effective
deposition velocity and lifetime of TNO3, TNH4, and to-
tal inorganic N (TNO3+TNH4). Acidity therefore also af-
fects the magnitude and spatial patterns of inorganic N de-
position to terrestrial and aquatic ecosystems. Lower aerosol
pH favors partitioning of TNO3 toward gaseous HNO3 rather
than aerosol NO−3 , thus shortening its lifetime (Weber et al.,
2016). In contrast, TNH4 (NH3+NH+4 ) partitions toward
gaseous NH3 at higher pH. Conditions of aerosol pH that pro-
mote a short residence time and local dry deposition of TNO3
may conversely result in longer-range transport of TNH4 and
a more spatially extensive pattern of deposition and influence
from source regions. The presence of dust and sea salt can in-
fluence not only pH but the size distribution (Lee et al., 2008,
2004) and the resulting deposition velocity of nitrate aerosol
due to higher deposition velocities of coarse-mode compared
to fine-mode particles (Slinn, 1977). Variations in scaveng-
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Figure 2. Characteristics of (a) aerosol and cloud pH drivers and
(b) global distribution of fine-mode aerosol (ground level) and cloud
water pH (column average weighted by liquid water content) from
observations (Sect. 7) and simulations (Sect. 8).

ing efficiency, dependent upon cloud pH, can also affect at-
mospheric lifetimes and spatial deposition patterns of TNH4.
HNO3, due to its strong acidity and solubility, is essentially
partitioned entirely to cloud droplets for typical cloud pH val-
ues (> 2). NH3 also mostly partitions into cloud drops for pH
values below 6, but an appreciable fraction can remain in the
gas phase for higher pH values. Biases in pH in atmospheric
models can therefore influence the amount, speciation, and
location of N deposition, with implications for determining
ecosystem-critical load exceedances for nutrients and acidity
(Bobbink et al., 2010).

PM2.5 is associated with adverse human health effects,
including premature mortality (Di et al., 2017; Lepeule
et al., 2012; Pope et al., 2009; US EPA, 2019). Aerosol
acidity is associated with health effects of air pollution
through its influence on atmospheric processes that affect
the amount and composition of PM2.5 (Fig. 1). The concen-

tration of fine particulate matter (PM2.5) is directly modu-
lated by pH through its effects on gas–particle partitioning,
pH-dependent condensed-phase reactions, and other parti-
cle processes influenced by pH. For example, N2O5 hetero-
geneous hydrolysis significantly affects tropospheric chem-
istry (Dentener and Crutzen, 1993) and depends strongly on
particle composition (Chang et al., 2011), including forma-
tion of organic coatings due to liquid–liquid phase separa-
tion influenced by acidity (see Sect. 6.3 for a discussion of
phase separation in the context of acidity). The strong acid-
ity property of aerosol (Koutrakis et al., 1988) has histori-
cally been associated with adverse health effects (Dockery
et al., 1993, 1996; Thurston et al., 1994; Raizenne et al.,
1996; Spengler et al., 1996; Gwynn et al., 2000; EPA, 2009).
One reason for this could be that aerosol acidity influences
solubilization and the concentrations of toxic forms of trace
species, such as transition and heavy metals, that have been
linked to negative health effects (Kelly and Fussell, 2012;
Lippmann, 2014; Rohr and Wyzga, 2012; Chen and Lipp-
mann, 2009; Frampton et al., 1999). Transition metal ions
(TMIs), such as soluble Cu and Fe from acid dissolution,
contribute significantly to the oxidative potential of particles
(Fang et al., 2017; Pöschl and Shiraiwa, 2015), which has
been linked to cardiorespiratory emergency department vis-
its with a stronger association than PM2.5 mass (Abrams et
al., 2017; Bates et al., 2015). Ye et al. (2018) report a strong
association between soluble Fe, which is modulated by par-
ticle acidity and aerosol water content, and cardiovascular
endpoints. The mechanistic link between acidity, TMI dis-
solution, and health outcomes recently proposed by Fang et
al. (2017) may help explain why sulfate in the ambient atmo-
sphere is associated with adverse health outcomes, in con-
trast to studies that show little role for sulfate in negative
health endpoints (Schlesinger, 2007; Reiss et al., 2007).

Aerosol acidity can affect the gas–particle partitioning of
semivolatile toxic organic pollutants and therefore their en-
vironmental fate and pathways for exposure (Vierke et al.,
2013). Some per- and polyfluoroalkyl substances (PFASs),
including perfluoroalkyl sulfonic acids (PFSAs) and perflu-
oroalkyl carboxylic acids (PFCAs), are strongly acidic and
likely to be at least partially dissociated (ionized) under pH
conditions typical of most atmospheric aerosols (Ahrens et
al., 2012). Once in the particle phase, pollutants are vulner-
able to hydrolysis, which shortens their lifetime in the en-
vironment but may lead to the formation of toxic degrada-
tion products (Tebes-Stevens et al., 2017). Aerosol acidity
was also recently shown to enhance airborne nicotine lev-
els and resulting thirdhand smoke exposure by promoting
volatilization from surfaces (such as clothes) and allowing
distribution throughout a building’s indoor air (DeCarlo et
al., 2018). Similar behavior may be possible for other alka-
loids (Pankow, 2001). Furthermore, aerosol acidity may also
affect particle toxicity on a per mass basis (increase or de-
crease) by influencing organic aerosol composition (Arashiro
et al., 2016; Tuet et al., 2017). Many organic compounds
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that are toxic (e.g., nitrosamines) can also be formed in the
aerosol phase under acidic conditions; at the same time, other
potentially toxic compounds (e.g., organonitrates) may hy-
drolyze under strongly acidic conditions (Rindelaub et al.,
2016a). Even for nontoxic organic aerosol facilitated by acid-
ity, the enhanced (or conversely reduced) formation of in-
ert organic mass in the particle promotes the partitioning (or
evaporation) of toxic species, such as polycyclic aromatic hy-
drocarbons (PAHs) (Liang et al., 1997), from the gas phase
to the particle phase and thereby alters the location of depo-
sition in the respiratory airways. For a highly soluble organic
species, uptake to the aerosol phase can also potentially ex-
tend its atmospheric lifetime by slowing deposition to vege-
tation and ground surfaces.

Since acidity impacts the mass and chemical composition
of atmospheric aerosols, which scatter and absorb radiation
and serve as cloud condensation nuclei (CCN), acidity can
also affect climate. First, particle pH influences, and is re-
lated to, the water uptake properties (hygroscopicity) of par-
ticles, which in turn can modulate both visibility and the ra-
diative balance throughout the atmosphere (the aerosol direct
climate effect). Cloud pH has been linked to the amount and
speciation of aerosol upon evaporation, with important radia-
tive effects (Turnock et al., 2019). Changes in acidity can also
affect the number of chromophores contained within aerosol
(so-called brown carbon) and their efficiency in absorbing
sunlight in the near-UV range (Hinrichs et al., 2016; Teich et
al., 2017; Phillips et al., 2017). Acidity-induced changes in
aerosol affect the ability of particles to act as CCN and con-
tribute to the formation of droplets in warm and mixed-phase
clouds. For example, insoluble particles, such as dust, facil-
itate the production of ice crystals in mixed-phase and cold
clouds (Seinfeld and Pandis, 2016); acidification of these par-
ticles can modify the active sites that ice is formed upon
and thereby affect the distribution of ice and liquid water
throughout the atmosphere (Sullivan et al., 2010; Reitz et al.,
2011). The distribution of droplets and ice also may in turn
regulate the riming efficiency in mixed-phase clouds (Prup-
pacher and Klett, 2010) and distribution of clouds through-
out the atmosphere. Changes in cloud distribution strongly
modulate Earth’s radiative balance and the hydrological cy-
cle (IPCC, 2007).

Atmospheric acidity also plays an important role in new-
particle formation, which is thought to contribute up to 50 %
of the CCN concentrations in the atmosphere, thus acting as
a climate regulator (Gordon et al., 2017). Sulfuric acid likely
plays a critical role in the formation of stable clusters upon
which new particles are formed (Weber et al., 1997, 1998),
while bases such as amines and NH3 (Jen et al., 2016) can fa-
cilitate the stabilization and growth of such clusters. Uptake
of organic acids through acid–base chemistry (Zhang et al.,
2004; Hodshire et al., 2016) and acid-mediated secondary or-
ganic aerosol (SOA) formation (e.g., McNeill, 2015) impact
the aerosol size distribution with implications for CCN con-
centrations, cloud droplet formation, and climate.

Understanding particle acidity can facilitate improved air
quality management strategies and policy planning to mit-
igate the health and environmental effects of air pollution.
Consideration of different policy options and the develop-
ment of emission reduction strategies often relies on chemi-
cal transport model (CTM) simulations of future conditions.
Such modeling depends on the capability of CTMs to ade-
quately simulate responses to policy scenarios. The predic-
tive capability of CTMs is closely linked to their ability to
track particle acidity through the pathways shown in Fig. 1.
Some studies have pursued the development of observation-
based indicators for the sensitivity of pollutants to precursor
emissions for use in CTM evaluation and air quality man-
agement (e.g., gas ratio, Sect. 3). However, the use of the
sensitivity indicators has been limited because their robust-
ness has not been well established. Recent work (Shah et al.,
2018; Vasilakos et al., 2018) has begun to explore the influ-
ence of particle acidity on the simulated responsiveness of
PM2.5 to emissions changes. Vasilakos et al. (2018) demon-
strated that reliable predictions of particle pH in CTMs are
key to modeling the response of PM2.5 components to pre-
cursor emission changes. Furthermore, pH biases may prop-
agate to biases in nitrate partitioning, dissolved metal con-
centrations, inorganic and organic aerosol amount and com-
position, and aerosol size distributions and ultimately could
affect predicted impacts of emissions on ecosystem produc-
tivity and public health.

This study reviews the current understanding of aerosol
and cloud acidity in the atmosphere. The work is motivated
by the central role of aerosol and cloud acidity in numer-
ous complex atmospheric processes of importance to human
health and welfare as well as the rapid growth in literature on
aerosol acidity in recent years. Despite decades of research
on these processes, relatively few observational constraints
exist for model evaluation. This review aims to collect val-
ues of fine-aerosol and cloud pH as well as discuss the ap-
proaches used to determine them. We provide an overview
of the range of pH acidity scales and methods of approxi-
mating pH as well as discuss their challenges and advantages
(Sect. 2). In addition, we discuss proxies of pH (Sect. 3), in-
sights from box modeling of particle pH and its approxima-
tions and proxies (Sect. 4), the role of chemistry in driving
and being modulated by pH (Sect. 5), the role of particle size
and composition (Sect. 6), observations of particle (Sect. 7.1)
and cloud (Sect. 7.2) pH, and regional and global model rep-
resentations of pH (Sect. 8).

2 The definition of pH and pH scales

Aerosol acidity is generally not directly measured, despite
some recent progress (see Sect. 7.1.1–7.1.2). Instead, esti-
mates are obtained from thermodynamic models that involve
assumptions, which can vary according to the completeness
of the atmospheric dataset being considered. The numerical

www.atmos-chem-phys.net/20/4809/2020/ Atmos. Chem. Phys., 20, 4809–4888, 2020



4814 H. O. T. Pye et al.: The acidity of atmospheric particles and clouds

value of pH also differs according to the concentration scale
in use. Furthermore, pH has a number of different definitions
– each devised for a particular application – and can only
be measured accurately and with metrological traceability
for dilute solutions. These facts are not always well under-
stood. This section summarizes the formal definition of pH
and operational definitions and approximations. Thermody-
namic models used to calculate fine-particle pH are also dis-
cussed.

2.1 Definition of acidity in terms of the pH

The degree of acidity or basicity of a solution can be quanti-
fied based on the thermodynamic activity (the effective con-
centration, including nonideal behavior) of dissolved hydro-
gen ions (H+). In the most common form, this measure of
acidity is reported as a dimensionless quantity known as the
pH. The International Union of Pure and Applied Chemistry
(IUPAC) defines pH as (Buck et al., 2002; IUPAC, 1997)

pH=−log10 (aH+)=−log10

(mH+

m	
γH+

)
, (1)

where aH+ denotes the activity of H+ in aqueous solution
on a molality basis, mH+ is the molality of H+ (mol kg−1,
i.e., moles of H+ ions per kg of solvent, typically pure wa-
ter), and γH+ is its molal activity coefficient (see Table 1 for
a summary of definitions of pH and Appendix A for nota-
tion). The quantity m	 = 1 mol kg−1 is the standard state
(unit) molality used to achieve a dimensionless quantity in
the logarithm (Covington et al., 1985) (omitted for simplic-
ity in future equations). For solid particles or ice clouds, and
potentially for glassy particles, a single pH value is unde-
fined due to either the lack of a liquid aqueous phase or the
potential for long intraparticle mixing timescales. In Eq. (1),
both aH+ and γH+ are molality-based with a reference state
of infinite dilution in pure water (γH+ −→ 1 as mH+ −→ 0).
In most calculations involving natural systems the solvent is
pure water, and therefore the molality, mi (mol kg−1), of so-
lute species i is given bymi = ni

nwMw
, where ni is the number

of moles of i in the aerosol or cloud water particles, nw the
number of moles of water, and Mw the molar mass of water.
For some applications involving solutions containing large
fractions of organic material that are miscible with water, the
definition of the “solvent” may be altered to include all non-
ionic (organic) species. This is largely for practical reasons
and because some thermodynamic models of activities in so-
lutions and liquid mixtures (e.g., Yan et al., 1999; Zuend et
al., 2008) require it. The activity coefficients used in the cal-
culation of pH must be consistent with both the definition
of what constitutes the solvent and also the concentration
scale used. Further explanation is given in the Supplement
(Sect. S1).

The IUPAC definition of pH (Eq. 1) is regarded as a no-
tional definition, because it involves the activity coefficient
of a single ion (Buck et al., 2002; Covington et al., 1985).

These are inaccessible experimentally because electrolyte so-
lutions (of any relevant amount of substance) always con-
tain both cations and anions, in proportions yielding an over-
all electroneutral system. Only mean activity coefficients of
neutral cation–anion combinations are measurable quanti-

ties, such as γ±,HCl =
[
γH+γCl−

] 1
2 in the case of the 1 : 1

electrolyte HCl (e.g., Prausnitz et al., 1999; Robinson and
Stokes, 2002). Several, but not all, thermodynamic activ-
ity coefficient models used in atmospheric science and geo-
chemistry provide a computation of single-ion activity coef-
ficients within their mathematical framework (see later dis-
cussion of aerosol models, Sect. 2.6). However, these single-
ion values are purely conventional in that they depend on
assumptions inherent in the derivation of the model equa-
tions and, unlike mean activity coefficients, are not necessar-
ily comparable between models.

2.2 Alternative pH concentration scales

Older definitions of pH by IUPAC, alongside Eq. (1), define
the pH value on a molarity scale (pHc) (Covington et al.,
1985):

pHc =−log10

(
a
(c)

H+

)
=−log10

(cH+

c	
γ
(c)

H+

)
. (2)

The superscript (c) indicates the molarity basis for the ac-
tivity (a(c)H+ ) and activity coefficient (γ (c)H+ ), distinct from the
molality basis. The reference state is still infinite dilution in
pure water (γ (c)H+ → 1 as cH+→ 0), and the quantity c	 =
1 mol dm−3 is the standard state molarity. The quantity cH+

denotes the molarity or molar concentration of H+ in an
aqueous solution (i.e., mole of H+ per dm3 of aqueous so-
lution; IUPAC, 1997). For dilute solutions, cH+ is practically
equivalent to the molar amount of ion per dm3 of pure wa-
ter. Covington et al. (1985) point out that for most appli-
cations involving dilute aqueous solutions, the pH and pHc
values obtained from molality and molarity scales (for the
same mixture) are of negligible numerical difference. The pH
difference depends mainly on the density of water, and the
difference in molal vs. molarity-based pH is approximately
0.001 pH units at 298.15 K, increasing to about 0.02 pH units
at 393.15 K (with larger differences expected for concen-
trated aqueous electrolyte solutions and/or those with mixed
solvents).

The mole fraction concentration scale is used by the Ex-
tended Aerosol Inorganics Model (E-AIM) of Clegg and co-
authors (Clegg et al., 2001; Wexler and Clegg, 2002, and ref-
erences therein). The pH on a mole fraction basis, pHx , is
given by

pHx =−log10

(
a
(x)

H+

)
=−log10

(
xH+ f

∗

H+
)
, (3)

where xH+ is the mole fraction of H+ in the solution, and
a
(x)

H+ and f ∗H+ are the mole-fraction-based activity and the
(rational) activity coefficient, respectively, both defined with
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Table 1. Definitions and notation for pH and various molality-based pH approximations. All activity coefficients are on a molality basis,
relative to a reference state of infinite dilution in pure water. Note that for mathematical rigor (omitted above for simplicity), all expressions
in the log10 need to be normalized by unit molality m	,b.

Symbol and defining expression Remarks

pH=−log10
(
aH+

)
=−log10

(
mH+γH+

)
recommended IUPAC definition of pH

pHF =−log10
(
mH+

)
free-H+ approximation of pH

pH± (H,X)=−log10
(
mH+γ±,HX

)
approximation of pH based on mean molal ion activity coefficienta of H+ and
anion X, with X = Cl−, NO−3 or HSO−4 (choice to be specified in parentheses
or as subscript)

pHT =−log10

(
mH+ +mHSO−4

)
total H+ approximation of pH

a For 1 : 1 electrolytes, γ±,HX = 2√γH+ · γX . The difference between pH± (H,X) and pH is related to the activity coefficient ratio,

pH± (H,X)− pH= 1
2 log10

(
γH+
γ
X−

)
. b With explicit normalization, pHF =−log10

(mH+
m	

)
.

respect to an infinite dilution reference state in pure water
(superscript ∗ or (x)). The mole fractions of all species i,
including water, are calculated as xi = ni/6j nj , where the
summation is calculated over all solution species j (ions, un-
charged (e.g., organic) solutes, and water).

Conversions among pH values calculated using different
concentration scales is necessary to compare model predic-
tions and to report acidity on a consistent basis. Generally,
formulae for the conversion of pH are derived based upon
the equivalence of the chemical potentials of solution en-
tities irrespective of concentration scale (see, for example,
Robinson and Stokes, 2002). The conversions to pH from the
equivalent values on the mole fraction and molarity scales are
given below, and the derivations are given in the Supplement
(Sect. S1):

pH= pHx + log10

(
Mw · 1

mol
kg

)
≈ pHx − 1.74436, (4)

pH= pHc− log10

(
1
ρ0
× 103 kg

m3

)
, (5)

where ρ0 (kg m−3) is the density of the reference solvent
(pure water for the normal case, i.e., when activity coeffi-
cients on molality and molarity scale are defined with refer-
ence state of infinite dilution in pure water, regardless of a
presence of organics in the solution). Because the density ρ0
depends weakly on temperature, the exact relation between
pH and pHc is nonlinear. In the usual case of water as the
reference solvent (ρ0 close to 1000 kg m−3), the logarithmic
difference is small (typically < 0.02 pH units), resulting in
pHc ≈ pH (Jia et al., 2018).

2.3 Approximations of pH

Approximate values of pH, based upon the definition of pH
(Eq. 1) but making simplifying assumptions, can be obtained
in several ways. For example, the activity coefficient γH+

could be set to unity and pH computed based on only the

free-H+ molality, symbol pHF:

pHF =−log10 (mH+) . (6)

The assumption of γH+ = 1 is appropriate only in highly di-
lute aqueous solutions, corresponding to ambient relative hu-
midities close to 100 %.

Another approach is to use the mean molal ion activity co-
efficient of an H+–anion pair in place of γH+ ; i.e., γH+ ≈

γ±,H,X, where X is a monovalent anion such as HSO−4 ,
NO−3 , or Cl− (e.g., Wright, 2007). This approximation can
be expected to capture the typical increase in γH+ with in-
creasing H+ liquid phase concentration (decreasing ambi-
ent relative humidity, RH), although only semiquantitatively.
The approximate pH determined in this way is labeled as
pH±(H,X):

pH± (H,X)=−log10
(
mH+γ±,H,X

)
. (7)

The deviation of pH± (H,X) from pH is related to the ratio of
the specified single-ion activity coefficients via pH± (H,X)−

pH= 1
2 log10

(
γH+
γX−

)
. Consequently, the pH approximation by

pH± (H,X) is very good for γH+
γX−
≈ 1.0, which is the case

in the highly dilute limit of aqueous electrolyte solutions.
Further, it may also hold approximately towards higher elec-
trolyte concentrations if both single-ion activity coefficients
tend to deviate from 1.0 to a similar degree (which depends
on aerosol composition).

An alternative to pHF would be to use the total H+ mo-
lality, which can be defined as the sum of dissolved H+ and
HSO−4 molalities:

pHT =−log10

(
mH+ +mHSO−4

)
. (8)

The use of this definition may be appropriate in contexts
where the amount of free H+ is not of interest and/or the
computation of bisulfate dissociation (which will vary with
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RH, aerosol composition, and temperature) is impractical.
The use of pHF and pHT as alternatives to pH, as well as
the assumption that pH≈ pH± (H,X), is tested by the in-
tercomparison of thermodynamic model predictions for fine
particles in Sect. 3.

2.4 Acidity and the pH scale

Expressing the acidity of a solution in terms of pH leads to
a scale that has two important characteristics: an increase in
acidity is accompanied by a decrease in pH and vice versa;
and it is a logarithmic scale, meaning that a decrease by 1 pH
unit corresponds to a 10-fold increase in H+ activity. Hence,
apparently modest changes in pH represent relatively large
changes in acidity.

A pH of 7 represents a neutral aqueous solution with val-
ues less than 7 generally considered acidic and values larger
than 7 basic in nature. The characterization of pH equal to 7
as neutral is based on the chemical equilibrium between H+

and OH− ions arising naturally in aqueous solutions. The au-
todissociation of water (H2O 
 OH−(aq)+H+(aq)) is described
by the temperature (T )-dependent equilibrium constant on
molality basis, Kw (T ). The value of pKw (=−log10[Kw])
is 14.95 at 0 ◦C and 13.99 at 25 ◦C for pressures encoun-
tered in the atmosphere (Bandura and Lvov, 2005), resulting
in corresponding pH values of about and 7.475 and 6.995, re-
spectively, for highly dilute aqueous systems. Both systems
are neutral, although the pH values differ.

The pH scale is commonly considered to span values from
0 to 14, but larger and smaller values are also possible as
the scale has no specific limits. Current large-scale models
(Sect. 8) and observations (Sect. 7) indicate that cloud pH
has a global mean somewhere between 4 and 6 and ranges
from around 2 to above 7 (Fig. 2). The global distribution of
fine-particle (nominally particles of 2.5 µm in diameter and
below, PM2.5) pH is bimodal, with a population of particles
having a mean pH of 1–3 and another population, influenced
by dust, sea spray, and potentially biomass burning, having
an average pH closer to 4–5. Fine-particle pH can be negative
(Sect. 7.1), particularly when sulfate is a major component,
and is rarely predicted to exceed 7.

2.5 Measuring pH and operational definition of pH

The small sizes and associated liquid volumes of single parti-
cles (which are in chemical equilibrium with vapors) prevent
the application of standard pH measurement techniques to
individual aerosol particles and cloud droplets. Instead, sam-
ples of larger volumes must be collected (e.g., a population of
droplets in the case of cloud water, Sect. 7.2) or other meth-
ods employed, including measurements of aerosol- and gas-
phase compositions and the application of thermodynamic
models (Sect. 2.6) to compute pH values via Eq. (1).

With enough sample volume, particularly in the case of
cloud droplets which typically have low ionic strengths, tra-
ditional pH measurement techniques can be used. The opera-
tional definition of pH is based on the principle of determin-
ing the difference between the pH of a solution of interest and
that of a reference (buffer) solution of known pH by measur-
ing the difference in electromotive force, using an electro-
chemical cell (e.g., a combination electrode coupled to a pH
meter). High-precision measurements of absolute pH values
of the reference buffer solution used for calibration are made
with a so-called primary method using electrochemical cells
without transference (Harned cells; see Buck et al., 2002).
The uncertainty associated with typical pH measurements,
which use glass electrodes, is on the order of 0.014 for ionic
strengths< 0.1 mol kg−1 and is expected to increase towards
higher ionic strength (Buck et al., 2002). Further details on
pH measurement methods and their relationship to Eq. (1)
are provided in the Supplement.

The measurement of aerosol pH is problematic because of
the difficulty in collecting sufficient sample material with-
out perturbing its acidity and also due to the mismatch be-
tween ionic strengths present in atmospheric fine particles
(> 1 mol kg−1 and sometimes exceeding 100 mol kg−1, Her-
rmann et al., 2015) and the molal ionic strength for which
normal operational techniques are appropriate (no more than
about 0.1 mol kg−1). Values of pH based upon primary mea-
surement methods, which are used for instrument calibration,
cannot be readily defined at high ionic strength. This is be-
cause assumptions regarding the activity coefficient of the
Cl− ion (which is needed to establish the pH value of the
buffer) are limited to very dilute solutions. In addition, the
calibration of the pH electrodes requires the ionic strengths
of the buffer and test solution (e.g., an aerosol sample) to be
low and similar in magnitude. A pH electrode, calibrated for
dilute conditions, will yield a measured pH that is systemat-
ically in error to an unknown degree if placed in a solution
of higher ionic strength (e.g., Wiesner et al., 2006). Similar
considerations apply to colorimetric methods (see Sect. 7.1):
the equilibria involving the chemical species that provide the
color response depend not solely on aH+ but on the thermo-
dynamic activities of the sensing species themselves. These
will vary with the chemical composition and concentration
of the solution. Thus, colorimetric methods also require cali-
bration that is relevant to the solution media they will be used
to measure.

2.6 Thermodynamic models for pH calculation

Given the operational difficulties associated with measur-
ing aerosol pH (Sect. 2.5), estimates of the degree of acid-
ity of particles generally depend upon the use of thermody-
namic models. In atmospheric science, a number of different
thermodynamic models are used to predict equilibrium gas–
particle partitioning, liquid-phase activity coefficients, solid–
liquid and liquid–liquid equilibria, dynamic mass transfer of
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semivolatile species, aerosol liquid water content (ALWC),
and pH. Most models can treat both metastable (supersatu-
rated) solutions or stable states (where solids have formed).
Here, some of the most widely used models are described,
focusing on their general approach, special features, and rel-
evant species in the context of pH calculations. Advantages
and disadvantages of four common thermodynamic models
are summarized in Table 2.

The thermodynamic modeling approach inherent in some
models (e.g., ISORROPIA, MOSAIC, and EQUISOLV II)
does not yield single-ion activity coefficients that allow for
calculation of pH via Eq. (1). For example, ISORROPIA II
and MOSAIC nominally output information for pHF, and
studies published prior to this work using those models (see
Sect. 7.1) were approximating acidity by reporting pHF. In
this work (Sect. 4), model source codes were modified to
use the mean molal activity coefficients for different cation–
anion pairs (e.g., (H+, HSO−4 ) or (H+, Cl−)) in the estima-
tion of pH using pH± (H,X). Section 4 and observationally
constrained pH estimates focus on equilibrium conditions,
although MOSAIC is often used to dynamically calculate the
transient H+ amount.

2.6.1 Extended Aerosol Inorganics Model (E-AIM)

The Extended Aerosol Inorganics Model (E-AIM) is a ther-
modynamic model to calculate gas–liquid–solid equilibrium
in aqueous aerosol systems containing inorganic ions, water,
and an arbitrary number of organic compounds with user-
defined properties. It uses the Pitzer–Simonson–Clegg (PSC)
equations (Pitzer and Simonson, 1986; Clegg et al., 1992,
1998) for the calculations of solvent and solute activity coef-
ficients (single-ion values) on the mole fraction scale. There
are four principal models that differ in terms of the species
and temperature range considered (Wexler and Clegg, 2002,
and references therein; Friese and Ebel, 2010). The mod-
els include some or all of the following ions and the solid
salts and gases that can be formed from them: H+, NH+4 ,
Na+, SO2−

4 , HSO−4 , NO−3 , Cl−, and Br−. The possible cal-
culations include the properties of an aqueous solution of
defined composition, as well as the equilibrium state of a
gas and particle system at defined RH and temperature. In
chemical systems containing inorganic ions, the aqueous-
phase equilibria H++SO2−

4 
 HSO−4 , NH+4 
 NH3+H+

and H2O 
 H++OH− are solved as well as those between
aerosol species NH3(aq), H+(aq), NO−3 (aq), and Cl−(aq) with
the gases NH3, HNO3, and HCl. Analogous equilibria (i.e.,
acid dissociation, gas–liquid equilibrium) can also be solved
for user-specified mono- and dicarboxylic acids, as well as
mono- and diamines. The model can be used for both acidic
and alkaline aerosols.

The activity coefficients, and contributions to the water
activity, of uncharged (or undissociated forms of) organic
solutes are calculated using the Universal Quasi-Chemical
Functional group Activity Coefficients (UNIFAC) model

(Fredenslund et al., 1975). Organic anions are assumed to
have the same activity coefficient model interaction parame-
ters as HSO−4 or SO2−

4 (according to their charge), and amine
cations are assigned the same parameters as NH+4 .

The E-AIM model is based upon thermodynamic data for
pure aqueous solutions and mixtures over a wide range of
temperatures. This basis in measurements, and the calcula-
tion of ionic activities in terms of interactions between pairs
and triplets of solute species, makes E-AIM generally the
most accurate (inorganic) thermodynamic model used in at-
mospheric science. Nevertheless, it has some known weak-
nesses: predictions of rising equilibrium RH with concen-
tration in some aqueous NH−4 –NO−3 –SO2−

4 –H2O aerosols
at about 250 K and below (Model II); and similar errors in
aqueous aerosols at low RH and containing high concentra-
tions of NH+4 and Cl− (Model IV). To address the latter case
some restrictions have been placed on the types of calcu-
lations that can be carried out (see http://www.aim.env.uea.
ac.uk/aim/model4/input4a.html, last access: 7 April 2020).
Most relevant to aerosol pH is the fact that calculated mo-
lalities of free H+, HSO−4 , and SO2−

4 in aqueous H2SO4 –
and therefore in mixtures containing the three ions – deviate
somewhat from measurements of the stoichiometric dissoci-
ation constant of HSO−4 obtained spectroscopically (Knopf et
al., 2003; Myhre et al., 2003). Myhre et al. (2003) show that
there is good agreement between modeled and measured de-
grees of dissociation of HSO−4 (αHSO4 ) at room temperature
up to 30–40 wt % acid (equivalent to 75 % to 56 % equilib-
rium RH), within the relatively large scatter in the data. At
50 wt % acid, and above, the calculated αHSO4 values are too
low, meaning that the molality of free H+ is also too low.
These differences increase for H2SO4 concentrations above
35 wt % (5.5 mol kg−1) and temperatures below about 240 K
(Knopf et al., 2003). These errors do not necessarily lead to
errors in pH as the stoichiometric activity of H+ (used in de-
termination of pH, Eq. 1) in aqueous solution is accurately
reproduced as indicated by accurate predictions of equilibria
with acid gases (HNO3 and HCl, Figs. 6 to 12 of Carslaw et
al., 1995).

2.6.2 AIOMFAC-based equilibrium model

The Aerosol Inorganic–Organic Mixtures Functional groups
Activity Coefficient (AIOMFAC) model is a thermodynamic
activity coefficient model treating liquid mixtures contain-
ing water, inorganic ions, and organic compounds. The
model combines a Pitzer-type aqueous ion interaction model
with a modified UNIFAC model (Fredenslund et al., 1975;
Hansen et al., 1991), which was originally designed for or-
ganic mixtures. As in UNIFAC, AIOMFAC applies a group-
contribution approach to cover a wide variety of organic
compounds by a relatively small set of organic functional
groups (∼ 16 main groups). The AIOMFAC expressions, pa-
rameterization and validation based on experimental data,

www.atmos-chem-phys.net/20/4809/2020/ Atmos. Chem. Phys., 20, 4809–4888, 2020

http://www.aim.env.uea.ac.uk/aim/model4/input4a.html
http://www.aim.env.uea.ac.uk/aim/model4/input4a.html


4818 H. O. T. Pye et al.: The acidity of atmospheric particles and clouds

Table 2. Common box models used to calculate acidity.

Model Input Acidity output Advantages Disadvantages

E-AIM Gas + particle or equilib-
rium particle composition (H+,
NH+4 , Na+, SO2−

4 , HSO−4 ,
NO−3 , Cl−, Br−, organic acids,
and amines) in moles in overall
electroneutral conditions (see
Eq. 19 for Z); RH and T .

pH at equilibrium. pH via recommended Eq. (1).
Considered the most accurate
inorganic thermodynamic
model.
Ionizing organic species
(e.g., organic acids, amines)
included.

Computationally intensive.
T and RH restricted for some
compositions to preserve accu-
racy.

AIOMFAC–GLE Gas + particle or equilibrium
particle composition (H+,
Li+, Na+, K+, NH+4 , Mg2+,
Ca2+, Cl−, Br−, NO−3 , HSO−4 ,

SO2−
4 , and organic species

and/or organic functional
groups) in mol m−3 air for
electroneutral conditions; RH
and T .

pH at equilibrium. pH via recommended Eq. (1).
Accounts for organic–inorganic
interactions and liquid–liquid
equilibrium in consistent
framework.
Code publicly distributed
through repository.

Limited support for solid–
liquid equilibria of diverse
inorganic salts (presently).
Optimized for temperatures
near 298 K, with limited
accuracy for much colder
atmospheric temperatures.
Organic species do not ionize.

MOSAIC Distinct gas and particle
composition (H+, NH+4 ,

Na+, Ca2+, SO2−
4 , HSO−4 ,

CH3SO−3 , NO−3 , Cl−, and

CO2−
3 ) in mol m−3 air; RH and

T . Automatic adjustments ap-
plied to nonelectroneutral input
particle-phase composition.

pHF by default (pH± with mod-
ification) for each particle size
bin (or mode) at each time step
while dynamically solving gas–
particle mass transfer.

Provides size-resolved pHF and
pH± to account for composi-
tional heterogeneity across par-
ticles of different sizes and ori-
gins.
Does not require equilibrium
assumption.

Gas–particle and solid–liquid
equilibrium constants depend
on temperature, but activity
coefficients are limited to
298.15 K.

ISORROPIA II Gas + particle or particle com-
position (TSO4, TCl, TNO3,
TNH4, Na, K, Ca, and Mg) in
mol m−3 or µgm−3 air; RH and
T . Automatic adjustments ap-
plied to nonelectroneutral input
particle-phase composition.

pHF by default (pH± with mod-
ification) at equilibrium.

Computationally efficient.
Code has widespread public
distribution and incorporation
in CTMs.

Approximations employed
(e.g., some activity coefficients
treated as 1, minor species do
not perturb equilibrium, higher
default numerical tolerances).
Segmented solution approach
leads to discontinuous solution
surface.

and known limitations are described in detail elsewhere
(Zuend et al., 2011; Zuend et al., 2008).

AIOMFAC presently includes the following inorganic
ions: H+, Li+, Na+, K+, NH+4 , Mg2+, Ca2+, Cl−, Br−,
NO−3 , HSO−4 , and SO2−

4 (I− forthcoming). Most of these ions
can be present simultaneously in an aqueous solution; limi-
tations exist for Li+ in the presence of bisulfate (HSO−4 ) ions
due to a lack of experimental data required for determining
associated model parameters. However, using a less-rigorous
analogy approach, AIOMFAC can approximate those param-
eters so that all listed ions can be treated in solution. The
bisulfate dissociation equilibrium is solved numerically us-
ing the temperature-dependent equilibrium constant param-
eterization by Knopf et al. (2003). Other inorganic elec-
trolyte species are considered completely dissociated when
in liquid solution – with deviations from that assumption ac-
counted for implicitly by activity coefficients. In contrast to
the E-AIM model, AIOMFAC does not solve the H2O 

H++OH− dissociation equilibrium (which is acceptable
when the pH is at least 1 pH unit lower than the neutral
value). The organic functional groups available in calcula-
tions for mixed organic–inorganic systems include carboxyl,

hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, hy-
droperoxide, peroxyacid, peroxide, and aromatic functional
groups. However, only a subset of these groups is currently
available when HSO−4 , Mg2+, or H+ are present; see https:
//aiomfac.lab.mcgill.ca/about.html (last access: 7 April 2020)
(Fig. 4 on that website). A few species are available ex-
clusively for a select set of organic or inorganic systems,
e.g., an organonitrate group in nonelectrolyte systems (Zuend
and Seinfeld, 2012) and the methanesulfonate ion in cer-
tain organic-free aqueous solutions (CH3SO−3 with H+, Na+,
NH+4 ; Fossum et al., 2018).

An online version of AIOMFAC is available at https:
//aiomfac.lab.mcgill.ca (last access: 7 April 2020) (and http:
//www.aiomfac.caltech.edu, last access: 7 April 2020). Note
that the online AIOMFAC model is simply an activity co-
efficient model and not a complete gas–liquid thermody-
namic equilibrium model. A limitation of AIOMFAC is that
the composition-dependent degree of dissociation of organic
acids (via the carboxyl group) is not accounted for explicitly
in the determination of acidity. As such, the pH calculations
are only meaningful in the presence of some amount of in-
organic H+. Due to the weak temperature dependence of ac-
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tivity coefficients, the model is applicable over a temperature
range of about 298 ± 30 K, while most of the experimen-
tal training data were for temperatures ≥ 293 K. AIOMFAC
variants with a more sophisticated temperature dependence
have been parameterized for electrolyte-free aqueous organic
systems (Ganbavale et al., 2015).

A unique feature of AIOMFAC is its ability to represent
nonideal interactions between organic molecules and inor-
ganic ions in liquid solutions up to high concentrations, a fea-
ture that is important for the prediction of liquid–liquid phase
separation. Thermodynamic equilibrium models have been
developed with AIOMFAC as their core module, includ-
ing efficient numerical methods for the prediction of liquid–
liquid equilibria (Zuend and Seinfeld, 2013) and the equilib-
rium gas–particle partitioning of water and semivolatile or-
ganic compounds (Zuend and Seinfeld, 2012; Zuend et al.,
2010).

Recent work further extends the AIOMFAC-based gas–
particle partitioning model by consideration of the gas–liquid
equilibria of the following inorganic acids and bases: HNO3,
HCl, HBr, and NH3, while H2SO4 is treated as nonvolatile
(Ma and Zuend, 2020). This equilibrium model is referred to
as AIOMFAC–GLE hereafter. For given input in the form of
molar amounts per unit volume of air at given pressure and
temperature, the AIOMFAC–GLE model predicts the com-
positions of co-existing phases (gas phase plus up to two liq-
uid phases) and associated activity coefficients of all species
in all (liquid) phases. This enables a straightforward calcula-
tion of phase-specific pH values using Eq. (1).

2.6.3 MOSAIC

The Model for Simulating Aerosol Interactions and Chem-
istry (MOSAIC) is a sectional aerosol model that treats
aerosol thermodynamics, size-resolved dynamic gas–particle
partitioning, heterogeneous chemistry, and coagulation (Za-
veri et al., 2008). It includes all major inorganic salts and
electrolytes composed of H+, NH+4 , Na+, Ca2+, SO2−

4 ,
HSO−4 , CH3SO−3 , NO−3 , Cl−, and CO2−

3 . Ions such as K+

and Mg2+ are represented by equivalent amounts of Na+

while other unspecified inorganic species such as silica, other
inert minerals, and trace metals found in soil dust aerosols
are lumped together as “other inorganic mass” (OIN). MO-
SAIC also includes carbonaceous species such as black car-
bon, primary organics, and secondary organics. Although
organic–inorganic interactions are not presently treated ex-
plicitly in MOSAIC, organics and OIN species can absorb
water, which indirectly affects the overall particle pH. The
gas-phase species that can partition to the particle phase
include H2SO4, CH3SO3H (methanesulfonic acid), HNO3,
HCl, NH3, and any number of secondary organics.

At a given time step, the thermodynamics submodule
MESA (Multicomponent Equilibrium Solver for Aerosols;
Zaveri et al., 2005a) first determines the equilibrium phase
state in each size section as a function of particle-phase com-

position, particle size (accounting for the Kelvin effect), rel-
ative humidity, and temperature, with aerosol water content
calculated using the Zdanovskii–Stokes–Robinson (ZSR)
method (Stokes and Robinson, 1966; Zdanovskii, 1948). The
dynamic gas–particle partitioning module ASTEM (Adap-
tive Step Time-split Euler Method) then calculates the driv-
ing forces for mass transfer of the gas-phase species over
each bin and integrates the associated mass transfer differen-
tial equations for all size sections (Zaveri et al., 2008). The
mean stoichiometric activity coefficients of electrolytes for
the equilibrium phase state and mass transfer driving force
calculations are estimated using the Multicomponent Taylor
Expansion Method (MTEM; Zaveri et al., 2005b). Briefly,
MTEM calculates the mean molal activity coefficient of an
electrolyte in a multicomponent solution on the basis of its
values in binary solution for all the electrolytes present in the
mixture at the solution water activity (aw), assuming that aw
is equal to the ambient RH. For self-consistency most of the
MTEM and ZSR parameters are determined using the com-
prehensive PSC model at 298.15 K. The PSC model is the
basis of E-AIM.

In partially or fully deliquesced aerosols, the hydrogen ion
molality (mH+ ) plays a central role in both equilibrium phase
state and mass transfer calculations. For computational effi-
ciency, two solution domains are considered on the basis of
the so-called molal sulfate ratio, XT :

XT =
mNH+4

+mNa+ + 2mCa2+

mSO2−
4
+mHSO−4

+mCH3SO−3

. (9)

In the sulfate-rich domain (i.e., XT < 2), the partial dissoci-
ation of the bisulfate ion (HSO−4 
 H++SO2−

4 ) and elec-
troneutrality equations are simultaneously solved to deter-
minemH+ , which is subsequently used to determine the equi-
librium gas-phase concentrations of HNO3, HCl, and NH3
at the particle surface for computing their driving forces
for mass transfer. In the sulfate-poor domain (i.e., XT ≥ 2),
HSO−4 is assumed to completely dissociate to SO2−

4 , and the
use of equilibrium mH+ to calculate the driving forces pro-
duces spurious oscillations in the mass transfer of HNO3,
HCl, and NH3. This problem is solved by introducing the
concept of dynamic mH+ , which is determined by simulta-
neously solving surface equilibrium equations together with
the acid–base coupled condensation approximation. At a
given time, the dynamic mH+ is thus a function of the gas–
liquid equilibrium constants and mass transfer coefficients
of HNO3, HCl, and NH3 along with their gas- and particle-
phase concentrations. When the gases and particles reach a
steady state, the dynamic mH+ in each size section is equal
to the equilibrium mH+ . See Sect. 6 for a further discussion
of the role of particle size and mass transfer on pH.

2.6.4 ISORROPIA II

ISORROPIA II (Fountoukis and Nenes, 2007; http://
isorropia.epfl.ch, last access: 7 April 2020) is a compu-
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tationally efficient code that treats the thermodynamics of
inorganic K+–Ca2+–Mg2+–NH+4 – Na+–SO2−

4 –NO−3 –Cl−–
H2O aerosol systems. NH3, HNO3, and HCl are consid-
ered present in the solution. The current version, version
2.3, of the code is used in this work (see code website
for version history). The discrete adjoint of ISORROPIA,
called ANISORROPIA, has also been developed (Capps et
al., 2012) using a combination of automatic differentiation of
ISORROPIA II and postconvergence treatments (to account
for discontinuities in the information flow during solution) to
compute the sensitivities of all output parameters of the code
to their relevant inputs with analytical precision.

ISORROPIA II can compute the equilibrium composition
for two types of inputs: (a) forward, closed-system problems,
in which the temperature, relative humidity, and total con-
centrations (gas + aerosol) of aerosol precursors are known;
and (b) reverse, open-system problems, in which the tem-
perature, relative humidity, and the concentrations of aerosol
NH+4 , SO2−

4 , Na+, Cl−, NO−3 , Ca2+, K+, and Mg2+ are used
as input.

To reduce the computational complexity and increase
solver speed, ISORROPIA II uses a segmented solution ap-
proach, where depending on the relative amounts of each
aerosol precursor, major and minor species are defined. The
equilibria of the major species together with conservation
of mass and electroneutrality provide the equilibrium com-
position. ISORROPIA II uses mean activity coefficients for
the cation–anion pairs in solution. For this, the Kusik and
Meissner (1978) model for specific ionic pairs is applied in
combination with the Bromley (1973) mixing rule for ac-
tivity coefficients in the multicomponent mixtures found in
the aerosol. ALWC is computed as a function of RH, us-
ing the Zdanovskii–Stokes–Robinson relation (Stokes and
Robinson, 1966; Zdanovskii, 1948), using a water activity
database computed from the E-AIM thermodynamic model,
and incorporating the effect of temperature. Although the
mean activity coefficients of all major cation–anion pairs are
considered, for certain species (e.g., OH−, and undissociated
ammonia, nitric and hydrochloric acid NH3(aq), HNO3(aq),
HCl(aq)) unity activity coefficients are assumed due to a lack
of corresponding data. Also, the first dissociation of sulfuric
acid in solution is always assumed to be complete.

2.6.5 EQUISOLV II

EQUISOLV II is a model for calculating gas–aerosol equilib-
rium in atmospheric systems that contain water vapor; gases
including NH3, HNO3, and HCl; and soluble inorganic elec-
trolytes distributed across multiple particle size bins (Jacob-
son, 1999). Equilibrium is solved using a mass flux itera-
tion technique. The model contains the major inorganic ions
H+, NH+4 , Na+, K+, Mg2+, Ca2+, SO2−

4 , HSO−4 , NO−3 , Cl−,
and CO2−

3 (Jacobson, 1999) as well as some minor and trace
constituents. The thermodynamic treatment is summarized in
chap. 17 of Jacobson (2005b).

Mean activity coefficients of the cations and anions in
single-electrolyte solutions are calculated using polynomials
fit to available data and reference values at 25 ◦C, supple-
mented by similar fits to values of enthalpies and apparent
molar heat capacities of the solutions. Together, using stan-
dard relationships, these enable mean activity coefficients to
be calculated for different temperatures. Mean ionic activ-
ity coefficients in mixtures are estimated using the approach
of Bromley (1973), based on values for the constituent pure
aqueous solutions at the total ionic strength of the mixture.
The equilibrium HSO−4 
 H++SO2−

4 is calculated explic-
itly and is based on the same thermodynamic treatment as in
E-AIM (Clegg and Brimblecombe, 1995). The approach of
Kusik and Meissner (1978) is used to estimate the mean mo-
lal activity coefficients γ±

(
H+,HSO−4

)
and γ±

(
H+,SO2−

4

)
in mixtures in order to obtain the equilibrium concentrations
of H+, HSO−4 , and SO2−

4 (see Sect. 4.2 of Jacobson et al.,
1996). This approach will not yield the same values as the
treatment of Clegg and Brimblecombe (1995); see Sect. 4.1.

The relationship between the water content of aqueous
aerosols containing multiple electrolytes and RH is estimated
with the Zdanovskii–Stokes–Robinson relation (Stokes and
Robinson, 1966; Zdanovskii, 1948), using polynomials rep-
resenting single-solute molalities as a function of water ac-
tivity (equivalent to equilibrium RH), and incorporating the
effect of temperature, based upon the same enthalpy and heat
capacity data as for the solutions referred to above.

2.6.6 Other thermodynamic models

Many other thermodynamic models have been developed for
the prediction of atmospheric aerosol hygroscopicity and re-
lated properties, including the Gibbs free energy minimiza-
tion model, GFEMN (Ansari and Pandis, 1999), for inor-
ganic aerosol systems; ADDEM (Topping et al., 2005a, b),
which emphasizes consideration of droplet size (Kelvin ef-
fect); and UHAERO (Amundson et al., 2007, 2006), which
allows for the computation of complex phase diagrams of
both inorganic and organic systems. These models are based
on the PSC model for activity coefficient and pH calcula-
tions, either directly or via polynomial expressions fitted to
that model (and are thus related to E-AIM). The models
SCAPE and SCAPE 2 (with NVCs), for inorganic aerosol
thermodynamics (Kim and Seinfeld, 1995; Kim et al., 1993a,
b), implement several activity coefficient methods, including
Bromley’s method (Bromley, 1973), the Kusik and Meiss-
ner method (Kusik and Meissner, 1978), and a Pitzer model.
The Equilibrium Simplified Aerosol Model (EQSAM) (Met-
zger et al., 2002, 2006) computes gas–liquid–solid partition-
ing for aqueous inorganic aerosol systems, including crustal
cations and iron (II, III) species. The numerical complexity
of thermodynamic equilibrium models has also led to work
focused on the design of computational solvers for high ef-
ficiency; for example, HETV (Makar et al., 2003) is a vec-
torized solver for the SO4–NO3–NH4 system based on the
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ISORROPIA algorithms. All these thermodynamic models
provide a theoretical basis and mechanism to link cations
and anions in aqueous solution to pH or one of its approx-
imations.

3 Proxies of aerosol pH

pH has been referred to as a master variable as a result of
its fundamental role in the condensed-phase environment
(Stumm and Morgan, 1996.) including the processes high-
lighted in the introduction (Sect. 1) and later in Sect. 5. This
role suggests that any study interested in understanding pro-
cesses influenced by particle acidity (e.g., gas–particle parti-
tioning, acid-catalyzed reactions, metal dissolution) should
examine pH. Due to the lack of direct measurements of
aerosol pH (see Sects. 2.5, 7.1) as well as requirements for
data used to calculate pH (Table 2), multiple methods have
been employed in the literature as surrogates or proxies for
particle acidity. In some cases, proxies are used to infer a
pH and whether particles are acidic or basic. In other cases,
concepts related to pH, such as PM sensitivity to ammo-
nia vs. oxidized nitrogen, are interpreted via molar ratios of
species, but pH itself is not discussed as a central concept.
Since the underlying processes affecting the endpoint of in-
terest (e.g., gas–particle partitioning of semivolatile species
that contribute to PM mass) are often dictated by pH, pH
is implicitly contained in such an analysis. However, since
proxies have only an indirect connection to the system’s acid-
ity, interpretation of results without information on pH can be
challenging; incomplete; and, in the worst case, incorrect.

In this section, the most common aerosol pH proxies are
defined and historical context for their development and use
provided. Proxies are indirectly related to pH and thus dif-
fer from the approximations highlighted in Sect. 2.3. Sec-
tion 4 expands upon the information presented here and in
Sect. 2 by evaluating the effectiveness of each proxy using
box model predictions of acidity based on ambient data.

3.1 Proxies based on electroneutrality

Two of the most commonly used proxy methods for aerosol
pH, the cation / anion equivalent ratio (also called the
cation / anion equivalence ratio or molar ratio, Hennigan et
al., 2015) and the charge balance (also called the ion balance
and sometimes strong acidity, Table 3), are based upon the
principle of solution electroneutrality. In both approaches,
H+ is assumed to balance the excess of anions. In the case
of a molar ratio, the amount of H+ is assumed to scale in-
versely with the level of the cations relative to anions.

Application of the molar equivalent ratio to infer acid-
ity began with studies comparing measured strong acidity to
SO2−

4 in aerosol samples (Lee et al., 1993, 1999; Liu et al.,
1996), because direct measurements of strong acidity (e.g.,
via extraction and measurement by pH probe such as EPA

Method IO-4.1) have biases associated with sample collec-
tion and challenges with data interpretation. The concept of
the cation / anion equivalent ratio was first applied to NH+4
and SO2−

4 measurements to infer the chemical forms (e.g.,
NH4HSO4 vs. (NH4)2SO4) of these abundant ions (Junge,
1963; Wall et al., 1988; Moyers et al., 1977; Lewis and Ma-
cias, 1980; Macias et al., 1981).

Electroneutrality and the cation / anion equivalent ratio re-
quire consideration of all ionic species present in solution in
a given particle. However, practical measurement limitations
and assumptions have led to variations of the cation / anion
equivalent used throughout the years. One such assumption
is that H+ accounts for the charge deficit between the water-
soluble species present in particles that can be readily mea-
sured with an ion chromatograph. This typically includes five
cation (NH+4 , Na+, Ca2+, Mg2+, and K+) and three anion
(Cl−, NO−3 , and SO2−

4 ) species (e.g., Quinn et al., 2006; Sun
et al., 1998), though it occasionally includes a limited group
of organic anions (Kerminen et al., 2001). A similar defi-
nition has also been applied to the nonrefractory inorganic
species measured with an Aerodyne Aerosol Mass Spectrom-
eter (NH+4 , NO−3 , SO2−

4 , and partial Cl−) (Zhang et al., 2005;
Quinn et al., 2006). If the aerosol is near neutral (pH ≈ 7) or
acidity is dictated by components other than the inorganic
ions in the balance (e.g., organic acids), then charge balance
will not provide meaningful information (Trebs et al., 2005;
Lawrence and Koutrakis, 1996). Further, the carbonate sys-
tem (CO2(aq)–H2CO3–HCO−3 –CO2−

3 ) must be included in
the ion balance when the pH is near neutral or higher (Win-
kler, 1986).

The molar equivalent ratio is frequently simplified to con-
sider only NH+4 , NO−3 , and SO2−

4 (Pathak et al., 2009). The
justification for this assumption is that these species repre-
sent the dominant fraction of inorganic ions, thereby control-
ling acidity in environments with low levels of crustal species
and minor marine influence (Zhang et al., 2005). Nonvolatile
cations have the potential to drive large-scale patterns in pHF
(see Fig. 2 as well as Sect. 8), thus making proxies with-
out nonvolatile cations potentially invalid over large parts
of the globe. Several variations of the molar equivalent ra-
tio using these three species have been developed. The de-
gree of sulfate neutralization (DSN), introduced by Pinder et
al. (2008a), is defined as

DSN=
([

NH+4
]
−
[
NO−3

])
/ [TSO4] , (10)

where each term represents the molar concentration of
each species in the particle phase. Measurements of sul-
fate do not usually distinguish between bisulfate and sul-
fate (Solomon et al., 2014), so total sulfate, [TSO4], is used(

where[TSO4]=
[
HSO−4

]
+

[
SO2−

4

])
. The bisulfate anion

is often more abundant than the sulfate ion in fine particles;
however, TSO4 is often conceptualized has having an effec-
tive charge of negative 2.
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Table 3. Definitions of proxy methods. For all quantities the units are moles of chemical species per unit volume of air (e.g., mol m−3). The
quantity

[
TSO4

]
is total particulate sulfate, or the sum of

[
HSO−4

]
+

[
SO2−

4

]
.

Proxy Definition

Cation / anion equivalent ratio Cation/Anion=
[
NH+4

]
+
[
Na+

]
+
[
K+

]
+2
[
Ca2+]

+2
[
Mg2+]

2[TSO4]+
[
NO−3

]
+
[
Cl−

]
Degree of sulfate neutralization DSN=

([
NH+4

]
−
[
NO−3

])
[TSO4]

Degree of neutralization DON=
[
NH+4

](
2[TSO4]+

[
NO−3

])
TNH4 : TSO4 TNH4 : TSO4 =

(
[NH3]+

[
NH+4

])
[TSO4]

Ion balance (H+ from charge balance) H+air,cb = 2
[
TSO4

]
+

[
NO−3

]
+
[
Cl−

]
−

([
NH+4

]
+
[
Na+

]
+
[
K+

]
+ 2

[
Ca2+

]
+ 2

[
Mg2+

])
Gas ratio (GR) GR=

(
[NH3]+

[
NH+4

]
−2[TSO4]

)(
[HNO3]+

[
NO−3

])
Adjusted gas ratio (adjGR) adjGR=

(
[NH3]+

[
NO−3

])(
[HNO3]+

[
NO−3

])

Similar to DSN, the degree of neutralization (DON,
Adams et al., 1999) has been suggested, defined as

DON=
[
NH+4

]
/
(
2[TSO4]+

[
NO−3

])
. (11)

Other names have been applied to the DON, including the
neutralization ratio (Lawal et al., 2018). The DON repre-
sents the ammonium associated with sulfate + nitrate, while
DSN represents the ammonium associated only with sulfate.
In principle, this suggests that they account for different as-
pects of particle acidity (Pinder et al., 2008a); however, DSN
and DON were highly correlated in California (r2

= 0.961)
and the southeastern US (r2

= 0.978) (this work, not shown),
two locations with very different NO−3 levels, suggesting that
they represent the same physical parameter. The importance
of this correlation as an indicator of pH, and its general va-
lidity, remains to be studied.

Finally, the simplest form of the cation / anion molar
equivalent ratio considers particle acidity based solely on the
NH+4 /SO2−

4 ratio. This simplification further requires that
NO−3 is relatively low (Xue et al., 2011). Acidic conditions
are inferred when the measured NH+4 /SO2−

4 molar ratio is
less than two (Turpin et al., 1997), as this is assumed to in-
dicate when mildly acidic ammonium sulfate particles be-
gin containing progressively larger amounts of acidic am-
monium bisulfate. Particle acidity and pH are assumed to
scale with NH+4 /SO2−

4 , with decreasing ratios corresponding
to decreasing pH (Zhang et al., 2007).

More recently, the total ammonium-to-sulfate ratio has
been proposed as an indicator of pH (Murphy et al., 2017):

TNH4 : TSO4 =

(
[NH3]+

[
NH+4

])
[TSO4]

. (12)

Thermodynamic predictions from E-AIM were interpreted
using this ratio to show that pH and ammonia volatilization
increases as TNH4 : TSO4 varies from below 1 to above 2
(coinciding with formation of sulfate over bisulfate). While
the TNH4 : TSO4 proxy may not give a precise pH estimate,
it can provide general information. For example, the ratio of
NH3 : SO2 emissions had been used to predict that aerosol
pH may increase in the near future (Murphy et al., 2017) de-
spite relatively constant levels in the recent past (Weber et
al., 2016).

In the case of charge balance, the amount of H+ is deter-
mined from the total cation / anion deficit; for this reason, it
is expressed as hydrogen ion concentration in air, i.e., total
molar H+ amount per unit volume of air containing aerosol
particles and/or cloud droplets, H+air (nmol m−3 air or simi-
lar). H+air is related to pH; however, the two are not expected
to correlate since the former is an extensive property while
the latter is an intensive property of an aerosol distribution.
For example, a highly acidic (pH< 1) particle with a low
mass may have a lower H+air than a much larger, moderately
acidic (pH> 4) particle. Further, H+air lacks direct modula-
tion by particulate volume (liquid water, the solvent for H+)
and activity coefficients. Diurnal variations in RH have been
shown to cause pHF variations on the order of 1 pH unit
in the eastern US (Guo et al., 2015; Battaglia et al., 2017;
see Sect. 7.1). Like the cation / anion equivalent ratio, the
charge balance metric also assumes specific forms of disso-
ciation state for multivalent ions (particularly for sulfate) and
is strongly influenced by measurement uncertainty for each
ionic species, especially when the aerosol is mildly acidic.
These are all reasons why Guo et al. (2015) found only a
weak correlation between H+air and pHF (r2

= 0.36). Mea-
sured aerosol composition can also be used to create charge
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balance estimates of H+ in air. This method is also referred
to as ion balance and sometimes strong acidity in the lit-
erature (e.g., Ito et al., 1998). When charge balance is per-
formed on observations, it usually means a summation of all
charge-equivalent anions and cations in the particle. Excess
molar charge equivalents of anions compared to cations are
assigned to H+air:

H+air,cb = 2[TSO4]+
[
NO−3

]
+
[
Cl−

]
−

([
NH+4

]
+
[
Na+

]
+
[
K+
]
+ 2

[
Ca2+

]
+2

[
Mg2+

])
. (13)

Thermodynamic equilibrium models (Sect. 2.6) use charge
balance (reflecting the requirement for solution electroneu-
trality) as an equation or constraint together with all other
considerations of species equilibria across the phases present
to obtain a unique solution. Some thermodynamic equilib-
rium models also use the cation / anion equivalent ratio to
enhance computational efficiency by identifying major ionic
species and compositional domains (e.g., Pilinis and Sein-
feld, 1987; Kim et al., 1993b; Nenes et al., 1998; Fountoukis
and Nenes, 2007). However, thermodynamic models do not
use charge balance from input data as a proxy for pH. Ther-
modynamic models (either manually, or automatically) eval-
uate inputs, in terms of a charge balance, to ensure that the
solution obtained is atmospherically relevant – as an excess
of nonvolatile cations may imply a strongly alkaline solution
that is not found in the atmosphere. This aspect is discussed
in more detail in Sect. 4.

Operationally, H+air from charge balance is subject to errors
associated with measuring aerosol-phase composition which
are likely to be large and affect interpretation of ambient con-
ditions. These are the same challenges that arise in thermo-
dynamic calculations based on particulate-only inputs where
biases or uncertainty in the measured species can propagate
to errors in acidity (Hennigan et al., 2015; Song et al., 2018).
When H+air is small in concentration or species contributing to
the charge balance are incompletely characterized, the proxy
may return a value of zero or negative (indicating a surplus
of cations) – neither physically possible – due to limited pre-
cision and accuracy in the measurements. Using measured
aerosol composition, Murphy et al. (2017) and Hennigan et
al. (2015) typically found negative values (indicating no H+,
theoretically impossible) of H+ from charge balance and an
error range large enough to span both positive and negative
H+air estimates at almost all times. State-of-the-art measure-
ments are not sufficiently precise to overcome this limita-
tion (Murphy et al., 2017). The problems associated with this
proxy are highlighted in Sect. 4, where charge balance esti-
mates near zero show no correlation with pH.

In the 1980s–1990s, experimental methods were devel-
oped to estimate the apparent net fine-particle (< 2.5 µm)
strong acidity (Koutrakis et al., 1988, 1992; Purdue, 1993).
These methods, synthesized in a workshop report (EPA,

1999; Purdue, 1993), resulted in an officially documented
method for estimating H+air from measurements. EPA Method
IO-4.1 used filter extracts in combination with measurements
from a commercially available pH probe (titration methods
are another option) to calculate an estimate of H+air or H+

as equivalent mass of sulfuric acid. The method relies on
efficient particle collection with minimal filter artifacts and
low amounts of nitrate compared to sulfate (EPA, 1999).
For example, ammonia could displace H+ and neutralize
acidic particles during collection without an efficient de-
nuder (Koutrakis et al., 1988). Extraction and dilution of
ambient samples modify their chemical environment such
that the conditions during measurement are different from
those in the ambient atmosphere, potentially affecting gas–
particle partitioning of total ammonium and dissociation of
weak acids including bisulfate (Purdue, 1993). Variations of
this method were developed to limit the extent of dilution by
measuring the pH of droplets on the surface of a hydropho-
bic filter using microelectrodes (Winkler, 1986; Keene et
al., 2004). However, the extent of dilution is still enough to
shift the sulfate–bisulfate equilibrium outside of conditions
present in many atmospheric particles. The use of a strong
acidity proxy in many past health studies complicates their
interpretation regarding the role of acidity since H+air is only
a proxy for pH.

Proxies for acidity have been used in a variety of applica-
tions. In the past, proxies were specifically applied in the con-
text of acid-catalyzed SOA. Evidence for this phenomenon
was sought in ambient data based upon landmark studies that
demonstrated an important role of acid-catalyzed reactions
in forming SOA in laboratory systems (Jang et al., 2002;
Paulot et al., 2009; Surratt et al., 2010). However, due to a
lack of direct particle acidity measurements (see Sect. 7.1
for details and discussion), researchers used different acid-
ity proxies to characterize the impacts on SOA formation
in the atmosphere. The NH+4 /SO2−

4 molar ratio was used
in several studies (Zhang et al., 2007; Peltier et al., 2007;
Tanner et al., 2009) to infer that more acidic conditions did
not enhance SOA concentrations. Froyd et al. (2010) used
airborne measurements of the NH+4 /SO2−

4 ratio to classify
acidic and neutral particle regimes, and they inferred a causal
effect of acidity on isoprene organosulfate formation at low
NOx in the eastern US. Strong associations between SOA
concentrations or SOA marker compounds and H+ derived
from the charge balance were inferred in multiple locations
(Pathak et al., 2011; Feng et al., 2012; Budisulistiorini et
al., 2013; Nguyen et al., 2014). Several other studies in-
vestigated the relationship between particle acidity and at-
mospheric SOA using different predicted or derived mea-
sures of acidity. H+air estimates based on operational extrac-
tion methods were used extensively in the literature to link
SOA formation to acidity (Surratt et al., 2007; Offenberg et
al., 2009; Zhang et al., 2012). In Beijing, Guo et al. (2012b)
found evidence of acid-catalyzed SOA based upon correla-
tions between secondary organic carbon (SOC) concentra-
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tions and H+ concentrations (nmol m−3) from ISORROPIA,
run without gaseous inputs. Li et al. (2013) also observed
correlations between SOA markers and acidity in China us-
ing pH predictions from E-AIM with aerosol inputs only.
No evidence for acid-catalyzed SOA formation was found
in a separate study in Pittsburgh, PA, that analyzed corre-
lations between modeled H+ and measured SOA concen-
trations (Takahama et al., 2006). Takahama et al. (2006)
used gas and particle phase inputs for predictions with the
GFEMN model and also observed no correlations between
pHc (with γ (c)H+ set to unity) and SOA. The studies employ-
ing proxies likely suffered from problems with the proxies;
themselves (as discussed above); and confounding factors
such as correlations between organic aerosol and sulfate, a
major source of acidity, that often occur in regional pollu-
tion (Sun et al., 2011; Nguyen et al., 2015). These seemingly
contradictory results were resolved once pHF was used, and
the conclusions reached in these prior studies have been re-
visited based upon detailed understanding of the underlying
chemical mechanisms and additional insight suggesting that
the aerosol acidity is frequently not a limiting factor in cat-
alyzing SOA formation (Surratt et al., 2010; Xu et al., 2015;
Weber et al., 2016). Acid-catalyzed isoprene SOA has now
been implemented in a wide variety of box model and chem-
ical transport model applications that now rely exclusively
on thermodynamic models for acidity estimates (Pye et al.,
2013; Marais et al., 2016; Riedel et al., 2016; Budisulistior-
ini et al., 2017). So, while proxies can provide some infor-
mation on the PM system, they should not be overinterpreted
as a measure of pH.

3.2 Gas ratio

The gas ratio (GR) was defined by Ansari and Pandis (1998)
to address the realization that inorganic PM concentrations
do not always respond linearly to changes in sulfate con-
centrations (a common assumption at the time) and sought
to develop a parameter that could be used for policy requir-
ing only measurement network data. The underlying reason
for this nonlinear response is that gas–particle partitioning
of ammonium and nitrate is sensitive to pH. The gas ratio is
defined in molar units as

GR= ([TNH4]− 2[TSO4])/ [TNO3] (14)

and uses total ammonia (NH3+NH+4 ) and total nitrate
(HNO3+NO−3 ). The numerator of the GR is sometimes re-
ferred to as free ammonia, because it is the amount of TNH3
that would be available to form NH4NO3 under the simplistic
assumption that appreciable NH4NO3 does not form when
the molar ratio of TNH4 to TSO4 is less than two (i.e., the
stoichiometric ratio of (NH4)2SO4). The concept of free am-
monia is discussed in greater detail below (Sect. 4.2.3). The
GR has not been used explicitly as a proxy for aerosol pH,
but it has been used extensively to define aerosol and com-
position regimes that relate to acidity.

Ansari and Pandis (1998) characterized inorganic PM re-
sponse for changes in TNH4, TNO3, and TSO4 as func-
tions of the GR, temperature, RH, and system concentra-
tions. Their analysis determined critical values of the GR
that defined boundaries of the PM response regimes. As
West et al. (1999) showed, the GR still requires complemen-
tary thermodynamic modeling to robustly explore the PM re-
sponse for large sulfate reductions. Other applications of the
GR include calculation of the GR as a function of altitude
(Adams et al., 1999); characterization of the sulfate–nitrate–
ammonia–water aerosol system in the context of natural and
transboundary pollution over the US (Park et al., 2004); and
exploration of the sensitivity of aerosol nitrate to changes in
temperature, RH, TNH4, TNO3, and sulfate for Pittsburgh
(Takahama et al., 2004). In addition, Blanchard and Hidy
(2003) considered the GR in a study of the response of ni-
trate to changes in TNH4, TNO3, and sulfate in the south-
eastern US. A relationship was demonstrated between the
GR and an excess-NH3 indicator that resembles free ammo-
nia but accounts for chloride and nonvolatile cations. Pun and
Seigneur (2001) used box model simulations to demonstrate
that nitrate concentrations in California’s San Joaquin Valley
would be sensitive to HNO3 levels but not NH3.

Pinder et al. (2008a) investigated the response of PM to
emissions of NOx , SO2, and NH3 and demonstrated with
AIM thermodynamic modeling that NH4NO3 can form at
low temperature even when the GR is less than zero, in con-
trast to previous assumptions. To address this limitation, they
developed an adjusted GR (adjGR) that modified the calcu-
lation of free ammonia:

adjGR=
[TNH4]−DSN× [TSO4]

[TNO3]

=
[TNH4]−

([
NH+4

]
−
[
NO−3

])
[TNO3]

, (15)

where DSN is the degree of sulfate neutralization. Using a
chemical transport model, Pinder et al. (2008a) demonstrated
that the response of nitrate concentrations to changes in SO2
and NH3 emissions could be reasonably represented as a
function of the adjGR and GR, but the adjGR provided a
better fit for cases where DSN differs significantly from a
value of two. In a separate study, Pinder et al. (2008b) found
a strong relationship between the adjGR and the sensitivity
of inorganic PM concentrations to NH3 levels at sites in the
eastern US.

Additional metrics similar to GR have been defined. Wang
et al. (2011) considered the GR and adjGR in a study of the
sensitivity of inorganic aerosols to NH3 in mainland eastern
China. They also defined a new indicator, the flex ratio (FR),
calculated based on predictions of a statistical response-
surface model developed from about 100 CTM simulations
probing the sensitivity of PM to NH3 and NOx emissions
(See Xing et al., 2018, for a precise definition). Nitrate con-
centrations are more sensitive to NH3 than NOx emissions

Atmos. Chem. Phys., 20, 4809–4888, 2020 www.atmos-chem-phys.net/20/4809/2020/



H. O. T. Pye et al.: The acidity of atmospheric particles and clouds 4825

for FR > 1, and nitrate concentrations are more sensitive to
NOx than NH3 emissions for FR< 1. The FR provides a rel-
atively precise estimate of the transition point between NH3-
rich and NH3-poor conditions for existing NOx emissions
levels. However, use of the FR remains limited due to its de-
pendence on the availability of response-surface model pre-
dictions, which are currently limited to regions in Asia (e.g.,
Xing et al., 2011; Zhao et al., 2015). Wang et al. (2011) re-
ported that the nitrate response regimes indicated by the GR
and FR were qualitatively consistent in their study.

The studies described above, and other studies (e.g.,
Campbell et al., 2015; Dennis et al., 2008; Lee et al., 2006;
San Martini et al., 2005; Zhang et al., 2009), have used the
GR and adjGR to understand the response of the sulfate–
nitrate–ammonium–water aerosol system to changes in pre-
cursor concentrations and emissions. The GR provides a
reasonable indication of the sensitivity of inorganic PM to
changes in TNH4, TNO3, and sulfate in many cases. How-
ever, the GR and similar metrics do not consider the role
of nonvolatile cations, and universally applicable ranges of
the GR for demarcating response zones are difficult to de-
fine due to the dependence on other factors (temperature,
RH, and system concentrations). The GR has not been used
explicitly as a proxy for particle acidity, but the response
of nitrate to precursor concentrations can be represented as
a function of the GR using S-shaped curves (Pinder et al.,
2008a) that resemble the sigmoid curves reported for gas–
particle partitioning of TNO3 as a function of pH (Guo et al.,
2016). Therefore, some relation is expected between these
indicators and particle acidity, which is shown in Sect. 4.2.3.
While the above studies applied different proxies, recent
work demonstrates the direct role of aerosol pH in modu-
lating the sulfate–nitrate–ammonium–water aerosol system.
Vasilakos et al. (2018) demonstrate that nitrate partitioning in
response to changing SO2 emissions also depends on NVCs,
which must be properly accounted for to accurately model
pH.

3.3 Semivolatile species partitioning

Aerosol pH affects the gas–particle partitioning of
semivolatile acidic and basic compounds in the atmo-
sphere, including inorganic (HNO3, NH3, and HCl) and
organic (amines, formic, acetic, and oxalic acid) species.
The underlying reason why pH affects partitioning is that the
protonated and deprotonated forms of the species vary con-
siderably in their volatility (Keene et al., 1998; Meskhidze
et al., 2003; Guo et al., 2017b). Based on this insight,
estimates of aerosol pH can be derived from simultaneous
measurements of the abundance of a compound in the gas
and condensed phases, assuming that the species in question
are in thermodynamic equilibrium. For example, HNO3
partitioning is determined by

HNO3(g) 
 HNO3(aq), (R1)
HNO3(aq) 
 H+(aq)+NO3

−

(aq). (R2)

Reactions (R1) and (R2) are characterized by Henry’s law
constant (KH) and the acid dissociation constant (Ka), re-
spectively. These equilibrium expressions can be combined
(see also the derivations provided in the supporting informa-
tion of Guo et al., 2017b, and Nah et al., 2018) and rear-
ranged to yield

aH+ =
KHKapHNO3

aNO−3

, (16)

where pHNO3 is the partial pressure of nitric acid, aNO−3
is

the nitrate activity in deliquesced aerosols, and aH+ is the
H+ activity in the aqueous aerosols. pH can be expressed
as the fraction of total nitrate in the particle (Fp,NO3 =

[NO−3 ]/[TNO3] by moles), the gas constant (R), tempera-
ture, equilibrium constants, and molality-based activity coef-
ficients for species i (γi):

pH=−log10

(
KHKa

(
1−Fp,NO3

)
RT

γNO−3
Fp,NO3

)
. (17)

An analogous version of Eq. (17) could be applied to any
monovalent acid–anion pair (e.g., hydrochloric acid–chloride
partitioning). pH based on Fp,NH4 ([NH+4 ]/[TNH4] by mole)
is slightly different.

pH=−log10

(
γNH4+Fp,NH4

KHKa
(
1−Fp,NH4

)
RT

)
, (18)

where Ka is the acid dissociation constant for NH+4 :

NH4
+

(aq) 
 H+(aq)+NH3(aq). (R3)

pH from Eqs. (17) and (18) becomes uncertain when Fp is in
the vicinity of one or zero, especially when considering the
effects of observational uncertainty.

Current analytical techniques allow for the direct measure-
ment of nitric acid while the aqueous aerosol nitrate con-
centration can be derived from the aerosol nitrate mass con-
centration (µgm−3, directly measured) by using the ALWC
(measured or estimated). Conversion from aqueous concen-
trations to activity requires activity coefficients, which can
be computed (e.g., Clegg et al., 1992), obtained from one of
the aerosol thermodynamic equilibrium models, or approx-
imated with a relevant ion pair (pH±) (Sect. 2). Most stud-
ies to date have simplified the above expressions by assum-
ing activity coefficients of unity (molal basis), with aqueous
concentrations replacing species activities in Eq. (16) above
(Meskhidze et al., 2003; Keene et al., 2004) and the resulting
pH (Eqs. 17–18) becoming pHF.
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Gas–particle partitioning of TNH4, total chloride (TCl =
HCl + Cl−), and TNO3 are all candidates for estimating
pH. The approach was first discussed in relation to the pH
of sea salt aerosols in the marine boundary layer (Keene
et al., 1998). However, the phase partitioning behaviors of
HCl and HNO3 were inconsistent, as measured HNO3/NO−3
implied a pH in the ∼ 1–2 range, but HCl/Cl− levels im-
plied a much higher pH (Keene et al., 1998). These discrep-
ancies were postulated to result from positive biases in the
HNO3(g) measurements, uncertainties in the thermodynamic
constants, and kinetic limitations to mass transfer (devia-
tion from equilibrium); however, the effects of mixing state
and ability to predict liquid water con- tent were not dis-
cussed. The first quantitative estimates of aerosol pHc (mo-
larity basis; see Eq. 2) via partitioning were done by Keene
and Savoie (1998) and used HCl/Cl− partitioning to charac-
terize sea salt particles mixed with anthropogenic pollution.
Meskhidze et al. (2003) used measured HNO3/NO−3 parti-
tioning to quantify aerosol pHF, with specific applications
to Fe solubility. Keene et al. (2004) extended the analysis
and compared the size-dependent aerosol pHc predicted by
the phase partitioning of NH3, HCl, and HNO3 in marine
air. They observed general agreement in the pH predictions
based on HNO3 and HCl partitioning, while acidity based
on NH3 partitioning was systematically lower by ∼ 1–2 pH
units. Keene et al. (2004) assumed γ (c)H+ was unity in their
calculations and noted this as a likely source of uncertainty.
In a study a decade later, Young et al. (2013) compared the
aerosol pHc (by size, with γ (c)H+ computed by E-AIM) pre-
dicted by NH3, HNO3, and HCl phase partitioning at a con-
tinental location near Denver, CO. In this study, aerosol pHc
derived from NH3 and HNO3 partitioning generally agreed,
while pHc predicted from HCl partitioning was systemati-
cally higher by ∼ 1–2 pH units than the other methods. The
authors attributed these differences to order-of-magnitude
uncertainties in the Henry constant of HCl (Sander, 2015).
Similar problems with HCl/Cl− partitioning were observed
in the northeastern US, potentially due to uncertainties in
the thermodynamic properties of HCl or nonvolatile cation
measurement artifacts (Haskins et al., 2018). Aerosol pH
(pHc and pHx both evaluated) derived from NH3 partitioning
agreed well with E-AIM and ISORROPIA predictions un-
der highly polluted conditions in Mexico City (Hennigan et
al., 2015). In this study, HNO3 and HCl data were not avail-
able to compare with the NH3 partitioning calculations, so
an evaluation of differences, as was performed by Keene et
al. (2004), was not possible.

The partitioning of semivolatile carboxylic acids should
also provide insight into aerosol pH conditions (Keene et al.,
2004). Nah et al. (2018) found that oxalic acid partitioning
was consistent with its known thermodynamic properties and
thus represented a reasonable proxy for aerosol pH in a study
in the southeastern US. However, in the same study, the par-
titioning of formic and acetic acid implied aerosol pH levels
that were∼ 5–6 pH units higher than that predicted by ISOR-

ROPIA or other semivolatile species, including oxalic acid
(Nah et al., 2018). The reasons for such dramatic differences
are not known, but the formation of organic salts may be one
explanation (Paciga et al., 2014; Hakkinen et al., 2014; Tao
and Murphy, 2019a).

Efforts to reconcile some of the above differences using
model simulations are challenged by large uncertainties in
the emissions (Kelly et al., 2016) and secondary formation
(Millet et al., 2015) of key species. Although few other com-
parisons of aerosol pH based upon direct measurements of
semivolatile partitioning have been conducted, semivolatile
species partitioning is used as a key evaluation of thermo-
dynamic model predictions of pH. Guo et al. (2015) com-
pared ISORROPIA predictions of ALWC and NH3 parti-
tioning with direct measurements in the southeastern US
during the Southern Oxidant and Aerosol Study (SOAS).
ALWC is required for accurate calculations of aH+ (hence
pH), while NH3 partitioning (for aqueous particles) is depen-
dent upon pH. Guo et al. (2015) observed excellent model–
measurement agreement for both ALWC and NH3 partition-
ing, suggesting that their pH predictions were similarly ac-
curate. Comparisons of modeled and measured semivolatile
species partitioning are now regularly used to check thermo-
dynamic model predictions of aerosol pH (e.g., Guo et al.,
2016, 2017b, 2018b; Murphy et al., 2017; Nah et al., 2018;
Song et al., 2018). For example, predictions of HNO3/NO−3
partitioning were systematically biased at RH below 40 %,
suggesting that pH predictions under such RH conditions are
likely problematic (Guo et al., 2016).

Practical measurement limitations have precluded more
extensive evaluations of direct pH predictions with partition-
ing predictions of pH. First, the method requires measurable
concentrations of a compound in both gas and condensed
phases. Conditions in which a species is partitioned almost
entirely to one phase preclude the application of this method.
For example, Keene et al. (2004) were unable to make quan-
titative estimates of aerosol pH based upon formic or acetic
acid partitioning since the aerosol concentrations were fre-
quently below method detection limits. In certain environ-
ments, HNO3 is partitioned almost entirely in the gas phase,
limiting its use for aerosol pH determinations. This limita-
tion also extends to the ability to test and validate the ther-
modynamic models, whose phase partitioning predictions
are a key model check since direct pH measurements are
not yet applied to ambient particles (Liu et al., 2017). Sec-
ond, this approach assumes instantaneous equilibrium, which
does not always hold (see Sect. 6 for a discussion on devia-
tions from equilibrium). The partitioning method is suscep-
tible to biases associated with sampling semivolatile com-
ponents in either the gas or particle phases. Due to their
semivolatile nature, measurements of these compounds can
suffer positive (overestimation) or negative (underestima-
tion) artifacts, and the challenges associated with measur-
ing organic (Turpin et al., 2000; Eatough et al., 2003; Lip-
sky and Robinson, 2006) and inorganic (Ashbaugh and El-
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dred, 2004; Talbot et al., 1990; Pathak et al., 2004; von Bo-
brutzki et al., 2010) semivolatile compounds have been well
documented. Despite major advances in analytical capabili-
ties, such challenges persist (Dhawan and Biswas, 2019; Guo
et al., 2016; Tao and Murphy, 2019a). Finally, the assump-
tion regarding the phase state of the aqueous aerosol (i.e.,
whether it is on the efflorescent or the deliquescent branch
of the water uptake curve, given hysteresis) has a profound
impact on the amount of liquid water present in the aerosol,
which in turn affects the ionic strength and ion speciation in
solution (hence pH). Although studies have confirmed that
the liquid water content can be in agreement with observa-
tions (Guo et al., 2015) and in combination with semivolatile
partitioning measurements provide a well-constrained esti-
mate for aerosol pH, the ALWC predictions central to the
pH calculations are not routinely evaluated. While organics
do not appreciably affect pH in particles consisting of a sin-
gle aqueous phase (Battaglia Jr. et al., 2019), the presence
of organic species could result in highly viscous (semisolid
or glassy) particles where the system is not at equilibrium
and pH has a heterogeneous distribution throughout the parti-
cle. All these factors eventually limit the precision and range
of atmospheric conditions for which pH estimates based on
semivolatile species partitioning can be used. The accuracy
of partitioning as well as other proxies as estimates of pH is
further discussed in Sect. 4 (specifically Sect. 4.2.3 and 4.3)
based on box model calculations.

4 Box model guidance for the use of approximations
and proxies of acidity for fine particles

This section applies the concepts introduced in previous sec-
tions regarding the definition of pH (Sect. 2.1), approxima-
tions of pH (Sect. 2.3), and proxies of acidity (Sect. 3).
Specifically, E-AIM, AIOMFAC–GLE, MOSAIC, ISOR-
ROPIA II, and EQUISOLV II are used to carry out an inter-
comparison of pH predictions, approximations, and/or prox-
ies using idealized and ambient fine-particle compositions.
Observations of gas–liquid equilibrium of semivolatile inor-
ganic compounds were obtained from published studies from
North America, Europe, and China representing what can be
found in typical regional and global model studies.

4.1 Idealized scenarios

4.1.1 Description of systems

In this section, well-constrained acidity calculations were
carried out by the models described in Sect. 2.6. The test
cases involve the prediction of gas–liquid equilibrium of wa-
ter and semivolatile inorganic compounds as well as pH for
a range of equilibrium RH. Three aerosol test systems are
compared: (1) an ammonium- and sulfate-rich system; (2)
a NaCl-rich, sea-salt-like aerosol system; and (3) a nitrate-
and ammonium-rich, but relatively sulfate-poor system. For

each system, moderately acidic and highly acidic conditions
were investigated, while covering seven RH levels: 99 %,
90 %, 80 %, 70 %, 60 %, 50 %, and 40 %. All calculations
were for a temperature of 298 K. Molar input concentra-
tions were chosen to represent realistic atmospheric condi-
tions, for example using gas-phase ammonia concentrations
of 1.2–25 ppbv typical for suburban to polluted air (Wang
et al., 2015) and sulfate amounts resulting in ∼ 3–8 µgm−3

inorganic aerosol mass concentration in the highly acidic
cases. The input concentrations and conditions for the sys-
tems are summarized in Table 4. These input concentrations
describe initial (nonequilibrium) total (gas + liquid) molar
amounts per unit volume of air – except for water, which
is constrained by the given RH. The thermodynamic mod-
els equilibrate the different dissolved species and volatile in-
organic gases, including solving for the equilibrium degree
of bisulfate dissociation (HSO−4 ) in the liquid aerosol phase,
the ammonia–ammonium equilibrium, and the aerosol water
content. Mean molal activity coefficients for (H+, HSO−4 )
or (H+, Cl−) cation–anion pairs are used in sulfate-rich
and sulfate-poor systems, respectively, to estimate pH using
pH± (H,X) (Eq. 7). The calculated pH values for all systems
are summarized in Tables S3–S5.

– System 1: water + (NH4)2SO4+H2SO4+NH3.

The first test system is an acidic aqueous ammonium
+ sulfate / bisulfate system. Input concentrations of the
electrolytes include (NH4)2SO4 (99.9 % by mass or
50 % by mass for moderately and highly acidic cases
respectively) and H2SO4 with a separate gas-phase in-
put of NH3 (mol m−3 air), all of which are then subject
to change within a thermodynamic equilibrium calcu-
lation. No solid–liquid equilibria were considered. The
highest pH values predicted are ∼ 4 for the slightly
acidic case at 99 % RH, while the lowest pH values of
∼ 0.53 were predicted for the highly acidic case at 40 %
RH.

– System 2: water + Na2SO4+NaCl+H2SO4+HCl.

The second system represents an acidified sea-salt-like
aerosol solution, in which Mg2+ was substituted by
charge-equivalent amounts of Na+. A highly acidic and
a moderately acidic variant were created by specifying
different amounts of sulfuric acid. The input for this sys-
tem includes HCl, some of which will exist in the gas
phase.

– System 3: water + (NH4)2SO4+ H2SO4+NH3+

HNO3.

The third system represents an acidic, nitrate-rich, and
comparably sulfate-poor aerosol (XT > 2 in Eq. 9). It
involves the gas–liquid equilibration of the inorganic
base NH3 and the acid HNO3, critical for establishing
the equilibrium pH in the system. In the moderately
acidic case, the pH values at 99 % RH are ∼ 2.5, while
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Table 4. Input concentrations (total gas+ aerosol) for each of the highly and moderately acidic cases of inorganic systems 1–3. Compositions
are specified in terms of moles of electrolyte and gas-phase species per m3 of air and rounded to three significant figures. Model calculations
were carried out for seven equilibrium RHs from 99 % to 40 %, at 298.15 K and 101.325 kPa.

System no., n(NH4)2SO4 nH2SO4 nNH3 nHNO3 nNa2SO4 nNaCl nHCl
case (mol m−3) (mol m−3) (mol m−3) (mol m−3) (mol m−3) (mol m−3) (mol m−3)

1, moderately acidic 2.50× 10−08 3.37× 10−11 1.00× 10−06 0 0 0 0
1, highly acidic 1.50× 10−08 2.02× 10−08 5.00× 10−08 0 0 0 0
2, moderately acidic 0 1.00× 10−10 0 0 5.61× 10−09 1.04× 10−07 1.00× 10−08

2, highly acidic 0 5.00× 10−08 0 0 5.61× 10−09 1.04× 10−07 1.00× 10−06

3, moderately acidic 2.50× 10−08 3.37× 10−11 1.00× 10−06 1.00× 10−06 0 0 0
3, highly acidic 2.50× 10−08 3.37× 10−11 1.00× 10−07 1.00× 10−07 0 0 0

the pH values for the highly acidic case at 40 % RH were
near 1.5.

4.1.2 Comparison of pH predictions and approximate
measures of pH

Results for systems 1, 2, and 3 are shown in Fig. 3 pan-
els (a), (b), and (c) for moderately acidic and (d), (e), and
(f) for highly acidic scenarios. The pH values predicted by
those models accounting for the single-ion activity coeffi-
cient of H+ (E-AIM and AIOMFAC–GLE, solid symbols in
Fig. 3) differ only slightly from each other. For example, the
E-AIM and AIOMFAC–GLE calculations for system 1 yield
pH differences of 0.03 to 0.2 pH units for RH between 99 %
and 80 %, while differences in magnitude of 0.21 to 0.35 pH
units result for RH between 70 % and 40 %. Differences are
expected to be smaller at high RH, where high water con-
tents result in relatively high dilution and model–model dif-
ferences in activity coefficients become smaller (see Sect. 2.5
for challenges at high ionic strength). However, this system
illustrates that even at 99 % RH the H+ activity coefficients
deviate from a value of one and are as small as 0.4. The pH
predictions solely based on free H+ (pHF, Eq. 6) frequently
deviate from pH by 1 unit for the idealized scenarios consid-
ered here (Fig. 4). Predictions based on total H+ (pHT, Eq. 8)
can differ from pH by up to 2 units.

MOSAIC, EQUISOLV II, and ISORROPIA II use mean
molal ion activities when computing the dissociation of
bisulfate, the gas–liquid equilibrium of ammonia, and other
equilibria (single-ion activity coefficients are not computed
by these models). Therefore, pH predictions with such mod-
els require an approximation, for example the application of
the mean molal ion activity approach of Eq. (7) for pH±.
Although not a perfect approximation, pH± predictions can
be very close to those carried out with the single-ion activ-
ity coefficient consideration. For example, for the moderately
acidic case in system 1 (Fig. 3a), MOSAIC predictions dif-
fer from those by E-AIM by about 0.03 pH units at 99 %
RH (0.07 pH units with respect to AIOMFAC–GLE), 0.3 pH
units at 80 % RH, and 0.46 pH units at 40 % RH (0.75 pH
units with respect to AIOMFAC–GLE). For system 1, the

MOSAIC pH± value is generally lower than the pH from
E-AIM and AIOMFAC–GLE. In the highly acidic system
1 case, the pH difference between MOSAIC and E-AIM is
within 0.03–0.21 units, except for a 0.33 pH unit difference
at 40 % RH. The ISORROPIA II model shows the largest
variation in predicted pH over the 99 % to 40 % RH range,
especially for the highly acidic case (Fig. 3d). For reasons
of enhanced computational efficiency, ISORROPIA II uses
lookup tables to determine the water content at a specified
RH for a given aerosol system and is run with a higher tol-
erance level for numerical convergence than, for example,
AIOMFAC–GLE. These efficiency adjustments may con-
tribute to a notable difference in predicted water content and
resulting pH±, particularly at 99 % RH, compared to the pre-
dictions with more rigorous equilibrium solvers used by the
other models.

Generally, the observed differences in pH predicted by the
thermodynamic models occur due to a combination of rea-
sons. These include (1) differing predicted liquid water con-
tent at given equilibrium RH (water activity); (2) the pre-
dicted degree of bisulfate dissociation, which depends on
the aqueous-phase composition and the values of the pre-
dicted activity coefficients (for H+, SO2−

4 , and HSO−4 ) in-
volved in the equilibrium; (3) the gas–liquid partitioning of
NH3 (or other volatile components for systems 2 and 3); and
(4) the use of single-ion vs. mean molal ion activity coef-
ficients in the calculation or approximation of pH. Reasons
(1)–(3) affect each other directly, such that any inherent dif-
ference among the model equations, for example the tem-
perature and ionic strength dependence of water and ion ac-
tivity coefficients, will lead to a different equilibrium solu-
tion for the aqueous-phase composition and pH. The inter-
play among composition-dependent activity coefficients and
the gas–liquid or ion dissociation equilibria are nonlinear
and may amplify or dampen effects on predicted pH in a
complex manner. Therefore, given the type of test computa-
tions with gas–liquid equilibria considered here, differences
among models on the order of 0.05–0.2 pH units (or even
larger at very high ionic strengths resulting at moderate to
low RH) are to be expected. Within this range, pinpointing
which of the models is closest to the truth is not possible, but
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Figure 3. Comparison of pH predictions by six aerosol thermodynamics models for seven RH levels, including gas–liquid partitioning of
volatile components (see details in Table 4). Upper panels show moderately acidic cases, and lower panels show highly acidic cases (with
different y-axis scaling). Systems are described in Sect. 4.1: (a, d) system 1 is sulfate-rich aqueous (NH4)2SO4+H2SO4+NH3; (b, e) system
2 is acidified sea-salt-like aqueous aerosol (Na2SO4+NaCl+H2SO4+ HCl); (c, f) system 3 is nitrate-rich aqueous (NH4)2SO4+H2SO4+
NH3+HNO3. Models E-AIM and AIOMFAC–GLE (solid symbols, green and blue respectively) predict pH based on the single-ion activity
coefficient of H+; the other models (open symbols, MOSAIC in upward orange triangle, ISORROPIA II in purple diamond, EQUISOLV II
in downward yellow triangle) approximate pH by a version of pH±; the specific mean ion activity coefficients used for pH± by those models
are listed in Supplement Tables S3–S5 for each system.

Figure 4. Comparison of different approximate pH values vs. the molal pH by system (panels a, b, and c for system 1, 2, and 3) introduced in
Sect. 4.1 and also shown in Fig. 3, all calculated by AIOMFAC–GLE. Solid symbols show the moderately acidic cases and open symbols the
highly acidic cases. pH approximations are based on total H+ (pHT), free H+ (pHF), and pH± (defined in Table 1). For the pH± variants, the
H+ activity coefficient was approximated by the mean molal activity coefficient of H+ combined with either SO2−

4 , HSO−4 , Cl−, or NO−3
(Cl− only for system 2; NO−3 only for system 3). Arrows on the lower right indicate the relationship between increasing RH and pH for each
system; the highest RH shown is 99 % in all cases. Colors indicate different pH approximations (pHT vs. pHF vs. pH±) including activity
coefficient approximations based on different ion pairs (for pH±).
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in general, pH from models that calculate single-ion activ-
ity coefficients (and hence aH+ ) using a rigorous numerical
approach are to be preferred over those that assume a unity
H+ activity coefficient or those that assume a mean activity
coefficient. Figure 3 indicates that the disagreement between
model predictions typically increases with decreasing water
activity (RH) for both moderately and highly acidic condi-
tions.

For system 2 (sea-salt-like), all models predict the high-
est acidities (lowest pH) at high RH, with the pH values in-
creasing with decreasing RH for both the slightly and highly
acidic calculation variants (Fig. 3b, e). This is because most
of the HCl in the system is present in the gas phase, and
this amount remains relatively constant over the whole RH
range. Chloride ion activity in the aqueous phase rises as RH
decreases and the aqueous solution becomes more concen-
trated. As a result, H+ activity decreases with decreasing RH
to compensate and so maintain equilibrium with the roughly
constant partial pressure of HCl(g). This rise in pH may be
unrealistic compared to typical ambient conditions due to the
high HCl and absence of ammonia in this test case. The pH
predictions by E-AIM model III and AIOMFAC–GLE agree
well (absolute differences of 0.01 to 0.06 pH units). The MO-
SAIC and ISORROPIA II predictions of pH in system 2 were
carried out using the ions (H+, Cl−) for pH±. For the mod-
erately acidic conditions, the MOSAIC- and ISORROPIA-
derived pH± are in good agreement with E-AIM only at
99 % RH (0.02 unit difference), while larger deviations of
0.15 to 0.75 pH units occur for 90 % to 40 % RH. In this
moderately acidic case, MOSAIC, ISORROPIA II, and EQ-
UISOLV II tend to systematically overpredict the pH value
towards lower RH relative to the other models. In the highly
acidic case, the MOSAIC–E-AIM deviation is between 0.07
and 0.43 pH units at RH < 99 %. Such deviations are linked
to large variations in the molality-based H+ activity coef-
ficients ranging from ∼ 0.72 at 99 % RH to > 30 at 40 %
RH (see AIOMFAC–GLE values in Table S4), which lead to
larger errors when mean molal activity coefficients are used
to obtain pH±. This important influence of the H+ activity
coefficient or its approximation via γ±(H+, Cl−) is exempli-
fied by comparison of the ISORROPIA II predictions with
E-AIM and the other models. The very high activity coeffi-
cients of H+ and Cl− predicted by E-AIM, which get larger
as RH decreases, result in only very low molalities of H+

left in the aqueous aerosol. ISORROPIA II yields a mean
activity coefficient of (H+, Cl−) that is very low compared
to that of the other models and varies little with RH, which
means that the predicted HCl concentration in the aerosol is
substantially higher. This results in the lower, and rather in-
variant, predicted pH± by ISORROPIA II for RH < 80 %.
This example further indicates that assuming activity coeffi-
cients of unity in the computation of pHF based on free-H+

molality (or for pHT) can lead to errors in this approxima-
tion of actual pH values in concentrated solutions (see also
Sect. 4.2).

The pH predictions by E-AIM model III and AIOMFAC–
GLE agree relatively well for system 3, which contains
mainly ammonium nitrate (Fig. 3c, f), especially in the mod-
erately acidic case. There, pH differences are 0.02 units at
99 % RH and about 0.10–0.12 units between 90 % and 40 %
RH, with AIOMFAC–GLE predicting the slightly lower pH.
In the highly acidic case, the differences are similarly low
above 70 % RH, while they are ∼ 0.18 to 0.25 pH units be-
tween 70 % and 40 % RH. The deviations between the E-
AIM pH and MOSAIC, ISORROPIA II, or EQUISOLV II
pH± are clearly larger than those between AIOMFAC–GLE
and E-AIM. Even at high RH (> 80 %), the acidity esti-
mates from ISORROPIA II and MOSAIC can differ from
each other by almost 1 pH unit (Fig. 3f). Furthermore, the
models using mean molal activity coefficients disagree from
E-AIM and AIOMFAC–GLE at the highest RH where rela-
tively good agreement is expected due to more dilute condi-
tions. There are several reasons mentioned above that may
be responsible for these deviations. The activity coefficient
value (reason (4) above) contributes to the difference be-
tween MOSAIC/ISORROPIA II/EQUISOLV II and the E-
AIM and AIOMFAC–GLE models, because the mean mo-
lal ion activity coefficient used as a substitute for γH+ in the
first three of these models can either over- or underpredict
the single-ion γH+ depending on the solution composition.
The differences in pH predictions by ISORROPIA II com-
pared to those by AIOMFAC–GLE and E-AIM at 99 % and
90 % RH (Fig. 3f) are mainly because ISORROPIA II yields
free-H+ molalities (mH+ ) that are similar at the two RH lev-
els, whereas for E-AIM they differ by a factor of 4 (higher
RH, lower molality). This difference seems to be related to
variation in the predicted equilibrium gas–aerosol partition-
ing of total H+: at 99 % RH the cumulative particle-phase
mass concentrations of H++HSO−4 (∼ total particle-phase
H+) per unit volume of air predicted by E-AIM and ISOR-
ROPIA II are similar, but at 90 % RH ISORROPIA II predicts
a factor of 6 less total H+ than E-AIM. At similar ALWC,
this yields a lowermH+ and higher pH than expected at 90 %.
Elucidating detailed differences in acidity predictions be-
tween the thermodynamic models for nitrate-containing sys-
tems like system 3 should be considered in future work.

Figure 4 compares the different pH estimation options pro-
posed in Sect. 2.3 for use by models that do not predict the
single-ion activity coefficient of H+. All calculations (for
the systems shown in Fig. 3 and discussed above) were car-
ried out using AIOMFAC–GLE for consistency, and E-AIM
is expected to yield similar results. The pH approximations
based on total or free-H+ molality imply the assumption of
an H+ activity coefficient of unity. The comparison in Fig. 4
shows that these two options tend to show larger deviations
from the molality-based pH predicted by AIOMFAC–GLE
compared to the use of single-ion activity coefficients. Both
pHT and pHF approximate pH within about 0.5 pH units un-
der highly dilute conditions with pH greater than about 3.
However, pHT becomes a poorer approximation of pH when
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pH values decrease below 3, mainly due to the increasing
concentrations of HSO−4 . In the case of the three systems
compared here, pHF is overall a better estimate for pH than
pHT, such that use of total H+ is not recommended for atmo-
spheric aerosols. The suitability of pHF as an approximation
may be influenced by the specific system being tested (e.g.,
RH condition, composition) and needs of the application.

Overall, the AIOMFAC–GLE model results suggest that
pH± (with (H+, HSO−4 ) or (H+, Cl−) as the ions for the com-
putation of γ (m)

±,HX used in Eq. 7) is better than pHF or pHT
in approximating pH. Computation of the mean molal activ-
ity coefficient based on (2 H+, SO2−

4 ) leads to a better pH±
approximation only in the moderately acidic case of system
1 (Fig. 4a) at RH < 90 %, while it is worse than using (H+,
HSO−4 ) in the highly acidic case of system 1 (open symbols
Fig. 4a). Therefore, the use of a 1 : 1 electrolyte for pH± is
recommended. This mean molal activity coefficient approach
is recommended when ISORROPIA II, EQUISOLV II, or
MOSAIC are used as thermodynamic models for the calcu-
lation of aerosol properties.

4.2 Ambient scenarios

4.2.1 Description of datasets and calculations

Datasets were selected to cover a broad range of acidity, tem-
perature, RH, and species present that drive aerosol pH (Ta-
ble 5). In addition to the major species NH+4 /NH3, SO2−

4 ,
and NO−3 /HNO3, the dataset also contained variable concen-
trations of Cl−/HCl and the nonvolatile species Na+, Ca2+,
K+, and Mg2+ (not shown in the table). A total of more than
7700 data points were available for evaluation from Tianjin,
China; the California Nexus (CalNex) campaign; Cabauw,
the Netherlands; the Wintertime Investigation of Transport,
Emissions, and Reactivity (WINTER) campaign; and the
SOAS campaign, with∼ 7200 data points having relative hu-
midities above 35 % and spanning a temperature range from
252 to 305 K (see also Nenes et al., 2020). Given that the
MOSAIC box model required – in its current implementa-
tion – a manual setup of each input condition, a few data
points were selected from the total available in each dataset
to compare against the corresponding predictions from the
other models. The points were selected to span the range of
RH and sulfate amounts encountered in the datasets. Four
data points per study location were selected, giving 20 to-
tal simulations from MOSAIC to compare against. The MO-
SAIC inputs are summarized in Supplement Table S9 with
results shown in Fig. S6.

Before thermodynamic calculations are carried out with E-
AIM, AIOMFAC–GLE, MOSAIC, and ISORROPIA II, each
data point was evaluated to ensure that the resulting thermo-
dynamic solution was atmospherically relevant – i.e., with
an alkalinity that does not exceed that of carbonate aerosol
(e.g., CaCO3). Specifically, the charge-equivalent amount of
cations is not allowed to exceed the abundance of anions

which would result in considerable amounts of hydroxyl ion.
In the case of E-AIM and AIOMFAC–GLE, the composition
data were preprocessed and evaluated before input, while
MOSAIC and ISORROPIA II evaluate the data automati-
cally and issue error messages or apply adjustments to the
input. The input composition data for each model consist of
total amounts of Na+, K+, Mg2+, Ca2+, TNH4, TCl, and
TNO3, in moles per unit volume of air. The prefix T em-
phasizes the fact that the final three of the amounts are to-
tals of NH+4 (aq), NH3(aq), and NH3(g); Cl−(aq) and HCl(g); and

NO−3 (aq), HNO3(aq), and HNO3(g). The amount of H+ needed
to achieve charge balance is calculated from

Z =[TNH4] + [Na+] + [K+] + 2[Mg2+
] + 2[Ca2+

]

− [TCl] − [TNO3] − 2[TSO4]. (19)

This equation differs from the charge balance proxy intro-
duced in Sect. 3 since it considers the total (gas + particle)
amounts of semivolatile acids and bases rather than exclu-
sively the particle phase as in Eq. (13). If the value of Z
is zero, then the system is charge balanced with all TNH4
present as NH+4 (during a model calculation NH3 can still
partition into the gas phase, but this will occur by dissocia-
tion of NH+4 ). If the value of Z is greater than zero, there is
an excess of cations, aZ amount of TNH4 is assumed to exist
as NH3, and the NH+4 ion in the system is reduced to [TNH4
– Z]. If the value of Z is less than zero, there is an excess
of anions even when all TNH4 is present as NH+4 . In this
case, an amount of H+ equal to −Z is added to the system.
For E-AIM and AIOMFAC, the calculation of Z and adjust-
ments specified above yield the starting point for the calcula-
tion. The amounts of NH+4 (aq), NH3(aq), NH3(g), HSO−4 (aq),

OH−(aq), HCl(g), and HNO3(g) in the system at the specified
RH and temperature are determined by solving the relevant
equilibrium equations. In MOSAIC, the excess Cl− and NO−3
anions are transferred to the gas phase as HCl and HNO3, in
that order, while any excess SO2−

4 in the particle phase is
balanced by adding H+ to the system. The adjusted gas- and
particle-phase concentrations are then used as the initial con-
ditions for further dynamic gas–particle partitioning. In the
case of ISORROPIA II, the aerosol is required to be more
acidic than aqueous CaCO3 at given a RH, so Z should be
less than or equal to zero.

The presence of nonvolatile cations is handled slightly dif-
ferently by the models. When calcium is present in ISOR-
ROPIA II, the code first forms CaSO4 as a precipitate (Foun-
toukis and Nenes, 2007). If there is any remaining Ca and
its mole equivalent exceeds those of SO2−

4 , NO−3 , and Cl−

combined, an error message is noted and the code assumes
that the excess Ca2+ is in the form of CaCO3 and the pH of
dissolved CaCO3 is prescribed at the given RH (see Sect. 6.1
for a discussion of carbonate chemistry and pH). If all Ca
precipitates out as CaSO4, then the ISORROPIA II code ex-
amines if the mole equivalents of Na+, K+, and Mg2+ ex-
ceed that of the NO−3 , Cl−, and remaining SO2−

4 combined.
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Table 5. Characteristics of the datasets used for the box model intercomparison. Values (columns 3–7) are reported as the mean followed by
the standard deviation in parentheses. n is the number of data points.

Dataset ID and Location and RH T Sulfate Total ammonium Total nitrate n

reference period (%) (K) (µg m−3) (µgm−3) (µgm−3)

Tianjin (Shi et al., 2019) Tianjin, China (9–22 Aug 2015) 57 (12) 302 (3) 21 (11) 38 (8) 18 (12) 227
CalNex (Guo et al., 2017b) Pasadena, CA, USA (17 May–15 Jun 2010) 71 (16) 291 (4) 2.9 (1.7) 3.4 (1.8) 10. (9.7) 482
Cabauw (Guo et al., 2018b) Cabauw, the Netherlands (2 May 2012–4 Jun 2013) 78 (15) 282 (7) 1.9 (1.6) 9.3 (6.8) 4.1 (3.9) 2612
WINTER (Guo et al., 2016) Eastern US aloft (3 Feb 2015) 56 (19) 271 (7) 1.0 (0.1) 0.53 (0.44) 2.1 (2.1) 3121
SOAS (Guo et al., 2015) Centreville, US (6 Jun–14 Jul 2013) 73 (17) 298 (3) 1.8 (1.2) 0.78 (0.50) 0.12 (0.15) 780

If that is the case, an error message is issued, and the ex-
cess cations are ignored. Otherwise, the code then uses the
inputs of Na+, free Ca2+, free SO2−

4 , etc. to calculate the
pH, ALWC, and semivolatile partitioning of TNH4, TCl, and
TNO3. A similar approach is taken in MOSAIC, which as-
sumes that the maximum possible amount of CaSO4 pre-
cipitates out over the full RH range, and any excess Ca af-
ter forming Ca(NO3)2 and CaCl2 is assumed to be in the
form of CaCO3. MOSAIC does not explicitly treat K+ and
Mg2+, which are instead represented by equivalent moles of
Na+. Both E-AIM and AIOMFAC also assume that the max-
imum possible amount of CaSO4 precipitates out and is not
considered in the gas–particle partitioning calculations for
RH < 98 %. Furthermore, E-AIM does not consider Ca2+,
K+, and Mg2+ in the calculations but instead uses a charge-
equivalent amount of Na+. For AIOMFAC–GLE model in-
put, the electroneutral set of ions is mapped to a set of repre-
sentative electrolyte components. To facilitate intercompari-
son among the models over a wide range in RH, aside from
the consideration of the precipitation of solid CaSO4, the
models were run using the assumption of the aerosol phase
being present as an aqueous electrolyte solution, potentially
supersaturated with respect to certain crystalline salts (also
referred to as metastable mode in ISORROPIA). Since this
assumption becomes invalid at low RH, the statistical eval-
uation of model–model differences and pH approximations
was restricted to the RH range above 35 %, while model cal-
culations were carried out with the supersaturated solution
assumption including data points at lower RH.

During the calculation of the equilibrium composition
and corresponding aerosol pH by ISORROPIA II here, all
nonvolatile cations are converted into their mole-equivalent
sodium concentrations. Also, data where nonvolatile cation
concentrations exceed what is required to neutralize the
amount of anions (sulfate, nitrate, and chloride) present are
not considered. All models were allowed to predict parti-
tioning according to their equations and property databases;
therefore differences in pH and activity coefficients are a con-
volution of all differences in the underlying thermodynamic
treatment (equilibrium constants, numerical solver tolerance
thresholds, calculated activity coefficients, and aerosol water
content). A comprehensive accounting of the effects of these
differences will be the focus of future work – and here we

present only the differences in pH between models and their
different implementations of pH approximations.

4.2.2 pH and its approximations

The pH values predicted by AIOMFAC–GLE (Fig. 5a) and
E-AIM (Fig. 5b) for the combined datasets show both the
wide range of pH calculated for each of the datasets and
the variability in the results from the two models. E-AIM
and AIOMFAC–GLE agree in their trends, but differences
increase as RH decreases (as the aqueous aerosols become
more concentrated). Differences between the models are usu-
ally within 0.5 pH units. The most acidic systems are SOAS
(Centreville, AL) in the southeastern US (pH range: ∼−2 to
2) and WINTER for measurements aloft in the northeastern
US (pH range ∼−4 to 2), which in part is related to the very
low NH3 concentrations and lack of nonvolatile cations. The
extremely high acidity branch of WINTER data corresponds
to measurements carried out aloft, where temperatures as low
as 252 K were encountered. The low humidities in that envi-
ronment decrease aerosol water to very low levels (Guo et
al., 2016). The CalNex dataset is characterized by intermedi-
ate pH values, ranging between 0 and 2.5, mostly driven by
higher NH3 levels and presence of NVCs. The Tianjin and
Cabauw datasets are characterized by the largest concentra-
tion of NH3 and NVCs and for this reason have the highest
pH, reaching a value of 5.

In order to understand the uncertainty introduced by us-
ing pHF or pH± instead of model-predicted pH, model re-
sults are examined for each campaign separately. Figure 6
presents the differences between pH predictions and approx-
imations for the Cabauw dataset. Calculations of pH with
AIOMFAC–GLE (left column) using the various approxima-
tions (pHF, pH±) have notably different structure than that
using E-AIM (right column). In both models, the difference
between pH± and pH rarely exceed 0.5 pH units, especially
for RH above 60 %; pHF is characterized by larger differ-
ences but still mostly within 1 pH unit – and it reflects the
effect of the log10 (γH+ ) contribution which is largest at the
lowest RH. These results are consistent with prior studies that
assume that the activity coefficient of H+ is equal to unity for
the purpose of pH estimation (but not for solving the thermo-
dynamic equilibria) (Song at al., 2018).
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Figure 5. A comparison of calculated pH using (a) AIOMFAC–
GLE and (b) E-AIM as a function of RH for all field campaign
datasets examined (SOAS Centreville, Cabauw, CalNex, Tianjin,
and WINTER; see Sect. 4.2 and Table 5 for a description of the
datasets).

Results in Fig. 6 suggest that using a H+–X− ion pair
and applying an activity coefficient in the calculation of
pH± gives less scatter and absolute bias across the dataset
than using pHF within a given model framework (E-AIM
or AIOMFAC–GLE). The ion pair that leads to the best
pH± estimate varies between AIOMFAC–GLE and E-AIM,
with H+–Cl− and H+–HSO−4 showing overall the most
promise. The H+–NO−3 pair tends to exhibit a large scatter
and systematic bias in the case of E-AIM, while it shows
the least scatter and bias among all ion pairs in the case of
AIOMFAC–GLE. Repeating this exercise for all the other
datasets (Supplement Figs. S2–S5) partly supports these ob-
servations – but the pattern and magnitude of the differences
(approximate pH minus pH) vary according to the aerosol
compositions characteristic of each dataset. For the WIN-
TER data in particular (Fig. S5), biases much larger than
0.5 pH units can be seen at lower humidity (which is es-
pecially notable for E-AIM). These deviations can be at-
tributed to the value of the activity coefficient of H+, which
becomes very large for the ultrahigh ionic strengths charac-
teristic of the WINTER aerosols at intermediate and low RH.
The H+ activity coefficient, which exceeds 10 and can reach
up to 100, tends to decrease the pH between 1 and 2 units
beyond what is expected from pHF (Fig. S5b). The results
from AIOMFAC–GLE and E-AIM in Fig. 13 and Supple-
ment Figs. S2–S5 show that the calculated values of the pH
approximations differ between the models in quite complex
ways, largely reflecting the different treatments of the activ-
ity coefficients. These are reflected in both the value of γH+

and the secondary effects on liquid water uptake, ion disso-
ciation, and semivolatile partitioning.

Both ISORROPIA II and MOSAIC nominally output pHF
(and can be modified to output pH±); using approxima-
tions (pHF or pH±) in place of pH introduces uncertainty.
ISORROPIA-predicted pH approximations as a function of
relative humidity compared to AIOMFAC–GLE (left col-
umn) and E-AIM (right column, Fig. 7) show that the de-

Figure 6. Comparison of different approximate metrics of pH, using
the Cabauw data and calculated by AIOMFAC–GLE (left column)
and E-AIM (right column). The results are shown as differences
from pH as follows: (a, b) pHF – pH; (c, d) pH±(H+, HSO−4 ) –
pH; (e, f) pH±(H+, Cl−) – pH; (g, h) pH±(H+, NO−3 ) – pH.

viation between pHF and pH increases as the humidity de-
creases, with the largest deviations occurring for the ex-
tremely acidic aerosol dataset of WINTER. However, for
most cases, relative humidities above 60 % are correlated
with a deviation from pH that is less than a unit (smaller dif-
ferences are seen for AIOMFAC–GLE than E-AIM). Com-
parisons of MOSAIC calculations against the predictions
from ISORROPIA II for the 20 selected cases (Table S9) in-
dicated the two models produce pH± (H+, NO−3 ), pH± (H+,
Cl−), and pHF metrics that are highly correlated (r2

≥ 0.96)
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Figure 7. ISORROPIA-calculated pH using the different metrics,
and its difference against pH values calculated with AIOMFAC–
GLE (left column) and E-AIM (right column). Data shown for all
the field campaign observations considered in this study (Table 5).

with minimal offset (regression slope within 0.11 pH units
of 1 : 1 line) between the models (Fig. S6). Using the H+–
NO−3 ion pair to express pH± from ISORROPIA provides
the closest agreement with pH if AIOMFAC–GLE is used as
a reference.

The pH errors between ISORROPIA II and AIOMFAC–
GLE/E-AIM for all the datasets combined are summarized
in Table 6. Using pH± (H+, NO−3 ) as a pH approximation
shows the lowest RMSE and mean bias error in the case of
AIOMFAC–GLE predictions, followed by pH± (H+, Cl−) as
the next best approximation. However, when considering E-

AIM, the evaluation of all datasets shows that pH± (H+, Cl−)
and pH± (H+, HSO−4 ) are favored over pH± (H+, NO−3 ), as
pH± (H+, NO−3 ) shows an RMSE of ∼ 1 for the WINTER
data, which were characterized by the lowest pH values. The
comparison between thermodynamic models for the perfor-
mance of pH proxies includes a convolution of numerous er-
rors in the cases of ISORROPIA II, MOSAIC, and EQUI-
SOLV II; therefore, they cannot be used to determine a priori
which choice of anion is best for use in pH± (H, X). Some
of the pH± (H, X) variants also show a larger dependence on
RH than others, with the largest deviations from pH typically
found towards the problematic region of lower RH (< 50 %);
see Fig. 6. Based on the combined evaluations of pH approx-
imations by E-AIM and AIOMFAC–GLE against their own
pH predictions (no model–model bias incurred), pH± (H+,
Cl−) has the best agreement for the wide pH range examined,
although any of the pH± variants work sufficiently well, es-
pecially at RH> 60 %.

4.2.3 Comparison of proxies to aerosol pH

Several studies have compared certain proxies of acidity
(Sect. 3; see also Table 3) to thermodynamic model predic-
tions of pHF (Guo et al., 2015, 2016; Hennigan et al., 2015;
Lawal et al., 2018; Murphy et al., 2017; Winkler, 1986). Pre-
dictions of pHF using the semivolatile partitioning approach
(Eq. 18, Fig. 8a–c) were evaluated in Mexico City (Henni-
gan et al., 2015), but more commonly, due to the lack of di-
rect aerosol pHF measurements for comparison, semivolatile
species partitioning is often used as a critical check of ther-
modynamic equilibrium model assumptions and predictive
skill (Guo et al., 2016, 2017a, 2015; Nah et al., 2018). Con-
necting the neutrality-based or gas-ratio-type proxies to a nu-
merical value of pH is less common in the literature, and
the assessment of acidity based on those proxies is usually
qualitative (e.g., acidic vs. nonacidic categorization or deter-
mination of relatively higher/lower acidity). In Fig. 8, com-
parisons from the literature are extended to include more lo-
cations, representing diverse chemical regimes, source influ-
ences, and meteorological conditions. Proxies introduced in
Sect. 3 are compared to ISORROPIA II-predicted values of
aerosol pHF using gas + aerosol inputs for four locations
(southeastern US in summer, California in summer, north-
eastern US in winter, and Tianjin in China in summer; Ta-
ble 5).

Figure 8d shows that the cation / anion equivalent ratio is
fundamentally limited as a proxy for aerosol pHF. The as-
sumption applied throughout the literature is that a cation
deficit (anion equivalents > cation equivalents excluding
H+; ratio < 1; see Sect. 3 and Table 3) indicates acidic parti-
cles, and an anion deficit (ratio > 1) corresponds to alkaline
particles. Consequently, a molar equivalent ratio near unity
represents near-neutral conditions. Figure 8 shows clearly
that these interpretations of the molar ratio are not valid. For
a given cation / anion equivalent ratio, predicted pHF values
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Table 6. (a) Comparison of ISORROPIA II-derived pH approximations against pH. (b, c) Comparison of pH approximations against pH
when computed by the same model in (b) AIOMFAC–GLE and in (c) E-AIM.

RMSE compared MB compared to RMSE compared to MB compared to
AIOMFAC–GLE pH AIOMFAC–GLE pH E-AIM pH E-AIM pH

(a) pH approximation by ISORROPIA II1

pHF 0.46 −0.06 0.45 0.10
pH± (H+, HSO−4 ) 0.51 −0.23 0.39 −0.07
pH± (H+, Cl−) 0.45 0.17 0.53 0.33
pH± (H+, NO−3 ) 0.51 0.37 0.63 0.53

(b) pH approximation by AIOMFAC–GLE2

pHF 0.61 −0.54 – –
pH± (H+, HSO−4 ) 0.27 −0.24 – –
pH± (H+, Cl−) 0.23 −0.20 – –
pH± (H+, NO−3 ) 0.18 0.07 – –

(c) pH approximation by E-AIM2

pHF – – 0.55 0.12
pH± (H+, HSO−4 ) – – 0.35 0.18
pH± (H+, Cl−) – – 0.50 0.23
pH± (H+, NO−3 ) – – 0.73 0.49

1 The pH, as defined by Eq. (1), was calculated using both AIOMFAC–GLE and E-AIM. The comparisons are presented in terms of the root mean
square error (RMSE) and mean bias (MB) as pH (approx.) – pH, all in pH units. Results were calculated using all of the SOAS, Cabauw, CalNex,
WINTER, and Tianjin datasets (combined) described in Table 5 (n= 7222 points), with RMSE and MB calculations limited to data points with RH

> 35 %. RMSE and MB are calculated as follows: RMSE= 2
√

1
N

∑N
j=1

(
pHapprox,j − pHj

)2
and MB= 1

N

∑N
j=1

(
pHapprox,j − pHj

)
, where N

denotes the number of data points within the evaluated dataset and where pHapprox,j and pHj are the pH approximation and reference values of

data point j . 2 Calculations by (b) AIOMFAC–GLE and (c) E-AIM covering the same combined datasets as in (a).

vary by 3–4 pHF units. All of the data with cation / anion
equivalent ratios near unity are predicted to be quite acidic,
with pHF < 3 (and often < 1). The behavior in Fig. 8 is
consistent with observations at locations in Canada (Mur-
phy et al., 2017) and more broadly across the US (Lawal et
al., 2018). Even the aerosol predicted by the cation / anion
equivalent ratio to be alkaline is actually quite acidic, with
pHF < 3 for almost all of the data where cation / anion > 1.
Even if pHF underestimates pH by 2 units (the maximum
underestimation in Fig. 7a,b) particles would still generally
be considered acidic. Common simplifying assumptions as-
sociated with the molar ratio method that were discussed in
Sect. 3.1 (e.g., considering only NH+4 –NO−3 –SO2−

4 or NH+4 –
SO2−

4 ) were shown by Guo et al. (2018a) to be especially
problematic in estimating pHF. Taken together, these results
support prior recommendations against use of equivalent ra-
tios as surrogates for particle acidity (Guo et al., 2018b; Hen-
nigan et al., 2015; Lawal et al., 2018; Shi et al., 2017).

Estimates of particle acidity based on an ion charge bal-
ance are similarly problematic (Fig. 8e). A charge balance of
zero, which corresponds to a cation / anion equivalent ratio
of unity, wrongly implies nearly neutral aerosols according to
this proxy. Excess cations (negative charge balance, Eq. 13,
Fig. 8e), which correspond to cation / anion equivalents ra-
tios > 1, wrongly imply alkaline conditions. Figure 8 agrees

with prior recommendations against using the charge balance
as a proxy for particle acidity (Guo et al., 2015; Hennigan et
al., 2015; Murphy et al., 2017; Winkler, 1986). The equiva-
lent ratio and charge balance methods both suffer from the
same deficiencies, which include sensitivity to limitations in
the precision and accuracy of measurements, not accounting
for the buffering effects of many species or the modulating
effects of aerosol water, and the nonideal nature of concen-
trated aqueous particles, which necessitates the computation
of species activity coefficients. Strong acidity, a once com-
monly used parameter to access aerosol acidity health im-
pacts, is essentially an ion balance and suffers from similar
limitations. A further limitation of the charge balance proxy
is the use of an extensive quantity (H+air) to represent an in-
tensive property (pH) of an aerosol distribution, which points
to a major design flaw of that approach.

To our knowledge, Fig. 8f represents the first quantitative
comparison between the GR (the gas ratio proxy, Table 3)
and predictions of aerosol pHF. Based on the thermodynam-
ics of gas–particle partitioning, the GR (and adjGR) rela-
tionship to pH follows a sigmoidal curve that similarly de-
fines the partitioning of semivolatile species sensitive to pH
(e.g., see Fig. 5 in Pinder et al., 2008a, for an illustration
of how nitrate PM is a function of the GR and adjGR). For
the northeastern US and California data, the GR follows this
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Figure 8. Comparison of pHF calculated by ISORROPIA
with proxies: (a–b) pHF calculated using HNO3 partitioning
(Eq. 16), (c) pHF calculated using NH3 partitioning (Eq. 18),
(d) cation / anion (Cat /An) equivalent ratio, (e) ion balance
(charge balance), and (f) gas ratio (GR). The ambient datasets are
described in detail in Table 5. The proxy methods were calculated as
in Table 3, unless otherwise stated. Note that the convention for the
ion balance calculation in (e) results in a positive value when there
is a cation deficit. The dotted lines in (a)–(c) represent the 1 : 1 line,
shown for visual effect. The legend in panel (e) applies to all panels
except (b), which only shows data for the WINTER dataset, colored
according to the aerosol water mass fraction (relative to the total
predicted aerosol mass). In panel (f), 8 (out of 3626 total) points for
the WINTER dataset and 98 (out of 587 total) points for the SOAS
dataset are off scale, for clarity.

sigmoidal behavior and is strongly correlated with predicted
pHF. Increasing GR corresponds to increasing pH, although
the slope and intercept of the two datasets differ substantially
since they lie on different areas of the curve. In the south-
eastern US, the GR results show much larger absolute values
than the other locations, since HNO3 measurements were un-
available and the aerosol nitrate values were used as input for
TNO3 (Guo et al., 2015). The GR in Tianjin shows no re-
lationship with pHF (slope = 0.03, r2

= 0.01), even though

the data included complete aerosol- and gas-phase measure-
ments. Although the GR may be highly correlated with pHF
in some environments, it is not advisable to use the GR as a
pHF proxy given the variability observed in Fig. 8. For ex-
ample, at a given GR, the pHF range spans ∼ 1–4 pH units
while the coefficient of determination ranges from 0.01 to
0.75 across the four locations. This suggests that a posteri-
ori knowledge of the pHF–GR relationship is required to use
the GR as a proxy for pH. The GR requires aerosol inorganic
composition and measurements of both gas-phase NH3 and
HNO3. Therefore, with such a dataset, pHF (or pH) can be
predicted directly with one of the thermodynamic equilib-
rium models, which is the recommended approach.

A fundamental limiting factor in using the GR as a proxy
for pH is its assumptions about free ammonia. The GR
method assumes that under ammonia-poor conditions, where
TNH4 is less than 2×TSO4, the aerosol is acidic and TNH4
will partition predominantly to the aerosol phase (Sein-
feld and Pandis, 2016). Similarly, the method assumes that
ammonia-rich conditions, which exist when TNH4 is greater
than 2×TSO4, correspond to largely neutralized aerosols
and significant gas-phase NH3 (Seinfeld and Pandis, 2016).
While ammonia-rich particles are less acidic in terms of
charge balance (Eq. 13) than ammonia-poor particles (all else
being equal), a plot of pH vs. GR (Fig. S1) shows that, even
in ammonia-rich conditions with a high GR, particles do not
approach pH near 7. The aerosol is strongly acidic (pH < 1)
under ammonia-poor conditions, and a small but significant
fraction of TNH4 can exist in the gas phase even though the
pH is low. The fraction of TNH4 in the gas-phase approaches
0.1 while the GR< 0 (corresponding to TNH4 < 2×TSO4).
Likewise, the aerosol remains strongly acidic even under
ammonia-rich conditions, where TNH4 exceeds the amount
required to neutralize all of the TSO4 (GR > 0). Even when
the amount of TNH4 greatly exceeds all available TNO3 and
TSO4, the aerosol remains strongly acidic (approaching a
predicted pH of 3.7 as the GR approaches 50 in the Fig. S1
example). For such high gas ratios the majority of TNH4
(∼ 0.95) resides in the gas phase. This phenomenon is some-
what counterintuitive: it seems logical that gas-phase ammo-
nia would react completely with acids as strong as HNO3
and H2SO4 until they were fully neutralized. However, the
volatility of NH3 is an important factor that balances the ex-
tent to which it reacts with acidic components in the aerosol
phase. This explains the insensitivity of aerosol pH in the
southeastern US, even though sulfate levels are also decreas-
ing while ammonia has remained steady or even increased
(Weber et al., 2016).

Aerosol pH calculations based on partitioning of HNO3
and NH3 between the gas and aerosol phases show mixed
results when compared to predictions by thermodynamic
equilibrium models (Fig. 8a–c). In the southeastern US, the
ISORROPIA and NH3 partitioning-derived pHF values are
moderately correlated, with nearly all values within 1 pHF
unit of the 1 : 1 line (Fig. 8c). In this case, the pH calcu-
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lated from NH3 partitioning was systematically lower than
the thermodynamic model predictions, a result that was also
observed for predictions in Mexico City (Hennigan et al.,
2015). In California, the pHF calculations from NH3 and
HNO3 partitioning generally did not agree with the thermo-
dynamic model predictions. The model-predicted pHF was
higher (average pHF = 2.67) than the calculation from NH3
(average pHF = 1.64) and similar to the one based on HNO3
partitioning (average pHF = 2.45). Although the pHF calcu-
lations from NH3 and HNO3 partitioning lie in the same gen-
eral area of the graph in Fig. 8, they were inversely correlated
with each other (r =−0.76, not shown), an observation that
requires further investigation and likely future studies to rec-
oncile. Keene et al. (2004) also observed disagreement be-
tween the pHF calculations from NH3 and HNO3 partition-
ing. In the northeastern US, the phase partitioning of HNO3
gave mixed results, as well. At times, the predicted and cal-
culated pHF values agreed well, while at other times there
were differences of∼ 2–3 pHF units. The greatest discrepan-
cies were observed at the lowest ALWC (mass fraction basis,
Fig. 8b), a relationship also identified by Guo et al. (2016)
and consistent with the idea that activity becomes harder to
predict at lower water content (Sect. 4.1, Fig. 3). Potential
problems with pHF calculated from semivolatile species par-
titioning have been discussed (Keene et al., 1998; Keene and
Savoie, 1998; Young et al., 2013). The approach requires
measurements of at least one semivolatile gas-phase species
and the aerosol inorganic composition, which are input into a
thermodynamic model to get the ALWC, a required compo-
nent to calculate condensed-phase activities in Eq. (16) and
needed to use typical Henry’s law coefficients in Eqs. (17)
and (18). Therefore, given the need for all these inputs, ther-
modynamic models should be used to directly predict pH or
one of its approximations.

4.3 Recommendations on the calculation of pH by
approximation and proxy

Where single-ion activity predictions are not available, the
comparison based on the ambient datasets used here sug-
gests that the best pH approximation is obtained by using
Eq. (7) for pH±. However, identifying a universal H+–anion
pair that best reproduces pH appears to be model depen-
dent, with only pH± (H+, NO−3 ) having the potential to be
a worse estimate of pH than pHF (in the case of E-AIM). Al-
though, on average, all of the approximate measures of pH
compare similarly against pH from AIOMFAC–GLE and E-
AIM, there is a strong dependence of the bias on RH that
is mitigated through the use of pH± (as opposed to pHF),
and for this reason it is the recommended approach when
ISORROPIA, MOSAIC, EQUISOLV II or similar models
are used for calculations of pH in the future. Low RH also co-
incides with time periods where models (both box and chem-
ical transport models) face challenges in accurately predict-
ing gas–particle partitioning (e.g., Guo et al., 2016; Kelly et

al., 2018), thus motivating a need to properly characterize
acidity under those conditions.

Based on the analyses and discussion presented in this sec-
tion and Sect. 3, it is strongly recommended that proxies
are avoided in the analysis of particle acidity. Some of the
proxies correlate with pHF, even strongly at times, although
this varies greatly with ambient conditions (T , RH), com-
position, and concentration. This leads to large inconsisten-
cies across locations and even within a given observational
dataset. Often, the proxies are not able to qualitatively distin-
guish acidic from neutral particles or to capture qualitative
trends in acidity (e.g., pH increases or decreases with a given
indicator). A detailed comparison with thermodynamic equi-
librium model predictions constrained with aerosol and gas
inputs is required to identify the periods and locations where
a proxy may perform adequately, defeating the purpose of us-
ing the proxy. With the open-access and web-based availabil-
ity of validated aerosol thermodynamic equilibrium models
(Sect. 2.6), scientists are encouraged to use one or more of
these tools in future studies of particle acidity.

5 Interactions of aerosol and cloud chemistry with
acidity

The previous sections highlighted how cations and anions
(along with ambient conditions) drive pH in condensed
phases with a focus on equilibrium conditions and models.
In addition, kinetic processes such as cation and anion disso-
lution influence acidity. Furthermore, the acidity of aerosols,
clouds, and fogs is tightly coupled with their chemical re-
activity. The pH of the atmospheric aqueous phase affects
the partitioning of weakly acidic and basic gases to the con-
densed phase and the rate of many multiphase chemical re-
actions. The chemical reactions in the atmospheric aqueous
phase, in turn, modulate the pH of the aqueous phase. As a re-
sult, the acidity of aerosols, cloud droplets, and fog droplets
is not only determined by thermodynamic equilibrium, but
also multiphase chemical kinetics. Because of the complex
nature of these couplings between acidity and atmospheric
aqueous-phase chemistry, these issues are presented in more
detail in a companion paper currently in preparation (Tilgner
et al., 2020). This section highlights some important systems
where acidity interacts with, and is influenced by, condensed-
phase chemical reactions.

One important example of a system with chemistry–
acidity feedbacks is the multiphase oxidation of sulfur diox-
ide (SO2) to form particulate sulfate (S(IV)→S(VI) conver-
sion, also referred to as “sulfur oxidation”). Sulfate makes up
15 % of PM2.5 mass globally (Sofiev et al., 2018) and is a ma-
jor component of PM2.5 in areas affected by emissions from
combustion of sulfur-containing fossil fuels. Multiphase re-
actions are the primary driving force for oxidation of SO2
to sulfate (Calvert et al., 1985). The ionization of SO2 in
the aqueous phase under basic conditions enhances its up-

www.atmos-chem-phys.net/20/4809/2020/ Atmos. Chem. Phys., 20, 4809–4888, 2020



4838 H. O. T. Pye et al.: The acidity of atmospheric particles and clouds

Figure 9. The rates of four in-particle sulfate production pathways
(oxidation by O3, NO3, and HOOH and catalyzed by transition
metal ions (TMIs) Fe(III) and Mn(II)) as a function of initial aerosol
pH, for Beijing winter haze conditions. See Supplement Sect. S2 for
more details.

take; the effective Henry law constant for SO2 varies 3 or-
ders of magnitude (from 17 to 1.7× 104 M atm−1) between
pH 3 and pH 6 (Sander, 2015). Therefore, sulfate produc-
tion, especially under acidic conditions, is largely limited by
the amount of SO2 that can partition to the aqueous phase.
Meanwhile, sulfate formation is a major source of acidity
in aerosols, fog droplets, and cloud droplets (Calvert et al.,
1985). In the absence of buffering, S(IV)→S(VI) oxidation
pathways which are more effective at higher pH, such as ox-
idation of SO2−

3 by O3 (Maahs, 1983; Lagrange et al., 1994)
or NO2 (Lee and Schwartz, 1983; Clifton et al., 1988), will
become quenched with increasing sulfate production (Fig. 9,
Supplement Sect. S2). However, buffering may be signifi-
cant in atmospheric waters; Collett et al. (1999), for example,
demonstrated that buffering in a California fog permitted the
fog pH to stay 0.3 to 0.7 pH units higher than expected, en-
hancing the amount of sulfate aerosol present after the fog
episode by 50 %.

Another important process controlled by the acidity of the
aqueous phase is the solubility of transition metal ions such
as Fe(III) and Mn(II), which can catalyze S(IV) oxidation.
Transition metals are ubiquitous in the atmosphere, having
been observed in aerosol samples and cloud/fog/rain water
collected around the globe (e.g., Bianco et al., 2017; Hsu et
al., 2010). Transition metals (particularly Fe, Cu, and Mn)
are active in the aqueous-phase chemistry of clouds, fogs,
and deliquesced aerosols, catalyzing reactions and affecting
the oxidative capacity of the condensed phase (Deguillaume
et al., 2005). Due in part to variation in how transition metal
emissions are generated from different source types (e.g.,

mechanically generated mineral dust vs. condensation/gas-
to-particle conversion of gases emitted during combustion),
transition metal composition/concentration and source con-
tributions vary across the aerosol size distribution (Deguil-
laume et al., 2005). This has implications for the chemical
environment and acidity that metals from different sources
are exposed to, the reactions they participate in, and their po-
tential impacts on human health.

The degree to which transition metals contribute to
condensed-phase reactions depends on their solubility. TMI
solubility typically increases as pH decreases, although the
relationship between pH and metal solubility is a complex
one (Spokes et al., 1994). Transition metals are often emit-
ted as largely insoluble chemical species, and their solubility
increases as the emitted particles age via exposure to acidic
gases in the atmosphere. The degree to which pH affects TMI
solubility depends on the origin of the particles, the degree of
particle aging which alters a particle’s physicochemical char-
acteristics, and the specific metal (Deguillaume et al., 2005,
2010). Several laboratory studies have attempted to elucidate
the pH dependence of transition metal solubilization for dif-
ferent species. Spokes et al. (1994) found that for a Saharan
dust sample, the solubilization of Al and Fe, while strongly
enhanced at lower pH, was nearly completely reversible with
increasing pH. For an urban aerosol sample, some of the sol-
ubilized metals remained in solution with increasing pH, pos-
sibly due to complexation of the metal species with organic
ligands. Manganese was found in both dust and urban parti-
cles to be soluble with decreased pH, with only limited re-
versibility as the pH was increased.

Acid-catalyzed reactions of hypohalous acids (HOX,
where X = Br, Cl or I) in sea salt aerosols influence the
oxidative capacity of the troposphere (Saiz-Lopez and von
Glasow, 2012; von Glasow and Crutzen, 2014; Simpson et
al., 2015). The reactions of HOX with other halogen ions
can lead to the release of reactive halogen gases, which are
involved in many key tropospheric reaction cycles. Reactions
of S(IV) with HOX are another major contributor to sul-
fate formation in sea salt aerosols (Chen et al., 2016; Vogt
et al., 1996; von Glasow et al., 2002). These reactions acid-
ify the aerosol (Chen et al., 2016) but may be considered a
sink of reactive halogens, in that they convert HOX to their
less-reactive acid form. Reactive halogen gases act directly
as important sinks of key oxidants, such as O3 and HO2, and
therefore indirectly influence other linked systems HOx (=
OH + HO2) and NOx (= NO + NO2) (Oltmans et al., 1989;
Schmidt et al., 2016; Sherwen et al., 2016). Moreover, re-
active halogen gases, especially the Cl atom, can be pow-
erful oxidants that can rapidly react with important tropo-
spheric organic trace gases, such as nonmethane volatile or-
ganic compounds (VOCs) and dimethylsulfide (Barnes et al.,
2006; Hossaini et al., 2016).

Acidity also impacts the partitioning of weak acids, in-
cluding organic acids, into aqueous aerosols and cloud/fog
droplets by controlling their ionization state in the aqueous
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Figure 10. Calculated dissolved aqueous-phase fraction of benzoic
acid as a function of liquid water content and aqueous-phase acidity.
The black lines are the isolines of the aqueous fractions of 10−i

(i = 1, . . .,6).

phase. The hydration of carbonyl groups in compounds that
also contain pH-sensitive moieties, such as α-oxocarboxylic
acids, is also highly influenced by acidity (Kerber and Fer-
nando, 2010). Increasing acidity leads to a decrease in the
effective partitioning towards the particle phase of acids and
to an increase in the effective partitioning of bases, and vice
versa (see Fig. 10). In the case of ionizable organic species
such as organic acids, key aqueous-phase oxidants, such as
OH, NO3, and O3, can react via different possible reac-
tion pathways and kinetics with the protonated and depro-
tonated forms (Buxton et al., 1988; Herrmann et al., 2010,
2015; Bräuer et al., 2019). Accordingly, the overall reaction
rate constant for oxidation of dissociating compounds can
be largely pH dependent, especially for reaction with nitrate
radicals. For organic acids, the overall rate constant typically
increases with increasing pH, and more efficient oxidation
can be expected under less acidic conditions. For example,
the overall second-order rate constant for the reaction of ni-
trate radicals with formic acid (and its ionized, dissociated
form) varies from close to 3.8× 105 M−1 s−1 at pH = 2.0
to 5.1× 107 M−1 s−1 at pH = 5 (Exner et al., 1994). Addi-
tionally, the increased partitioning of organic acids under less
acidic conditions leads to even higher oxidations rates.

Changes in the pH of a cloud or fog droplet can result from
addition of acids or bases to the solution, through partition-
ing from the gas phase, collision/coalescence of droplets, or
aqueous reactions. The magnitude of the pH change can be
strongly affected by the presence and ability of weak acids or
bases to buffer against that change through proton uptake or
release. A buffer is a mixture of a weak acid and its conjugate
base (e.g., formic acid and formate) or a mix of a weak base
and its conjugate acid (e.g., ammonia and ammonium). The
magnitude of an internal buffering effect is greatest when the
solution pH is equal to the pKa (pKb) of the weak acid (base)
buffer. External buffering can also be important, perhaps best

illustrated by the uptake of additional ammonia from the gas
phase in response to a decrease in solution pH (Liljestrand,
1985; Jacob et al., 1986a, b).

The formation of secondary organic aerosol material in
atmospheric aerosols via multiphase processes is strongly
related to the acidity. Many atmospheric organic accretion
reactions, such as aldol condensation (Noziere and Esteve,
2007; Noziere et al., 2010; Sareen et al., 2010; Li et al.,
2011), hemiacetal and acetal formation (Jang et al., 2002;
Kalberer et al., 2004; Shapiro et al., 2009; Loeffler et al.,
2006), and esterification of carboxylic acids (Barsanti and
Pankow, 2006), are acid catalyzed. The acid-catalyzed reac-
tive uptake of epoxide species, especially isoprene epoxy-
diols (IEPOX) (Paulot et al., 2009; Surratt et al., 2010), to
aerosol water has also emerged as a significant source of
secondary organic aerosol material (Lin et al., 2012; Marais
et al., 2016; Pye et al., 2013). Because the epoxidic oxygen
must be protonated in concert with ring-opening, the reactive
uptake of IEPOX to aqueous media is strongly pH depen-
dent, with the reactive uptake coefficient decreasing rapidly
with increasing pH for pH > 1 (Gaston et al., 2014). There-
fore, the rate of IEPOX secondary organic aerosol (SOA)
formation is slow in cloud water because of the generally
higher pH compared to particles (McNeill, 2015), but given
the relatively large liquid water content of clouds, which
promotes dissolution, IEPOX uptake could be significant in
more acidic cloud droplets (pH 3–4) (Tsui et al., 2019).

The trend of decreasing sulfate content in clouds and
aerosols across North America and Europe may have impli-
cations for partitioning of inorganic (Vasilakos et al., 2018;
Shah et al., 2018) and organic gases between the gas and
condensed phases, as well as the dominant mechanisms and
rates of multiphase chemical processes in the atmosphere
which produce PM2.5 mass, under future conditions. Implica-
tions of acidity changes for partitioning of semivolatile com-
pounds and their multiphase chemical processing are out-
lined in more detail in a companion paper (Tilgner et al.,
2020).

6 Role of particle size, composition, and mass transfer
kinetics in pH heterogeneity

Traditionally (e.g., Sects. 4, 7.1), fine-particle pH is calcu-
lated assuming equilibrium and a uniform distribution of
species across all particles. Here, the role of differences in
particle size, mass transfer, and composition (including pres-
ence of organic species) in driving pH in a population of par-
ticles is highlighted.
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6.1 Role of particle size and composition

The pH of aerosols varies with particle size because of the
differences in the chemical composition, hygroscopicity, and
gas–particle equilibration timescales between fine and coarse
particles. Fine-mode aerosols are produced by new-particle
formation and growth but are also directly emitted from an-
thropogenic as well as natural sources (dust and sea salt). At
least some of the chemistry that initiates new-particle forma-
tion, and thus drives low pH for the smallest sizes, involves
sulfuric acid and acid–base reactions (Kulmala et al., 2004).
Anthropogenically derived fine-mode aerosols are typically
composed of inorganic salts, organic species, and black car-
bon and are generally acidic. Fine-mode pH is sensitive to
the relative amounts of nonvolatile cations (if any), sulfate,
nitrate, and ammonium present in the particle phase (Fig. 2)
and continuously responds to the changing concentrations
of their gas-phase counterparts – H2SO4(g), HNO3(g), and
NH3(g) – as well as the ambient RH and temperature.

In contrast, coarse-mode aerosols mainly consist of sea
salt and dust particles directly emitted to the atmosphere
as a result of wind stress on the surface of the oceans and
arid land, respectively. Sea salt and dust contain significant
amounts of nonvolatile cations such as Na+, Ca2+, Mg2+,
and K+, whereas, in contrast, the dominant cation in fine-
mode particles is typically semivolatile ammonium. Dust,
and more generally nonvolatile cations, can also originate
from mechanical wear or disturbances associated with an-
thropogenic activity such as road, residential, and commer-
cial construction as well as brake wear and road salt appli-
cation (Philip et al., 2017; Lough et al., 2005; Kolesar et al.,
2018). Both fossil fuel and biomass combustion also emit
nonvolatile cations in the PM2.5 size range (Reff et al., 2009).
Whether or not nonvolatile cations influence pH depends on
their mixing state with deliquesced particles. In other words,
particles of the same size but different compositions should
be treated as external mixtures when calculating their pH.
For example, equilibrium model analyses of bulk ambient
aerosol observations by Guo et al. (2016) indicate that the
refractory ions were externally mixed from PM1 because in-
cluding those ions caused deviation between the predicted
and measured nitrate partitioning. A small fraction of non-
volatile aerosol components is sometimes present in the fine
mode and tends to reduce acidity. For example, K+ associ-
ated with biomass burning has been shown to cause higher
pH compared to cases with very low K+ levels (Bougiatioti
et al., 2016).

Sea salt and dust are naturally basic or alkaline, as they
contain carbonates. The pH of ocean water (≈ 8) is relatively
uniform and sets the pHF for unprocessed sea salt emissions
(Keene et al., 1998). The pH of fresh airborne dust is more
difficult to assess due to the high degree of heterogeneity
in composition and its hygroscopicity; however, it is very
likely that ambient dust is not acidic (has pH > 7). Sea salt
and dust aerosol can initially maintain high pH (above 5 and

close to 7) due to the presence of carbonate (CO2−
3 /HCO−3 ).

However, the uptake of acid gases such as SO2(g), HCl(g),
HNO3(g), and H2SO4(g) results in a chemical reaction (Usher
et al., 2003) such as

CO3
2−
(aq)+ 2H+(aq)→ CO2(g)+H2O(l). (R4)

Reaction (R4) consumes H+ produced from the uptake of
acid gases (e.g., HNO3(g)→ H+(aq)+NO3

−

(aq), Reactions R1
and R2 combined), allowing the aerosol to maintain its high
pH until the carbonate has been depleted via conversion to
CO2(g). Once the carbonate has been depleted (a process not
treated by current equilibrium models, Sect. 2.6), the dust
and sea salt aerosol can become acidified by continued up-
take of acid gases. Observations of aged sea salt and dust in-
dicate an internal mixture with sulfate, nitrate, and chloride
due to such reactions (Fairlie et al., 2010; Kirpes et al., 2018;
Tobo et al., 2010). Freshly emitted sea salt aerosol is in the
liquid state while Ca-rich dust particles are emitted as solids.
Consequently, acidification of sea salt aerosol is thought to
proceed more efficiently due to relatively high mass accom-
modation coefficients (about 0.1 or higher) for condensing
acids on liquid particles compared to solid dust aerosol with
much lower uptake coefficients ranging between 10−4 and
10−3 (Alexander et al., 2005; Fairlie et al., 2010). The in-
crease in aerosol water with increasing RH and the solubi-
lization of gaseous HCl that is present in the marine bound-
ary layer (due to acid displacement reactions) have also been
suggested as the reason for increasing acidity of sea salt
aerosols with increasing RH and altitude in the marine en-
vironment (von Glasow and Sander, 2001). Further acidifi-
cation of sea salt aerosols occurs via displacement of Cl− as
HCl(g) due to reactions such as (Mcinnes et al., 1994; Zhao
and Gao, 2008)

HNO3(g)+Cl−(aq)→ HCl(g)+NO3
−

(aq), (R5)

H2SO4(g)+ 2Cl−(aq)→ 2HCl(g)+SO4
2−
(aq). (R6)

Although these reactions do not directly produce additional
H+ ions, the resulting H+ molal concentration increases due
to a decrease in the overall aerosol water content in particles
containing NaNO3 and Na2SO4, which are less hygroscopic
than NaCl.

Overall, atmospheric particle pH is size dependent and
generally higher for coarse-mode particles due to variations
in inorganic composition with particle size. Differences as
large 4 pH units have been reported between fine and coarse
particles (Fang et al., 2017; Young et al., 2013). Bulk PM1
and PM2.5 acidity is more similar than fine- vs. coarse-mode
acidity (pHF within 1–2 units, e.g., Bougiatioti et al., 2016;
Guo et al., 2017b), but submicrometer (diameter < 1 µm)
particles still show higher acidity than bulk PM2.5. The rea-
son for this is the strong enrichment of aerosol with NVCs
from dust and sea salt at the larger sizes (even in the fine
mode) and role of sulfate in new-particle formation and

Atmos. Chem. Phys., 20, 4809–4888, 2020 www.atmos-chem-phys.net/20/4809/2020/



H. O. T. Pye et al.: The acidity of atmospheric particles and clouds 4841

surface-area-driven condensation at the small sizes (Fig. 2).
While semivolatile acids and bases act to homogenize acid-
ity across the size distribution, mass transfer limitations (next
section) and the heterogeneity of emission composition lead
to variation in pH with size. Significant pH changes can occur
in the 1 to 2.5 µm size range (Fang et al., 2017; Ding et al.,
2019). The size-dependent pH is also seen for sea salt aerosol
(Fridlind and Jacobson, 2000) as well as in urban aerosols in
China (Ding et al., 2019), where the fine mode is consistently
2–3 pH units lower than the coarse mode. The implications of
this acidity gradient are considerable for metal solubility and
the resulting impacts on public health and ecosystem pro-
ductivity, as well as chemistry and semivolatile partitioning
of pH-sensitive species.

6.2 Role of mass transfer

Acidity is dependent on particle composition, and particle
composition can be affected by mass transfer rates that vary
by particle size. For fine-mode particles, the characteristic
time for particle growth or shrinkage from one equilibrium
state to another after changes in RH is short enough (< 1 s)
to justify the assumption of thermodynamic equilibrium with
respect to water uptake (Pilinis et al., 1989). In comparison,
equilibration of semivolatile components (HNO3, HCl, and
NH3) with the fine mode ranges from 20 min or less (Guo
et al., 2018b) up to 10 h (Meng and Seinfeld 1996; Fridlind
and Jacobson, 2000). In the case of coarse-mode aerosols
or large accumulation-mode aerosols, mass transfer rates for
semivolatile components can lead to equilibration timescales
of several hours. Hanisch and Crowley (2001), for exam-
ple, found vapors of HNO3 reach equilibrium through up-
take by sea spray aerosols of 1–3 µm diameter within 3–10 h.
In another study of remote marine aerosols, equilibrium in
the coarse sea salt mode is reached quickly for NH3, but
HNO3 and HCl require much longer times, on the order of
10–300 h (Fridlind and Jacobson, 2000). In this case, rela-
tively small amounts of TNH4 partition to the coarse sea salt
particles compared to much larger amounts of HNO3 needed
to displace HCl to reach equilibrium. These timescales are
comparable or can even exceed the lifetime of the parti-
cles, implying that some particles can be removed by depo-
sition before equilibrium is reached (Fridlind and Jacobson,
2000). In a subsequent theoretical study, Jacobson (2005a)
found that under at least some conditions equilibrium can
be reached within less than 1 h by large particles (< 6 µm)
and within 15 min by particles< 3 µm, while in several other
cases coarse particles took longer to reach equilibrium. Thus,
aerosols of different sizes within the fine and coarse modes
may not always be in mutual equilibrium due to mass trans-
port limitations, and equilibrium alone may not uniquely
determine the distribution of condensed semivolatile gases
across the particles of different sizes (Wexler and Seinfeld,
1990, 1992).

Given the above, both mass transport and thermodynam-
ics must be considered to accurately predict the distribution
of semivolatile gases and the associated aerosol pH across
the entire aerosol size spectrum. However, simulating mass
transfer and thermodynamics for the size- and composition-
distributed aerosol is computationally challenging due to nu-
merical stiffness. There are two main sources of numerical
stiffness. The first source arises from the large differences in
the mass transfer timescales for particles of different sizes.
Additional stiffness and nonlinearity are introduced by H+

ions in partially and fully deliquesced aerosols. In such cases,
the H+ ion molal hydrogen ion concentration (mH+ ) plays
a crucial role in the determination of equilibrium aerosol-
phase state as well as in the determination of equilibrium gas-
phase concentrations of HNO3, HCl, and NH3 at the particle
surface for computing their driving forces for mass transfer.
The characteristic timescale for H+ ions is quite short rela-
tive to other species, especially under acid-neutral or sulfate-
poor conditions, where the pseudo-steady-state concentra-
tions of H+ ions are 2 or more orders of magnitude smaller
than the sum of all other cations (Sun and Wexler, 1998).
Since semivolatile species in different particles of different
sizes are coupled via the gas phase, the numerical solver for
mass transfer would have to take time steps on the order of
the shortest timescale to ensure accuracy for all the species
across the entire aerosol size distribution. Such small time-
steps are computationally prohibitive for common chemi-
cal transport model applications. Several attempts have been
made over the past 20 years to reduce the stiffness of the sys-
tem of nonlinear ordinary differential equations that describe
the multicomponent, size-distributed mass transfer problem
so that it could be efficiently solved (Capaldo et al., 2000;
Hu et al., 2008; Jacobson, 1997, 2002, 2005a; Jacobson et
al., 1996; Pilinis et al., 2000; Sun and Wexler, 1998; Zaveri
et al., 2008; Zhang and Wexler, 2006).

Here, we illustrate the time evolution of size-distributed
pH using the sectional MOSAIC box model with 60 size
bins for a scenario (test case 14 in Zaveri et al., 2008)
in which fine-mode aerosol composed of (NH4)2SO4 and
coarse-mode aerosol composed of NaCl were exposed to
appreciable gas-phase concentrations of H2SO4 (1 ppbv),
HNO3 (15 ppbv), HCl (1 ppbv), and NH3 (10 ppbv) at 85 %
RH and 298.15 K temperature (Fig. 11). While the fine mode
rapidly absorbs significant amounts of these gases within the
first few minutes of the simulation, it takes nearly 10 h for the
aerosol composition, and hence the pH, to become uniform
across the bins of different sizes. Furthermore, the displace-
ment of HCl from the coarse mode due to HNO3 absorp-
tion occurs slowly over this time, although significant dif-
ferences in the pH can be seen across the coarse-mode size
bins even after 10 h. In conclusion, it is important to treat dy-
namic mass transfer to accurately simulate size-distributed
pH and composition of aerosols. Although challenging, fully
dynamic and hybrid (i.e., a combination of equilibrium for
fine mode and dynamic for coarse mode) numerical meth-
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ods have been implemented in 3D chemical transport models
(Fast et al., 2006; Jacobson et al., 2007; Zhang et al., 2010).

6.3 Role of organic–inorganic interactions

Aerosol particles are rarely composed of a completely dis-
tinct organic-free aqueous inorganic phase and electrolyte-
free organic phase – an assumption often made in air qual-
ity models for reasons of simplicity. Instead, mixed parti-
cles exist consisting of a complex mixture of organic com-
pounds, inorganic ions, and water that may be separated into
multiple liquid/solid phases (Bertram et al., 2011; Hallquist
et al., 2009; Maria et al., 2004; Murphy et al., 2006; Pöh-
lker et al., 2012; Song et al., 2012; Zuend et al., 2010). The
role of organic–inorganic interactions on the acidity of liq-
uid/amorphous aerosol phases has been addressed in only a
few studies and represents an area of research where further
efforts are needed. Particle-phase acidity could be affected
in multiple ways by organic–inorganic interactions: directly
by means of nonideal mixing effects on the activity coeffi-
cient of H+ (and all other species) in a liquid phase of given
composition; indirectly via the effect of organics on com-
position and the equilibrium gas–particle partitioning of wa-
ter and other semivolatile components (including NH3, inor-
ganic and organic acids), as well as the potential for liquid–
liquid phase separation (LLPS); and directly by dissociating
organic acids that contribute dissolved H+ or amines that as-
sociate with H+.

A phase-separated particle typically consists of a rather
hydrophobic organic-rich phase and an aqueous electrolyte-
rich (salt/ion-rich) phase (You et al., 2014, and references
therein) (Fig. 12). Note that water and inorganic ions, includ-
ing H+, can exist in the organic-rich phase of a liquid–liquid
phase-separated system (Pye et al., 2018; Zuend and Sein-
feld, 2012). The detection of LLPS and pH in ambient par-
ticles as well as micrometer-sized droplets in laboratory ex-
periments is a difficult technical challenge (Wei et al., 2018).
To our knowledge, no online measurement techniques appli-
cable to field sampling exist for that purpose (see Sect. 7.1
for aerosol pH measurement challenges). The current state
of knowledge is therefore limited to relatively simple lab-
oratory systems and theoretical considerations. Dallemagne
et al. (2016) used a model system in the form of a super-
micrometer-sized ternary aqueous poly(ethylene glycol)-400
(PEG-400) + ammonium sulfate droplet. They studied this
system in a RH- and temperature-controlled cell with confo-
cal microscopy in the presence of a pH-sensitive fluorescent
dye to determine the pH value at different locations in the
liquid drop. They report a small, yet distinct, change in pH
due to the phase transition from a single phase to two liquid
phases for this system when RH decreases: pH = 3.8 ± 0.1
in a single mixed phase at> 90 % RH, while the organic-rich
shell phase in a LLPS state exhibited pH = 4.2±0.2 at 80 %
RH to pH = 4.1± 0.1 at 65 % RH; the pH in the sulfate-rich
phase was not determined during LLPS. The pH value of the

Figure 11. Simulated evolution of size-distributed aerosol pH us-
ing the sectional MOSAIC aerosol box model: (a) initial aerosol
number size distributions for the fine and coarse modes, (b) time
evolution of gas-phase species, and (c) time evolution of aerosol pH
as a function of size (bins labeled based on what was initially in the
fine and coarse modes).
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organic-rich phase was similar to that of a corresponding salt-
free aqueous PEG-400 solution measured using a standard
pH probe. Since changes in RH lead to changes in particle
water content, here causing the LLPS, the degree to which
such changes affected the measured pH in the Dallemagne et
al. (2016) study remains unclear.

Losey et al. (2016) controlled the pH in aqueous solu-
tion droplets consisting of 3-methylglutaric acid, ammonium
sulfate, and sodium hydroxide. They found that changes in
pH and the degree of methylglutaric acid dissociation (de-
protonation) affect the separation RH (SRH), the onset of
LLPS during dehumidification. The SRH was∼ 79 % for pH
= 3.65, ∼ 70 % for pH = 5.17, and ∼ 64 % for pH = 6.45.
The RH at which the two liquid phases merge into a homo-
geneous single phase was observed around 80 % RH in this
system, approximately independent of pH – indicating that a
hysteresis between SRH and merging RH occurs for pH close
to neutral but not at lower pH. While this study did not at-
tempt to measure the pH in distinct liquid phases, it indicates
that the established pH, resulting from interactions between
inorganic electrolytes and organic acids, affects the LLPS be-
havior. Losey et al. (2018) further explored similar systems
at higher acidity in the presence of sulfuric acid (varying the
ammonium-to-sulfate ratio from 2.0 to 1.5 to 1.0). They re-
port that all observed RH levels of phase transitions were
affected by the pH established with sulfuric acid. The SRH
consistently decreased with increasing amounts of sulfuric
acid (toward lower pH); e.g., for 3-methylglutaric acid+ am-
monium sulfate + sulfuric acid from SRH of ∼ 80 % at pH
= 2.68 to SRH of ∼ 30 % at pH = 0.34. Similar lowering of
SRH with increasing acidity was also found for a nonacidic
organic mixture component (1,2,6-hexanediol). Furthermore,
at high acidity (here pH lower than 0.5), several of the studied
systems did not show any LLPS down to very low RH. While
the quantitative phase transition behavior depends on the or-
ganic component, these experiments by Losey et al. (2018)
imply that organic–inorganic interactions can have an impact
on mutual solubility and phase transitions, in those cases with
increasing mutual solubility towards higher acidity.

While a LLPS will impact the acidity in coexisting liquid
phases, the extent to which the pH values will typically differ
between the phases – and, related to that, the molar concen-
trations of hydronium ions and ionic strength – remains an
open question. Theoretical considerations aid in constrain-
ing the range of expectations in this case. Thermodynamic
equilibrium between two liquid phases, each of neutral elec-
tric charge, implies that the electrochemical potential of H+

ions is equivalent in both phases (see Sect. 2). Therefore, the
activity-based pH in coexisting phases is expected to be simi-
lar but not necessarily of the exact same value. Computations
with the AIOMFAC-based liquid–liquid equilibrium model
confirm for case studies that the pH in two liquid phases is
of the same order of magnitude, often with a difference of
less than 0.2 pH units (Pye et al., 2018). However, H+ mo-
lalities (or concentrations) in the two coexisting phases of

atmospheric aerosols are predicted to be very different, often
by up to several orders of magnitude; hence, it is important
to calculate pH based on H+ activity and not simply con-
centration (see also Sect. 4.3 recommendations for approx-
imating pH). In Pye et al. (2018), several thermodynamic
models were applied to predict the partitioning of ammonia,
water, and organic compounds between the gas and particle
phases for conditions in the southeastern US during sum-
mer 2013. AIOMFAC-based coupled liquid–liquid and gas–
particle partitioning computations within that study predicted
partial to complete miscibility among organic and inorganic
aerosol components, depending on RH. The AIOMFAC-
based model predicted an increase in the concentration of
gas-phase ammonia (NH3) alongside a decrease in acidity
when partial miscibility of organics was accounted for. In
comparison to calculations with complete phase separation
between organic and inorganic ions enforced, the interac-
tions of inorganic ions with organic compounds (in mixed
phases) were predicted to promote an enhanced association
of H+ and SO2−

4 into HSO−4 , resulting in a slightly higher
pH (0.1 pH units median increase), since the bisulfate ion is
predicted to be more miscible with organic compounds than
equivalent amounts of H+ and SO2−

4 (Pye et al., 2018). This
indicates a pH buffering effect of the degree of bisulfate dis-
sociation; however, additional complexity in understanding
the main drivers of such pH changes arises from simultane-
ous changes in the equilibrium gas–particle partitioning of
water, organics, and ammonia.

The impact of amines and organic acids on H+ is usually
neglected in efforts to model pH. Amines may contribute to
aerosol alkalinity – especially given their potentially strong
proton affinity (Dall’Osto et al., 2019), but they must be in
sufficient quantities to compete with NH3 and other cations.
Although not strong sources of protons or cations, these alka-
line and acidic organics may still be considered together with
other water-soluble organic compounds (WSOCs) in the par-
ticulate phase in terms of their ability to influence the aerosol
water content. The uptake of water due to organic compo-
nents is often used to correct the solvent volume and pHF
derived based on the inorganic aerosol composition (e.g.,
Guo et al., 2015; Bougiatioti et al., 2016). This implies that
aerosol pH is reversibly influenced by the amount of water
(driven by RH and composition) associated with the aerosol
particles, which has been shown to drive some of the diurnal
variability of pH (Guo et al., 2015).

For systems where a single mixed aerosol phase is as-
sumed, current work indicates dissociating organic acids do
not strongly affect pH, and the limited studies to date sug-
gest that inorganic species drive pH (Battaglia et al., 2019;
Song et al., 2018; Vasilakos et al., 2018). For the southeast-
ern US, pH changes predicted by E-AIM were generally lim-
ited to < 0.2 pH units in response to dramatic increases in
oxalic acid (Vasilakos et al., 2018). Similarly, E-AIM pre-
dicted that increases in oxalic acid concentrations resulted in
< 0.1 pH unit changes for polluted Beijing conditions (Song
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Figure 12. Sketch of a multicomponent aerosol particle consisting
of an organic-rich and an aqueous inorganic-ion-rich phase in LLPS
– here adopting a core–shell morphology. Shown are equilibria of
water, organic compounds, and inorganic acids and bases contribut-
ing to the overall particulate matter mass, ionic strength, and the pH.
The dynamically established pH exerts control on the gas–particle
partitioning of semivolatile acids and bases, such as HNO3, HCl,
and NH3. All species may partition into all phases; however, in-
organic ions tend to favor the aqueous phase, while organic com-
pounds of moderate to low polarity will predominantly partition to
an organic-rich phase.

et al., 2018). This is notable since the predicted pH in Bei-
jing (neglecting organics) was consistently above the first
acid dissociation constant (pKa1) value for oxalic acid, con-
ditions where pH is predicted to be most sensitive to organic
acids (Nah et al., 2018). Nah et al. (2018) showed that for
aerosol pHF varying between 0.9 and 3.8, the inorganic-only
predicted pHF was sufficient to define an effective sigmoid
curve for oxalic acid, one of the most abundant of organic
acids with a pKa that is well within this range. Neglecting
the effects of oxalate on pH by Nah et al. (2018) did not
seem to affect the quality of the partitioning. Battaglia Jr. et
al. (2019) extended these prior studies to include additional
organic acids (oxalic, glutaric, and malonic acids) as well as
three nonacid organics (levoglucosan, tetrahydrofuran, and
1-pentanol) mixed with inorganics representative of Beijing
winter haze and eastern US summertime compositions. The
changes in pH relative to the inorganic-only system were pre-
dicted by AIOMFAC to be quite small, generally < 0.2 pH
units, when a single aerosol phase was present (Battaglia Jr.
et al., 2019). The response of pH to the same organics at
lower RH (< 70 %) or under LLPS conditions was not char-
acterized.

While current work suggests organic–inorganic interac-
tions only slightly affect the pH, they can drive both LLPS

and other phase transitions. Based on case studies (Pye et
al., 2018; Battaglia Jr. et al., 2019), the interactions between
water and ions are likely the main determinants of the re-
sulting pH value. However, considering the complexity and
variability of realistic aerosol compositions, the extent to
which organic–inorganic interactions moderate the pH in liq-
uid phases has not yet been studied in depth.

7 Atmospheric observations of acidity

The preceding sections (e.g., Sect. 2.5) have alluded to some
of the distinct challenges associated with particle and cloud
pH measurements. Measuring the pH of nominally sub-
10 µm atmospheric aerosols is not routinely possible, as the
methods typically available for bulk condensed phases (e.g.,
electrochemical pH probes) cannot be applied to the liquid
phase of a single particle or a population of particles as a
result of the extremely low levels of liquid water. Another
issue is the highly concentrated nature of aerosol solutions,
whose ionic strengths are often orders of magnitude above
the maximum ionic strength currently accepted by the IU-
PAC definition (0.1 M). As a result, limited direct measure-
ments of aerosol pH exist (Sect. 7.1.1–7.1.2), and observa-
tionally constrained estimates of bulk fine-particle acidity are
usually created from thermodynamic models (Sect. 7.1.3–
7.1.4). The sample volumes for fog/cloud water or precipita-
tion are orders of magnitude larger than for aerosols and can
be collected from clouds using well-established instrumenta-
tion. This, together with their dilute concentration, allows for
a direct cloud water pH measurement, which has been done
with electrochemical pH probes for decades (Sect. 7.2).

7.1 Observed aerosol acidity

Challenges associated with measuring semivolatile species
(Sect. 3.3) and maintaining aqueous concentrations found
in ambient particles have limited direct measurements of
aerosol pH for many years. The abundance of many non-
volatile ionic components of the atmospheric aerosol (e.g.,
sulfate or sodium) can be measured. However, unperturbed
equilibrium contact with the gas phase cannot be easily main-
tained. Determining H+ activity (or molality in the case of
pHF) requires knowledge of water content, which for non-
glassy aerosol is in chemical equilibrium with the gas phase
(e.g., Seinfeld and Pandis, 2016). Thus, if the ALWC changes
between sampling and analysis, as often occurs in routine
monitoring networks, the pH of that particle can shift. A
second challenge is that one of the most important cations
present in submicrometer aerosol, NH+4 , is largely in equilib-
rium with gas-phase NH3, so perturbations during collection
and processing may result in large evaporation/condensation
biases (e.g., Guo et al., 2018a).

Despite the obstacles related to measuring the pH of
aerosols, the importance of aerosol pH has motivated efforts
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to more directly probe the pH of aerosols. Direct measure-
ments may either provide an ensemble or bulk average pH
value (Li and Jang, 2012; Jang et al., 2008; Ganor et al.,
1993; Craig et al., 2018), single-particle values (Craig et al.,
2017; Rindelaub et al., 2016b), or intraparticle pH values
(Wei et al., 2018). Considerable effort has also been spent to
develop pH estimates using a combination of thermodynamic
modeling with measurements of aerosol- and gas-phase com-
position (e.g., Guo et al., 2018a, 2017a, 2015; Bougiatioti et
al., 2016; Song et al., 2018; and others).

7.1.1 Bulk pH measurements

For bulk pH values to be reasonable, composition and parti-
tioning of semivolatiles among the particles in the population
should be relatively uniform (see Sect. 6 for a discussion on
the role of particle mixing state). For a set of submicrome-
ter particles with homogeneous composition (i.e., an inter-
nal mixture, as often found in aged aerosols), this assump-
tion is often satisfied, particularly at higher RH. The sim-
plest bulk method, first utilized in the late 1980s, involved
adding a known volume of water to a filter and then utiliz-
ing a standard electrochemical pH probe to infer so-called
strong acidity (Koutrakis et al., 1988). As discussed here and
in Sect. 3.1, given the semivolatile nature of water and non-
conservative nature of the H+ ion (Saxena et al., 1993), this
approach has significant shortcomings.

The use of pH-sensitive indicators has been one of the
most common approaches to avoid sample modification. Al-
though only a handful of studies have used indicators for
aerosol studies, multiple approaches have been applied. Jang
et al. (2008) used a Teflon filter where the dye metanil yel-
low was taken up by the filter prior to sampling aerosol. Par-
ticle mass was determined gravimetrically, and pH-sensitive
indicators were analyzed with a UV-Visible (UV-Vis) spec-
trometer. Through a calculation combining mass, absorp-
tion features of the protonated (at 545 nm) and deprotonated
(at 420 nm) form, and particle volume from a simultaneous
aerosol size distribution, the mass of H+ was determined and
then converted to pH. The RH had to be precisely controlled,
since any change in water content would limit the reliabil-
ity of the results. The authors noted the need for an online
approach to avoid these complications. This work was ex-
panded in Li and Jang (2012) with the use of an optical flow
chamber to help control the RH and improve transfer from
the collection point in a Teflon aerosol chamber to the UV–
Vis spectrometer for measurement. For a tightly controlled
system, the dyed filter approach provided particle pH, but the
method has not been reliably applied in the complex ambient
atmosphere.

Colorimetric methods have been utilized at different points
to determine the pH of aerosols and cloud droplets. Ganor et
al. (1993) used pH paper on a four-stage impactor (> 10, 3.0–
10.0, 0.9–3.0, and < 0.9 µm) to probe larger haze particles
in Israel under conditions with RH exceeding 80 %, cloud

droplets, and fog droplets. Two types of pH paper were used
covering two pH ranges, 0.5–5.0 and 5.0–9.0 (indicator not
given), with 0.5 pH unit resolution. For these measurements,
a size dependence in acidity was observed, with pH decreas-
ing from 5 to 2 from cloud/fog to large particles using visual
identification. Submicrometer haze aerosol pH was charac-
terized as having an overall pH of 1.5–2.5 in Israel (Ganor
et al., 1993). Craig et al. (2018) recently quantified the mea-
surement of aerosol pH with a precision of 0.1 pH units using
particles impacted on pH paper followed by rapidly taking a
cell phone picture later analyzed with a simple image pro-
cessing script in MATLAB. For their work, thymol blue (pH
= 0–2.5) and methyl orange (pH = 2.5–4.5) indicator dyes
on paper were used for both model aerosol in the laboratory
and ambient samples at a forested site in northern Michigan
(pH= 1.5–3.5) and in Ann Arbor, Michigan (pH= 3.0–3.5).
Water and ammonia volatilization due to increased surface-
area-to-volume ratios in smaller particles explains the ob-
served increase in particle acidity with decreasing particle
size but also the inadequacy of the pH paper method to mea-
sure the pH of very small particles (Craig et al., 2018). Ganor
et al. (1993) and Craig et al. (2018) mentioned that for the
colorimetric approach to be effective, the particles must be
aqueous with sufficient aerosol water to substantially wet the
indicator paper, which was not always the case for ambi-
ent sampling. The atmospheric samples in northern Michigan
(Craig et al., 2018) covering three size ranges (2.5–5.0, 0.4–
2.5, and < 0.4 µm) and measuring to smaller sizes than in
Ganor et al. (1993) showed a distinct decrease in pH toward
smaller size. For the smallest stage in Craig et al. (2018),
variation in pH was observed across the samples with values
ranging from 1.5 to 3.0, possibly due to differences in pH be-
tween individual particles in that size range, though further
investigation is needed (see Sect. 6 for a discussion on the re-
lationship between particle size and pH). Craig et al. (2018)
made comparisons to the bulk solutions with the thermody-
namic model E-AIM, finding good agreement. When applied
to the particle data, the thermodynamic model ISORROPIA
predicts a pHF lower than measured by roughly a pH unit,
while E-AIM was roughly 2 pH units lower. Further testing
is needed between thermodynamic models and colorimetric
methods to explore differences, particularly since the high
ionic strengths in particles may affect organic dye activity
(e.g., via issues raised in Sect. 2.5).

7.1.2 Single-particle pH measurements

Several emerging methods have the potential to provide even
greater insight into the pH of individual particles but have
been focused on model systems. Determining single-particle
pH is desirable as the variation of pH values for individ-
ual particles from the population-level average is not well
known. Even a few acidic particles can dominate the average
pH value for a population in an environment with fresh emis-
sions (e.g., urban area) where the particles have not reached
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equilibrium with the gas concentrations surrounding them
(Craig and Ault, 2018). This heterogeneity may be less im-
portant in a regional background that has experienced sig-
nificant atmospheric processing (Guo et al., 2018a). One of
the first approaches to single-droplet pH measurement was
that of Ganor (1999), which impacted cloud and fog droplets
collected on the four stages of a cascade impactor on to a
cleaved calcite (CaCO3) crystal. If an acidic droplet contain-
ing sulfate was impacted, the microchemical reaction pro-
duced gypsum (CaSO4

q2H2O) crystals. Fog droplet pH val-
ues of 3.0 and 4.0 were observed in Israel for sizes of 1–2
and 3–9 µm, respectively. A second single-particle method
(Dallemagne et al., 2016), used for studying liquid–liquid
phase separation (LLPS) in larger particles (10–30 µm) with
optical microscopy methods, applied a fluorescent indicator
(Oregon Green 488 carboxylic acid, succinimidyl ester) to
probe pH before and after phase separation via fluorescence
microscopy (see Sect. 6.3 for discussion of organic species
and their role in acidity).

A recently developed approach for probing the pH of in-
dividual droplets is the acid-conjugate base method (Rinde-
laub et al., 2016b), which calibrates the peak area for the
acid and conjugate base measured with Raman microspec-
troscopy to molar concentrations, which along with the acid
dissociation constant (Ka) and activity coefficient calcula-
tions can be used to determine the activity of the H+ ion.
Rindelaub et al. (2016b) originally applied this to monitor-
ing sulfate and bisulfate in proximity to the pKa of 2. Craig et
al. (2017) expanded this method to cover a range of systems
(nitric acid–nitrate, bioxalate–oxalate, acetic acid–acetate,
and bicarbonate–carbonate, as well as an inorganic–organic
mixture). From these systems, a pH of −1 to 10 could be
probed, covering the full range of atmospherically relevant
particle pH (Fig. 2). The acid-conjugate base method orig-
inally made use of activity coefficients from the extended
Debye–Hückel method (Rindelaub et al., 2016b) but has
been expanded to other methods in subsequent publications
(Craig et al., 2017). In addition to using simplistic model
systems, recent work has shown that the protonation state
of hydroxyl functional groups (–OH) in organic molecules
from SOA formation can be used to estimate pH. Bondy
et al. (2018) showed that by modulating pH the protonation
state of 2-methylglyceric acid or 2-methylglyceric acid sul-
fate ester could be used to roughly identify the pH of a sys-
tem, though further quantification is necessary to assess the
accuracy of this approach. This was shown by monitoring the
carbonyl (C=O) stretch of the carboxylic acid group on 2-
methyl glyceric acid when protonated versus the asymmetric
and symmetric vibrations of the carboxylate group (COO−)
when deprotonated. While these vibrations have been suc-
cessfully measured in ambient aerosols collected during the
SOAS summer 2013 campaign, none of the acid-conjugate
base methods has been applied on ambient aerosol to evalu-
ate aerosol pH.

Wei et al. (2018) recently probed intraparticle pH variation
using surface-enhanced Raman spectroscopy and showed pH
is not always uniform within an individual particle. The re-
searchers took the acid-conjugate base method one step fur-
ther with nanoprobes by functionalizing a gold nanoparticle
dimer with an indicator molecule (4-mercaptobenzoic acid)
and monitoring the acid versus conjugate base form of the in-
dicator molecule in 20 µm phosphate buffer solution droplets
(pH = 7–11). They showed that within a single particle, a
gradient of up to 3.6 pH units could be observed between
the core (higher pH) and the exterior few micrometers of the
particle (lower pH) due to accumulation of protons at the air–
water interface. Such substantial differences in pH within a
single particle are unexpected (as they imply a large chemi-
cal potential difference of H+ ions), and further independent
measurements are needed to confirm this behavior in atmo-
spheric particles.

7.1.3 Considerations for the development of
observationally derived pH estimates

Only very recently have methods for direct measurement
of aerosol pH become available, and they require consider-
able development before they become routine and generally
applied. Until now, most information generated on aerosol
acidity relies on measurements of particle composition and
gas-phase semivolatiles, in addition to thermodynamic equi-
libria or kinetic modeling (see Sect. 2.6). pHF (Table 1) is
the most common approximation of pH reported in the lit-
erature. The accuracy of these estimates depends on and
is evaluated by the agreement between observed and mod-
eled gas–particle partitioning of pH-sensitive species – typ-
ically TNH4, TNO3, and TCl, as well as accuracy of pre-
dicted aerosol liquid water (Guo et al., 2015, 2017b, 2018b;
Meskhidze et al., 2003; Song et al., 2018). NH3 is an ideal
species to measure since gas–particle partitioning of TNH4
is sensitive to most ambient pH levels and NH+4 is often the
dominant particle cation. However, NH3 measurements are
challenging and often not colocated with aerosol composi-
tion measurements. Bougiatioti et al. (2016) estimated that
neglecting gas-phase NH3 levels of about 0.1 to 0.7 µgm−3

in the thermodynamic equilibrium calculation of fine-aerosol
pH could lead to an underestimation in the pHF of around
0.5 units, while Guo et al. (2015) found neglecting gas-phase
NH3 leads to an underestimation of pHF by 1 unit. Although
this magnitude of underestimation is not universally appli-
cable when NH3 is missing from the thermodynamic calcu-
lations, it may be a reasonable bound for most of the atmo-
sphere. Weber et al. (2016) and Guo et al. (2017a) estimated
that, on average, a 5-fold to 10-fold increase in the NH3 lev-
els leads a 1-unit change in pH. For cases were more than
90 % of TNH4 is in the aerosol, neglecting gas-phase NH3
should give similar (1 unit) underestimations in pH. Accu-
rately bounding the error requires aerosol pH calculations to
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be evaluated against observations in both the aerosol and gas
phases.

Routine air quality monitoring networks provide
limited opportunity for pH estimation. European net-
works (European Monitoring and Evaluation Pro-
gramme (EMEP)/EBAS, http://ebas.nilu.no/, last access:
7 April 2020; and Research Infrastructure for the obser-
vation of Aerosol, Clouds and Trace Gases (ACTRIS),
http://actris.nilu.no/Data/Policy/, last access: 7 April 2020)
provide mainly bulk PM10 aerosol chemical composi-
tion data which prohibit equilibrium assumptions due to
the contributions from coarse-mode mass. Most routine
networks in the US measure PM2.5, but the Intera-
gency Monitoring of Protected Visual Environments
(IMPROVE, http://vista.cira.colostate.edu/Improve/, last
access: 7 April 2020) network lacks measurements of
NH+4 and the Chemical Speciation Network (CSN, https:
//www.epa.gov/amtic/chemical-speciation-network-csn, last
access: 7 April 2020) NH+4 is biased low compared to other
networks and measurements (Pye et al., 2018; Silvern et al.,
2017). The Clean Air Status and Trends Network (CAST-
NET, https://www.epa.gov/castnet, last access: 7 April 2020)
provides measurements of NH+4 , NO−3 , and SO2−

4 , along
with HNO3, SO2, and base cations, at approximately 92 sites
across the US. However, CASTNET does not size-select
particles. For IMPROVE and CSN, concurrent relevant
gas-phase measurements are generally not available. Up
until 2015, the Southeastern Aerosol Research and Charac-
terization Study (SEARCH) in the US provided complete
hourly particle and gas-phase semivolatile measurements
with high accuracy and precision (Edgerton et al., 2006;
Hansen et al., 2003). Recent instrumental developments
(MARGA, Liu et al., 2014) enable concurrent measurements
of inorganic substances that influence aerosol pH and are
present in the gas phase (namely HCl, HNO3, HNO2, SO2,
NH3) or in the aerosol phase (Cl−, NO−3 , SO2−

4 , NH+4 , K+,
Ca2+, Mg2+). Online NH3 instruments are becoming more
available, with sensitivity down to very low concentrations
(von Bobrutzki et al., 2010). In combination with aerosol
data, gas-phase measurements generate datasets that can
constrain aerosol pH.

For submicrometer aerosol (PM1), the development and
operation of aerosol mass spectrometers (AMS, Zhang et
al., 2007; Jimenez et al., 2009) and aerosol chemical spe-
ciation monitors (ACSMs, Ng et al., 2011) during the last
decade provides a powerful tool to build a database of nonre-
fractory submicrometer aerosol composition. This database
could constrain aerosol pH when complemented by gas-
phase measurements, mainly of NH3, as well as measure-
ments of the nonvolatile, refractory aerosol components.
Such studies, usually performed on a campaign basis, have
enabled the estimation of aerosol pH at various locations
around the globe, including the southeastern US, Greece,
and mainland China (Table S6), and ACSM measurements
could be more routinely available in the future (e.g., AC-

TRIS, Schmale et al., 2017). However, the contribution of
organosulfates and organonitrates to AMS-measured total
sulfate and nitrate (Farmer et al., 2010; Dovrou et al., 2019)
must be considered to provide robust inorganic aerosol com-
position for acidity predictions. In locations such as the east-
ern US in summer where organosulfates already account for
15 % of total sulfate (Riva et al., 2019), AMS-measured total
sulfate, when used in a thermodynamic model as inorganic
sulfate, can lead to erroneous predictions of particle compo-
sition and thus pH (Pye et al., 2018).

The largest challenge using network or campaign data to
estimate pH is that simultaneous information on NH3 and
NH+4 is often not available. The National Atmospheric De-
position Program/Ammonia Monitoring Network (AMoN)
measures NH3 on a biweekly schedule at 104 active sites
in the US (as of 29 July 2019) (http://nadp.slh.wisc.edu/
data/AMoN/, last access: 13 April 2020). Colocation with
CASTNET NH+4 measurements provides NH3+NH+4 at ap-
proximately 70 sites (Puchalski et al., 2019). The UK Na-
tional Ammonium Monitoring Network (NAMN) has been
established to measure the spatial distribution and long-
term trends in atmospheric gaseous NH3 and aerosol NH+4
(Sutton, 2001; Sutton et al., 1998). In 2016, the network
measured gaseous NH3 on a monthly basis by DEnuder
for Long-Term Atmospheric (DELTA) sampling at 56 sites
and by Adapted Low-cost Passive High Absorption (AL-
PHA) samplers at a further 38 sites, with 9 of these sites
used for calibration, in order to quantify the spatiotem-
poral variability of NH3 and NH+4 concentrations and de-
position across the UK (http://www.pollutantdeposition.ceh.
ac.uk/content/ammonia-network, last access: 8 April 2020).
Observations show spatially variable changes in NH3 with
both reductions, mainly to the north, and increases to the
south between 1997 and 2007. In nature reserve areas in
the Netherlands, atmospheric NH3 concentrations have been
monitored by the Measuring Ammonia in Nature (MAN)
network (http://man.rivm.nl, last access: 8 April 2020) since
2005 (Lolkema et al., 2015). In 2015 that network contained
60 natural areas with a total of 236 sampling points were NH3
was monitored using passive samplers. While no significant
trend has been found on average, at six stations a significant
increasing trend was recorded.

The amount of knowledge on the atmospheric distribu-
tion of NH3 has increased rapidly in the satellite era since
the NH3 tropospheric column observations from space by
the Atmospheric Infrared Sounder (AIRS) sensor on board
the Aqua satellite (Warner et al., 2016), the Infrared At-
mospheric Sounding Interferometer (IASI) (Clarisse et al.,
2009), and the Cross-track Infrared Sounder (CrIS) (Shep-
hard and Cady-Pereira, 2015) became available. These satel-
lite observations have shown high NH3 levels associated with
animal feeding operations and fertilizer applications as well
as biomass burning (especially wild fires). These data pro-
vided a global view of NH3 column distribution, construc-
tion of which was inhibited by the spatial and temporal vari-

www.atmos-chem-phys.net/20/4809/2020/ Atmos. Chem. Phys., 20, 4809–4888, 2020

http://ebas.nilu.no/
http://actris.nilu.no/Data/Policy/
http://vista.cira.colostate.edu/Improve/
https://www.epa.gov/amtic/chemical-speciation-network-csn
https://www.epa.gov/amtic/chemical-speciation-network-csn
https://www.epa.gov/castnet
http://nadp.slh.wisc.edu/data/AMoN/
http://nadp.slh.wisc.edu/data/AMoN/
http://www.pollutantdeposition.ceh.ac.uk/content/ammonia-network
http://www.pollutantdeposition.ceh.ac.uk/content/ammonia-network
http://man.rivm.nl


4848 H. O. T. Pye et al.: The acidity of atmospheric particles and clouds

ability of NH3 concentrations reflecting its spatially varying
sources and its short tropospheric lifetime of up to a couple
of hours (Dentener and Crutzen, 1994). While there is not
yet established methodology to derive aerosol pH from space
observations, the improvement of near-surface information
on atmospheric composition in combination with ground-
level observation network data (perhaps even augmented by
model fields of such data) will likely advance our understand-
ing. Considerably more challenging, however, is constrain-
ing the vertical distributions of aerosol pH – especially since
the lower temperatures and less abundant water progressively
challenge the assumption of thermodynamic equilibrium and
may require the treatment of particle history and hysteresis
(e.g., Wang et al., 2008).

7.1.4 Spatial and temporal variability of aerosol pH

Current observationally constrained estimates of particle pH
indicate fine-mode aerosol is ubiquitously acidic. During
winter with low temperature and high relative humidity,
aerosol pHF is higher than during summer following the liq-
uid water availability and temperature (Fig. 13a). This sea-
sonal trend has been widely observed in the eastern US (Guo
et al., 2016, 2015); Beijing (Tan et al., 2018); Inner Mongo-
lia (H. Wang et al., 2019); Hong Kong (Xue et al., 2011);
the Po Valley, Italy (Squizzato et al., 2013); Cabauw, the
Netherlands (Guo et al., 2018b); and eastern Canada (Tao
and Murphy, 2019b), with pHF differences between seasons
spanning from 0.6 to 2.3 pHF units. X. Wang et al. (2019)
reported the lowest mean aerosol pHF in summer and at-
tributed it to the higher contribution of secondary sulfate than
in the other seasons and the highest mean aerosol pHF in
spring likely associated with the influence of dust. The most
complete dataset containing seasonality comes from Canada,
where observationally derived monthly mean pH values for
PM2.5 were constructed for six sites over 10 years (Tao and
Murphy, 2019b). The Canadian dataset shows summertime
minimum pH and wintertime maximum with 1 pH unit of
difference (∼ 2 versus ∼ 3, respectively). Aerosol acidity in-
creases with increasing temperature (0.1 unit increase in pH
per 2 K decrease in temperature) and decreasing relative hu-
midity. Summer pH is largely dictated by temperature, while
both meteorological factors and aerosol composition affect
winter pH. Beijing shows a similar pHF trend with winter
having higher pHF than summer (pHF of 4.1 vs. 1.8) (Tan et
al., 2018). However, Beijing data also show summer 2016–
2017 pHF (Ding et al., 2019) being almost 2 units higher than
that in summer 2014 (Tan et al., 2018), potentially indicat-
ing effective air pollution mitigation strategies. The summer
minimum in fine-aerosol pH is a common feature of all avail-
able pH datasets and is associated with the effects of high
ambient temperatures and low aerosol water content. Tem-
perature has also been shown to strongly affect the partition-
ing of total ammonium through its effects on solubility and
dissociation (Hennigan et al., 2015). Composition can also

play a role in seasonality as shown in data for Inner Mon-
golia (H. Wang et al., 2019) and the Po Valley (Squizzato
et al., 2013), where maximum fine-aerosol pHF was found
in spring likely due to the influence of desert dust aerosol
from the Gobi and from Sahara deserts respectively. The ab-
solute values in Mongolia show partial neutralization of the
aerosol with pHF between 5 and 6.1, while those for the Po
Valley are more acidic, being 1.3 pHF units higher in spring
(pHF = 3.6) than in the summer (pHF = 2.3).

Similarly, resulting from diurnal changes in temperature
and relative humidity, higher pHF is observed during the
night compared to that during the day (Fig. 13b). For ex-
ample, acidity shows diurnal variation of almost 2 pHF units
in China (Cheng et al., 2015), of 0.5–5 pH units in south-
ern Canada (Murphy et al., 2017), of 0.65–1.5 pHF units in
the US (Battaglia et al., 2017; Guo et al., 2015; Nah et al.,
2018), and about 1 pHF unit in southern California (Guo et
al., 2017b). Finokalia experiences ∼ 1 pHF unit lower pHF
during the day than night because of low aerosol water con-
tent and high temperatures (Bougiatioti et al., 2016). This
pattern is amplified by the urban heat island effect through
its impact on temperature (Battaglia et al., 2017).

Figure 14 summarizes the current estimates of ambient
fine-aerosol pH based on literature data summarized in Ta-
ble S6. Studies that used only aerosol composition for calcu-
lating pH (reverse-mode aerosol calculations, which are un-
certain; e.g., see Hennigan et al., 2015) or ion-balance based
approaches are excluded from the figure. Mean fine-aerosol
pHF ranges from around 1 to 6 although specific locations
and episodes may experience higher or lower acidity. Highly
acidic fine aerosols are found in Southeast Asia, the eastern
US, and other locations. Mainland China, Europe, Canada,
Mexico, and the western US have on average similar levels
of aerosol acidity (2.5 to 3). This spatial variability in pH re-
flects variability in the chemical composition of fine aerosols
that result from the combined effect of changes in sources
and meteorology.

Overall, the eastern US aerosol is predicted to be one of
the most acidic locations, with average pHF near a value of 1
(Battaglia et al., 2017; Craig et al., 2018; Fang et al., 2017;
Weber et al., 2016; Pye et al., 2018; Xu et al., 2015; Guo et
al., 2016, 2015) and higher pHF, by about 1 unit, observed in
locations of intensive agriculture with high NH3 concentra-
tions (Nah et al., 2018) and those influenced by larger parti-
cles (Fang et al., 2017; Craig et al., 2018). Higher aerosol pH
(2–3 in pHF) was estimated for Los Angeles in summer (Guo
et al., 2017b), similar to observationally derived values for
the eastern Mediterranean (0.5–2.8 pHF, Bougiatioti et al.,
2016). The pHF values of PM1 and PM2.5 in Pasadena dur-
ing the CalNex 2010 campaign were slightly different with
the larger PM2.5 particles having pHF 0.8 units higher than
PM1 (Guo et al., 2017b) due to the larger water content and
more abundant NVCs at larger sizes. Greater acidity in sub-
micrometer (PM1) versus larger (PM2.5) fine-mode particles
is a robust feature in multiple datasets (e.g., Bougiatioti et al.,
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Figure 13. (a) Seasonality of fine-aerosol acidity (pHF divided by
the annual average) from the literature. Annual average pH for
Canada (Tao and Murphy, 2019b), Beijing 2014 (Tan et al., 2018),
Beijing 2016–2017 (Ding et al., 2019), Inner Mongolia (H. Wang
et al., 2019), the Po Valley (Squizzato et al., 2013), Cabauw (Guo
et al., 2018b), Atlanta (Guo et al., 2015), and Yorkville (Guo et al.,
2015; Nah et al., 2018) is 2.5, 2.8, 4.3, 5.5, 3.1, 3.6, 1.3, and 1.7,
respectively. (b) Diurnal cycle of aerosol pHF at four selected sites
(see Sect. 7 and Table S6 for a description of data), expressed as
the departure from its daily average diurnal value (3.7, 0.6, 2.1, and
3.2 for Cabauw (Guo et al., 2018b), SOAS Centreville (Guo et al.,
2015), CalNex Pasadena (Guo et al., 2017b), and Tianjin (Shi et al.,
2019), respectively). In deriving the diurnal profiles, each dataset is
grouped in hourly bins, from which average hourly values are calcu-
lated. Estimates are pHF except for Tao and Murphy (2019b), who
estimate pH.

Figure 14. Observationally estimated ground-level fine-aerosol pH.
Estimates are primarily based on observationally constrained ther-
modynamic equilibrium model predictions reported as pHF. Values
correspond to present-day conditions. Measurement locations, mea-
surement time periods, reported pH values, and citations are listed
in Table S6. Values shown in the figure will be available in tabular
format via data.gov (see data availability statement).

2016; Fang et al., 2017; Fridlind and Jacobson, 2000; Ding
et al., 2019; see Sect. 6.1 for a discussion of pH as a func-
tion of particle size). Guo et al. (2016) estimated the mean
pHF at 0.77± 0.96 for PM1 aerosol aloft based on aerosol
chemical composition measurements during the Wintertime
Investigation of Transport, Emissions, and Reactivity (WIN-
TER) campaign in the northeastern US and thermodynamic
modeling.

For mainland China, fine-aerosol pHF estimates vary but
tend to be mildly acidic (average pHF approximately 4) and
span from negative values (in Chengdu) to as high as 6.1 for
PM2.5 aerosol (Liu et al., 2017; Jia et al., 2018; Song et al.
2018; Tian et al., 2018; Cheng et al., 2015; He et al., 2018;
Tan et al., 2018; Shi et al., 2017; Guo et al., 2017a; Ding
et al., 2019; Jia et al., 2018b; Wang et al., 2019), while in
Southeast Asia (Singapore and Hong Kong) fine aerosol is
highly acidic (average pHF approximately 1) (Behera et al.,
2013; Yao et al., 2007). Ding et al. (2019) estimated coarse
particles were generally neutral or alkaline, based on obser-
vations in Beijing and modeling with ISORROPIA II. The
strong acidity in Southeast Asia is consistent with reported
high solubility of particulate iron sampled in the South China
Sea (Li et al., 2017). Altogether, these data suggest that there
is a large spatial gradient of pH across China and Southeast
Asia, reflecting the highly variable sources of acidity and al-
kalinity within each region (Shi et al., 2019).

Higher aerosol pHF of 4.60 and 4.75 has been inferred
from observations for Hawaii (Pszenny et al., 2004) and for
Sao Paulo (Vieira-Filho et al., 2016). In the case of Hawaii,
the higher pHF is due to the neutralizing effect of non-
volatile cations from sea salt. However, more acidic parti-
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cles (pH ranging from −0.8 to 3.0) have been observed near
the Kı̄lauea volcano in Hawaii (Kroll et al., 2015). Sao Paulo
is affected by combustion sources and thus emissions of ni-
trate and NVCs that increase the aerosol pHF. Bougiatioti
et al. (2016) reported that, under the influence of biomass
burning, aerosol pHF increases to values around 3, indicative
of the impact of nonvolatile cations, particularly potassium,
as well as ammonia and nitrate emitted from wood burning.
In general, aerosol pHF increases when gas-phase NH3 in-
creases and can further be elevated by co-condensation of
nitrate and water and the presence of nonvolatile ions (Guo
et al., 2018a; Shi et al., 2019).

Information on pH trends over time is limited, due to the
scarcity of relevant data. pH data for mainland China pub-
lished prior to 2010 (Tables S6, S7) showed highly acidic
aerosol with pHF of −0.16± 0.75 in contrast to more recent
estimates (mean pHF of 3.42± 1.75 for 2011–2016). Pre-
2010 estimates are subject to large uncertainty resulting from
their calculation method of relying only on aerosol composi-
tion information as input. Thermodynamic analysis of data,
when carried out in a way that minimizes pH biases (mostly
focused on using total gas and particle composition inputs
and higher RH conditions), suggests acidity trends that may,
at first glance, seem counterintuitive. One of the few such
examples published that provides important insights can be
found for the eastern US during summer. Emissions con-
trols over the last 20 years led to significant reduction in sul-
fate aerosol, and ammonia levels remained constant or even
slightly increased. Despite these important changes, summer-
time aerosol acidity remained the same (Weber et al., 2016).
The insensitivity of aerosol pH to changes in emissions con-
trols in this region is largely driven by the semivolatility of
ammonium, which requires a fraction of it to remain in the
gas phase as dictated by thermodynamic equilibrium. Similar
behavior was found by Tao and Murphy (2019b) in Canada,
where summertime aerosol pH did not increase over 10 years
despite substantial decreases in sulfate and constant levels
of ammonia. In the same study, the seasonality and interan-
nual variability of pHF were found to be strongly driven by
the temperature changes and the resulting shift in thermody-
namic partitioning and water uptake. The modeling study of
Lawal et al. (2018) also showed little response of aerosol pHF
throughout the continental US to emission reductions despite
the considerable improvements in air quality over the pe-
riod 2001–2011. For this, they used a thermodynamic model
(ISORROPIA II) and the chemical transport model (CMAQ)
together with the relevant aerosol pH observations from three
monitoring networks (AMoN, SEARCH, and CASTNET).
However, if sulfate aerosol continues to decrease, aerosol pH
may eventually begin increasing (as proposed by Tao and
Murphy, 2019b). In the southeastern US, when sulfate ap-
proaches the 0.2–0.3 µgm−3 level, small amounts of NVCs
start affecting pH, causing it to increase (Weber et al., 2016).
Weber et al. (2016) also calculated that only large increases
in NH3 together with sulfate reductions can lead to an in-

crease in pH. Thus, for sulfate between 0.1 and 10 µgm−3,
pH approaches 2.5 when NH3 is over 10 µgm−3 and ammo-
nium nitrate is formed. In any location, unusually high lev-
els of NH3 (an order of magnitude above the background or
higher) associated with localized emissions, (e.g., confined
animal feeding operations) can also increase pH (Nah et al.,
2018). For locations characterized by high levels of ammo-
nia, strong emissions of nitrate, and/or high levels of NVCs,
pH may be driven by the water uptake and the mild acid-
ity associated with ammonium nitrate aerosol. Furthermore,
meteorology (RH, T ) is an important driver of pH, and mete-
orological trends influenced by climate change or interannual
variability can dominate over any composition changes (Tao
and Murphy, 2019b). The eventual response of aerosol pH to
changing emissions and meteorology can be determined with
models – but careful evaluation of them with in situ data is
critical to ensure that they are in the correct acidity regime
(e.g., Vasilakos et al., 2018; Shah et al., 2018).

7.2 Observed cloud and fog acidity

Sample collection is usually the largest challenge associated
with measuring cloud droplet pH. Once obtained, the pH of
collected cloud and fog water is typically measured using an
electronic pH meter and a combination glass electrode. The
approach to pH measurement in cloud and fog water has been
similar over the past several decades. Semi-micro- or micro-
electrodes are available to analyze small volumes of avail-
able fog/cloud water, with some pH microelectrodes capa-
ble of measuring as little as 10 µL of sample. The electrodes
are typically calibrated using pH 4 (phthalate-based) and
7 (phosphate-based) buffer solutions, although higher and
lower pH calibration buffers are also available (see also Sup-
plement Sect. S1). Buck et al. (2002) provide an overview
of key buffer requirements (stability, ionic strength, certifica-
tion, low pH change with temperature) and a list of primary
buffer standard compositions.

7.2.1 What determines the pH in a cloud/fog droplet?

The pH of a fog or cloud drop is determined by the balance
between acids and bases in solution. The initial composi-
tion of a droplet is determined by the dissolution of soluble
material contained within an aerosol particle that serves as
the CCN. Further changes to composition come from subse-
quent scavenging of other, nonactivated, interstitial particles
and from uptake of water-soluble gases and aqueous-phase
reactions (Sect. 5). While early measurements of cloud and
fog composition focused on inorganic species, it has become
increasingly clear that organic matter also contributes sig-
nificantly to droplet composition (Herckes et al., 2013) and,
potentially, to droplet pH.

Uptake of gaseous carbon dioxide is an important fac-
tor governing cloud pH, especially in remote environments.
Equilibration of a pure water drop with current levels of at-
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mospheric CO2 at 298 K results in a droplet pH of approxi-
mately 5.6, a value often referred to as the pH of natural rain
or cloud water. Cloud pH values above or below this value
are often referred to as alkaline or acidic, respectively.

Sulfuric and nitric acids frequently make significant con-
tributions to cloud/fog drop pH, while ammonia is typically
the most abundant base. Sulfuric acid is taken up through par-
ticle scavenging, including scavenging of ammoniated sul-
fate particles, and is also formed in situ through aqueous-
phase oxidation of sulfur dioxide. Nitric acid is a highly sol-
uble gas, in part because of its strong acidity, which leads
to nearly complete deprotonation in a cloud drop to form
nitrate. Addition of nitrate to cloud water also comes from
scavenging of particles containing solids or dissolved nitrate
salts. These include ammonium nitrate but also calcium or
sodium nitrate, which are frequently formed by reaction of
nitric acid or its precursors with sea salt or soil dust particles
(e.g., ten Brink, 1998; Lee et al., 2008). Cloud water am-
monium is derived by uptake of gaseous ammonia, as well
as from particles containing salts of ammonium with nitrate,
sulfate, and organic acids. As a result of these various scav-
enging and oxidation pathways, it is common for cloud/fog
composition to be dominated by concentrations of sulfate, ni-
trate, and ammonium (e.g., Weathers et al., 1988; Collett et
al., 2002).

A variety of weak organic acids and bases, including car-
boxylic/dicarboxylic acids and amines, can also influence the
pH of fog or cloud drops. Carboxylic and dicarboxylic acids
are frequently reported (e.g., Kawamura and Kaplan, 1984;
Weathers et al., 1988; Munger et al., 1989; Facchini et al.,
1992; Collett et al., 1999; van Pinxteren et al., 2005; Boris
et al., 2016) as contributors to cloud or fog acidity, even in
remote environments, due to the abundance of these com-
pounds, including formic acid, acetic acid, pyruvic acid, suc-
cinic acid, and oxalic acid, in the atmosphere. For these weak
acids and bases, the extent of partitioning from the gas phase
is a sensitive function of droplet pH. Partitioning of weak car-
boxylic acids, such as formic and acetic acids, into the aque-
ous phase is strongly favored at pH values above the acid’s
pKa value, due to the deprotonation of the acid in such high-
pH solutions.

7.2.2 Recent observations of cloud/fog pH and
long-term trends

Clouds and fogs have been observed to exhibit a wide range
of pH values (Table S8). Typical values fall between pH 3
and 6. The most acidic observation reported was in an evap-
orating fog in Corona del Mar in coastal southern California,
with a pH of 1.69 (Hileman, 1983). Other highly acidic pH
values include 1.95 for a fog at Mt. Oyama in Japan (Mori et
al., 1997); 1.94 for a fog in Dübendorf, Switzerland (Sigg et
al., 1987); and 1.7 for a fog in Kahler Asten, Germany (Kroll
and Winkler, 1988). Such acidic values are typically associ-
ated with large inputs of sulfuric and nitric acids, although

hydrochloric acid has also been an important source of acid-
ity in some urban areas (e.g., the Dübendorf fog). High-pH
fogs or clouds have also been reported in situations with large
inputs of ammonia or alkaline soil dust. For example, Collett
et al. (1999) reported pH values up to 7.43 for radiation fogs
in California’s Central Valley, a region with high ammonia
concentrations stemming from major agricultural activities.
Wang et al. (2011) collected cloud water at Mt. Tai, China,
and observed cloud pH values during periods of strong soil
dust influence in the range of 6.5–6.7. Changing regional
transport patterns and resulting variations in inputs of acids
and bases to Mt. Tai clouds, however, resulted in a wide range
of values between 2.56 and 7.64 overall at this site. pH as
high as 7.76, in Ca2+-rich advection fogs has been observed
at a roadside location near Sao Paulo, Brazil (Vasconcellos
et al., 2018). Fog pH values above 7 have also been reported
in polluted fogs in Kanpur, India (Kaul et al., 2011; maxi-
mum pH 8.07); in Ca2+-rich fogs in Xishuangbanna, China
(Zhu et al., 2000; maximum pH 9.15); in marine-influenced
clouds at Puy de Dôme, France (Deguillaume et al., 2013;
maximum pH 7.6); and in other locations (see Table S8).

Figure 15 (and Table S8) depicts pH observations from
locations around the globe, including observations at conti-
nental and marine locations for fogs and clouds collected by
airborne and ground-based sampling platforms. Panels rep-
resent different time periods, from pre-1985 to post-2005,
to highlight how strong regional changes in anthropogenic
emissions, especially sulfur and nitrogen oxides, are incor-
porated in clouds, thus affecting pH. Measurements pre-1985
are mostly associated with studies in the United States, Eu-
rope, Japan, and Australia. More global interest and coverage
was seen in the later 1980s and 1990s, with several measure-
ment sites active in east Asia, Africa, and South America.
Since 2005, there has been continued interest in cloud and
fog observations in some regions, including in China and
India, two countries facing increasingly severe air quality
challenges. Globally, observed pH values range from highly
acidic to more alkaline. While measurement locations are not
constant over time, there appears to be a decrease in the in-
cidence of more acid clouds and fogs in North America and
Europe since the 1980s and early 1990s, while trends in the
incidence of acid fogs and clouds in East Asia are less clear.

While the global scientific community lacks long-term
monitoring programs for cloud/fog composition, there are a
few locations around the world where such measurements
have been made routinely, or at least periodically, over pe-
riods of a decade or more. Figure 16 shows temporal trends
in cloud/fog pH from a number of sites in the United States
and Japan. Fog pH values from radiation fogs in California’s
Central Valley show a significant increase from the 1980s to
the current decade. Herckes et al. (2015) attributed the rapid
pH rise in the early part of the record, particularly at sites in
the southern part of the valley, to decreases in SO2 emissions.
A steady climb is also apparent in cloud pH values measured
at Whiteface Mountain, located in upstate New York in the
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Figure 15. Values of pH in fog and cloud water samples collected
around the globe. The measurements are divided into four time pe-
riods to provide better comparison across an era of changing an-
thropogenic emissions. Plotted points represent reported mean pH
values. In cases where mean pH was not reported or calculable from
reported data, either the reported median pH or the average of re-
ported minimum and maximum H+ concentrations converted to pH
are plotted. Measurement locations, measurement time periods, re-
ported pH values, and citations are listed in Table S8. Values shown
will be available in tabular format via data.gov (see data availability
statement).

Figure 16. Mean cloud/fog pH values reported for individual mea-
surement locations and years, from the 1960s to present. Sites are
included from the western and northeastern United States, from
the Caribbean island of Puerto Rico, and from locations in central
Japan. See text and Table S8 for references.

northeastern US, consistent with reductions in regional NOx
and SO2 emissions. Schwab et al. (2016) previously reported
decreases in cloud water SO2−

4 , NO−3 , NH+4 , and H+ con-
centrations at Whiteface Mountain of 3.8 %, 3.7 %, 2.8 %,
and 4.3 % per year, respectively, over the period 1994–2013.
Over this 20-year period the cloud pH increased approxi-
mately 0.4 pH units per decade. Cloud pH values have been
measured at remote locations in the Luquillo Mountains on
the Caribbean island of Puerto Rico since 1967. Mean val-
ues reported in several studies up through 2012 (Lazrus et
al., 1970; Weathers et al., 1988; Asbury et al., 1994; Gioda et
al., 2009, 2011, 2013; Reyes-Rodríguez et al., 2009; Valle-
Díaz et al., 2016) fall between 4.6 and 5.8, with no appar-
ent trend. The pH values observed and the lack of a clear
trend here are consistent with the fairly clean conditions in
the region. Long-term records of cloud or fog composition
are even rarer in Asia. Between the 1960s and 1990s in cen-
tral Japan (Fig. 16), conditions are fairly acidic, with mean
pH values mostly between 3 and 4. Measurements after 2000
suggest a possible increase in cloud pH in the region. Long-
term (unpublished) cloud pH measurements exist for a few
locations in Japan and Taiwan; a future anticipated publica-
tion may shed more light on acidity trends in the region.

Figure 17 examines changes in cloud and fog pH measured
from 1980 to present in Europe. By combining data from
multiple locations, a more complete assessment of pH trends
on the continent is possible. While there is considerable vari-
ability within individual record years and between years, the
data overall suggest a trend toward increased pH, with values
at the present time typically about 1 pH unit higher than in
1980. This increase, also seen in the US, is consistent with
decreasing European emissions of key acid precursors: SO2
and NOx .

Similarities in the temporal trends of cloud pH with pH
trends reported in precipitation are likely, given the obvi-
ous connections between clouds and precipitation. Vet et
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Figure 17. Trend in measured pH values of fogs and clouds sam-
pled in Europe from the 1980s to present. See Table S8 for a list of
sites and references. The dots represent the average or median val-
ues measured at the site and the green interval bars the range (min-
imum, maximum) in the reported data distributions. The trend line
indicates an increase of approximately 0.56 pH units per decade.

al. (2014) analyze a large set of precipitation measurements
from around the world, considering precipitation composi-
tion and its temporal changes by region, with the analyses
focused especially on the period 2000–2007. They report that
changes in SO2 and NOx emissions in many regions of the
globe result in measurable changes in sulfate and nitrate wet
deposition that in turn produce changes in pH and H+ wet
deposition. Vet et al. (2014) note that 75 % of European sites
and 85 % of North American sites saw increases in precipi-
tation pH over this time period. A more spatially heteroge-
neous pattern of changing precipitation pH is reported for
Asia. Looking at a longer time period, Duan et al. (2016)
report a decreasing average precipitation pH in China from
1999 to 2006 with pH increasing after 2006, a pattern that is
the inverse of temporal trends in China’s SO2 emissions.

7.2.3 pH variation across drops within a cloud/fog

Up to this point, a single pH value for a cloud or fog has been
discussed. In reality, each droplet within a fog or cloud is
likely to have a unique composition. Within a cloud, droplets
have a range of sizes as they grow, following initial cloud
drop activation on CCN, by condensation (water vapor de-
positing on cloud drops) and coalescence (droplets typically
of different sizes impacting and forming a single, larger
drop). Cloud drops form when a critical supersaturation, as-
sociated with the critical (dry) diameter of the particle, is met
following Köhler theory. Köhler theory indicates that larger
CCN activate at lower supersaturations and are therefore the
first CCN to be dissolved in droplets. A simple model rep-
resenting the initial stages of condensational growth (Twohy
et al., 1989) found that larger cloud drops activate on larger
CCN. Larger particles are typically mechanically generated

and oftentimes are comprised of more alkaline components,
including soil dust and sea salt. Smaller particles, typically
made up of sulfate, nitrate, ammonium, and organic species,
tend to be more acidic (Hoag et al., 1999). Given that the
composition of the CCN varies with size, then the fog/cloud
solute composition will vary with drop size as observed in a
variety of clouds and fogs (Noone et al., 1988; Ogren et al.,
1989; Munger, 1989; Bator and Collett Jr., 1997; Laj et al.,
1998; van Pinxteren et al., 2016; Moore et al., 2004; Guo et
al., 2012a; Herckes et al., 2013).

Other cloud physical processes also affect the solute com-
position as a function of cloud drop size. Because of the
larger surface-area-to-volume ratio in smaller drops com-
pared to larger cloud drops, water vapor condensation will
favor more rapid growth (per unit volume) of small drops,
quickly diluting their solute concentrations. Furthermore,
droplets formed from smaller hygroscopic particles are much
more diluted at the point of cloud droplet formation (CCN ac-
tivation), compared to coarse-mode particles (e.g., Nenes and
Seinfeld, 2003). Coalescence tends to occur among larger
and intermediate cloud drops of sufficiently different sizes
because of their different fall speeds. Thus, coalescence tends
to mix the composition of the larger drops, leaving the com-
position of very small drops less affected by this process. The
same is true for mixed phase, ice–water, clouds, where falling
ice crystals capture large cloud drops most effectively. Once
drops or ice crystals are large enough to fall out of the cloud
(i.e., precipitation as rain or snow), removal from the atmo-
sphere (by wet deposition) of larger drops and their dissolved
solutes and trace gases will occur.

The rate of mass transfer of other trace components be-
tween the gas and aqueous (cloud/fog droplet) phases also
depends upon the size of the droplet. The kinetic mass trans-
fer coefficient often used to describe the mass transfer be-
tween the gas and aqueous phases in cloud chemistry mod-
els incorporates a representation of gas-phase diffusion and
interfacial mass transfer limitations and illustrates the de-
pendence of mass transfer on droplet size, with the overall
transfer rate related to the inverse of the droplet radius (or in-
verse of the square of the radius) (Schwartz, 1986). This size
dependence of the mass transfer coefficient can contribute
to mass transfer occurring to and from droplets at variable
rates across the droplet size spectrum, sometimes leading
to slower aqueous concentration increases in large droplets
from the uptake of soluble gas-phase species compared to
smaller droplets (Ervens et al., 2003).

Measurements of pH in cloud water samples collected by
size-fractionating cloud water collectors (Collett et al., 1994)
revealed that pH was lower in small drops compared to large
drops for clouds and fogs sampled at various locations in
the United States. The variation of pH across the droplet
size spectrum has important implications for aqueous-phase
chemistry, especially for S(IV) oxidation to form sulfate
(Seidl, 1989; Hegg and Larson, 1990; Pandis et al., 1990;
Lin and Chameides, 1991; Roelofs, 1993; Fahey et al., 2005;
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Gurciullo and Pandis, 1997; Reilly et al., 2001; Tilgner et
al., 2013; Hu et al., 2019; Rao and Collett, 1998), which
increases the acidity of the drops. Bulk cloud pHF calcula-
tions (i.e., average characteristics, a common treatment in
chemical transport models, Sect. 8.2) tend to underestimate
the fraction of dissolved S(IV) in the form of SO2−

3 (where
S(IV) = SO2

qH2O+HSO−3 +SO2−
3 ), which causes the un-

derestimation of sulfate production rates (Fahey and Pandis,
2003; Hegg et al., 1992; Hoag et al., 1999; Moore et al.,
2004; Roelofs, 1993). This is particularly true for S(IV) oxi-
dation by ozone (O3), since the rate constant for SO2−

3 +O3
is several orders of magnitude larger than for HSO−3 +O3.
Barth (2006) found that pH variation across cloud drop sizes
is also important for aqueous-phase formaldehyde oxidation
forming formic acid, which, as a weak acid, can reduce the
pH of the drops. Furthermore, Tilgner et al. (2013) demon-
strate that a size-resolved multiphase chemistry treatment re-
sults in higher acidity production in smaller droplets, leading
to more acidic, smaller CCN particles after cloud processing,
while larger particles tend to be less acidic.

Both the composition and pH variation across the droplet
population lead to differences in reactivity for different-size
droplets. Not only does the composition of droplets vary
across the size spectrum in terms of reactants/oxidants but
many reactions and effective Henry’s law coefficients are
pH dependent (Sect. 5). Additionally, droplets of different
size settle and deposit at different rates. In fogs, where the
net effect of processing can be a cleansing of the atmo-
sphere, larger droplets deposit faster than smaller ones, so
those species enriched in larger droplets will be removed
from the atmosphere faster than those species enriched in
smaller droplets (Collett et al., 2001, 2008; Fahey et al.,
2005). Nevertheless, most chemistry transport models still
use a bulk water composition (i.e., average characteristics)
to compute aqueous-phase chemistry. Parameterizations in-
formed by how bulk and size-resolved pH differ can be em-
ployed to better represent aqueous-phase oxidation within
clouds (see Sect. 8.2).

7.3 Need for future monitoring of cloud and aerosol pH

Although cloud and fog sampling is generally more chal-
lenging than aerosol collection, pH measurement of the col-
lected cloud/fog water is simpler due to its much larger vol-
ume and much lower ionic strength. As a result, fogs and
clouds have been sampled and their pH determined in ar-
eas around the globe with more temporal and spatial cov-
erage than for aerosol pH. Depending on inputs of key acids
and bases, cloud/fog pH has been observed to range from
below 2 to greater than 7, slightly higher than, but sim-
ilar to, fine-aerosol pH that ranges from below 0 to near
7. Programs designed to target reductions in acid rain have
had direct impacts on cloud and fog pH, but aerosol pH
has been much more constant than cloud pH in the south-
eastern US and southeastern Canada over time. Analysis of

cloud pH observations over the past 25–30 years reveals that
cloud/fog acidity in many regions has decreased as anthro-
pogenic emissions of the important acid precursors, SO2 and
NOx , have decreased. A continued rise in cloud/fog pH is
likely in many regions with planned future decreases in NOx
and SO2 emissions and stable or increasing NH3 emissions.
Future changes in emissions could eventually be significant
enough to lead to fine-aerosol pH changes as well. Increases
in cloud pH are expected to enhance the solubility of gas-
phase organic acids, potentially shortening their atmospheric
lifetimes, while increases in aerosol pH could lead to more
nitrate aerosol formation and allow previously unfavorable
kinetic reactions to occur.

As emissions evolve with time, continued characterization
of cloud and particle pH is needed to understand how anthro-
pogenic activities affect condensed-phase acidity and down-
stream endpoints in the Earth system. Much remains to be
learned about factors controlling cloud/fog pH in the atmo-
sphere and the influence of this acidity on aqueous-phase
chemistry, including the aqueous-phase uptake and oxida-
tion of soluble gases to form secondary inorganic or organic
aerosol. More detailed measurements of organic acids and
bases, and their influence on cloud pH, will be increasingly
important as sulfate and nitrate concentrations decline. Like-
wise, there is a need for more systematic monitoring of cloud
and fog composition in key environments, as opposed to the
more ad hoc past sampling approaches driven primarily by
the objectives of process-based research. Because fogs and
clouds are good integrators of atmospheric acids and bases
in both the gas and particle phases, they may offer a con-
venient and practical basis for ongoing monitoring of at-
mospheric acidity. Future monitoring strategies should con-
sider long-term monitoring at surface sites as well as periodic
measurements of cloud, particle, and gas-phase composition
from aircraft in order to enhance our understanding of acidity
at higher altitudes in the troposphere. Future measurements
should also better document heterogeneity of acidity across
individual drops within a cloud/fog or aerosol population, for
example by determining the size dependence of pH. Aerosol
pH estimates will likely continue to be primarily based on
thermodynamic models in the near future and thus require
simultaneous particle- and gas-phase measurements (specifi-
cally of ammonia) to improve the spatial and temporal scales
over which fine-particle pH is currently characterized.

8 Regional and global model representations and usage
of pHF

Chemical transport models and climate models are the ul-
timate integrators of knowledge that link emissions to the
endpoints of public health, climate, and deposition. Aerosol
acidity, however, is almost never considered or reported in
these large frameworks (although there are exceptions; e.g.,
TM4-ECPL reported model-predicted pHF for clouds and
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particles; Fig. S2 of Myriokefalitakis et al., 2015), so poten-
tially large differences in acidity may be a driver of bias that
has been unidentified to date. In the following section, major
features of a set of models (Community Multiscale Air Qual-
ity Modeling System, CMAQ; Goddard Earth Observing
System with Chemistry model, GEOS-Chem; TM4-ECPL;
and the Weather Research and Forecasting Model coupled
with Chemistry, WRF-Chem) are summarized in terms of
fine-aerosol pHF predictions (Sect. 8.1). The cloud pHF from
a subset of the CTMs listed above and the Community At-
mosphere Model with Chemistry (CAM-Chem; Lamarque et
al., 2012; Tilmes et al., 2015), a component of the NCAR
Community Earth System Model (CESM), are also included
(Sect. 8.2). Table 7 summarizes the species considered in the
calculation of pH for each model displayed in this work.

8.1 Aerosol pHF

All three-dimensional CTMs presented here use thermody-
namic models to predict aerosol composition, and thus PM2.5
predictions are sensitive to pHF. Thermodynamic models for
the inorganic system were initially implemented to predict
the gas–particle partitioning of semivolatiles including nitric
acid and ammonia due to their importance in forming fine
particulate matter, but later studies have leveraged the pre-
dicted acidity for acid-mediated reactions. In TM4-ECPL,
the pH of clouds and aerosol water affects the equilibria and
thus chemistry of organic acids as well as the partitioning
of reactive nitrogen and the solubilization of the trace ele-
ments iron and phosphorus. TM4-ECPL explicitly accounts
for interconversion of Fe (II) and Fe (III) and formation of
oxalate (the partitioning of which is also pH-sensitive, e.g.,
Nah et al., 2018) that acts as a ligand and contributes to
secondary organic aerosol. This chemistry has been used to
understand changes in oceanic deposition of Fe and P from
preindustrial, present-day, and future atmospheres (Myrioke-
falitakis et al., 2015, 2016) as well as with regional focus
on the Mediterranean region (Kanakidou et al., 2020). The
CMAQ v5.1+ (Pye et al., 2013), and GEOS-Chem v11-02+
(Marais et al., 2016) models use particle acidity, although in
slightly different forms, to mediate the uptake of isoprene
epoxydiols and resulting production of secondary organic
aerosol in PM2.5. For purposes of acid-catalyzed particle-
phase reactions, GEOS-Chem uses ISORROPIA II-predicted
pHF (Marais et al., 2016), while CMAQ v5.1 and later con-
sider the entire internally mixed fine-mode particle-phase
abundance in calculating the concentration of H+ (Pye et al.,
2013). In CMAQ, organic constituents act to dilute H+ (in-
crease pHF when the solvent includes organics) relative to an
externally mixed or phase-separated assumption (Schmed-
ding et al., 2019). This leads to a moderate correlation be-
tween acidity (expressed as 10−pHF ) and isoprene-derived
organic aerosol constituents (r2

= 0.3–0.5) (Budisulistiorini
et al., 2017) for the SE US, in contrast to acidity pHF esti-
mates under an externally mixed or inorganic-only solvent

assumption that shows no significant correlation with iso-
prene SOA (Budisulistiorini et al., 2015). The WRF-Chem
model, configured with MOZART chemistry and MOSAIC
aerosols with the MESA thermodynamic model, uses parti-
cle acidity to calculate SOA production from glyoxal (Knote
et al., 2014). Even though aqueous production of sulfate in
clouds is mediated by cloud pH, heterogeneous sulfate pro-
duction on aqueous aerosol (via pathways in Fig. 9) is gener-
ally not considered in models, but future efforts may include
these pathways due to model underestimates of sulfate in re-
gions like Beijing, China (e.g., Shao et al., 2019; Cheng et al.,
2016); and Fairbanks, Alaska (Molders and Leelasakultum,
2012).

Chemical transport models use a variety of thermody-
namic box models depending on their needs for accuracy and
efficiency or treatment of specific systems and processes. The
MESA thermodynamic model is used in CTMs configured
with the MOSAIC aerosol model (e.g., WRF-Chem; Fast et
al., 2006). ISORROPIA II is employed in several CTMs in-
cluding GEOS-Chem (v8-03-01 and later), the CMAQ (v5.0
and later) modeling system, NASA GISS, WRF Polyphe-
mus 1.6, the Tracer Model v4 (TM4-ECPL) family of mod-
els (Appel et al., 2013; Metzger et al., 2018; Myriokefali-
takis et al., 2011; Pye et al., 2009), PM-CAMx (both regular
and UF versions), and some versions of WRF-Chem (e.g.,
Zhang et al., 2013). GEOS-Chem, CMAQ, and TM4-ECPL
assume the fine particles are in metastable equilibrium with
the gas phase and employ the forward (i.e., gas and aerosol
precursors as input) calculation mode of ISORROPIA II to
partition semivolatiles and calculate liquid water content and
pHF. While stable vs. metastable assumptions strongly affect
the amount of liquid water content and may influence the re-
sulting composition of the aqueous phase, Song et al. (2018)
found that calculations assuming stable and metastable state
yield similar results in terms of pHF when the aerosol is del-
iquesced for conditions in China. The generality of this find-
ing, especially when the complex phase diagram associated
with eutectics of multiple salts is fully considered, remains
to be determined.

The pH of the coarse mode is treated to varying degrees in
models. TM4-ECPL (Myriokefalitakis et al., 2015) applies
the equilibrium assumption to internally mixed sulfate, ni-
trate, ammonium, sea salt, and dust aerosols in the coarse
mode after equilibrating the fine-mode aerosol. CMAQ, start-
ing with v4.7, uses a hybrid approach to mass transfer (Kelly
et al., 2010) where the internally mixed Aitken and accu-
mulation modes are in equilibrium with the gas phase, and
mass transfer with the coarse mode is treated dynamically us-
ing the difference between the ambient and equilibrium va-
por pressure of semivolatiles (computed with ISORROPIA
II in reverse mode in CMAQ v5.0 and later) as a driving
force for condensation/evaporation (Capaldo et al., 2000).
This driving force, however, is not allowed to exceed the
gas-to-particle diffusional limit prescribed in CMAQ which
would result in numerical instability when the aerosol pH
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Table 7. Species and methods used to calculate acidity in CTMs. Bulk cloud water pH is calculated assuming electroneutrality, generally
using model-specific algorithms. Dissolved gases in cloud water are determined using Henry’s law coefficients. Configurations are specific
to this work.

Model Aerosol size information Species/sources considered in
aerosol pH calculation

Fine-aerosol pH calculation
method

Species/sources considered in cloud pH
calculation

CMAQ
v5.3

Fine aerosol: explicit Aitken
and accumulation modes.
Coarse-mode acidity not ex-
plicitly calculated but included
in determination of dynamic
mass transfer and composition.

TSO4, TCl, TNO3, TNH4, Na,
K, Ca, and Mg from sea salt,
dust, wildland fires, and anthro-
pogenic activities.

ISORROPIA II pHF for
inorganic-only composition of
combined fine modes.
Condensed water associated
with organic species is also
predicted (not considered in
fine-aerosol pHF in this work).

Aqueous species: H+, OH−, HSO−3 ,

SO2−
3 , HSO−4 , SO2−

4 , HCO−3 , CO2−
3 ,

HCO−2 , NH+4 , NO−3 , Cl−, Ca2+, Na+,
K+, and Mg2+.
Dissolved gases: SO2, CO2, NH3, HCl,
HNO3, HCOOH, H2SO4 (as sulfate),
and N2O5 (as 2×HNO3).

GEOS-
Chem
v12.0.0

Bulk fine aerosol.
Coarse-mode acidity not ex-
plicitly calculated but included
in determination of dynamic
mass transfer and composition.

TSO4, HCl, TNO3, TNH4, and
fine-mode Ca, Mg, Na, Cl
from anthropogenic, sea salt,
and dust sources (dust contri-
butions not considered in de-
fault GEOS-Chem predictions
but Ca and Mg from dust con-
sidered in this work).

ISORROPIA II pHF. Aqueous species: SO2−
4 , NO−3 , and

NH+4
Dissolved gases: CO2, SO2, NH3, and
HNO3.

TM4-
ECPL

Fine (externally mixed dust)
and coarse (internally mixed
dust) aerosol.

SO2−
4 , NH3, NH+4 , HNO3, and

NO−3 ; sea salt and dust as-
sumed to be externally mixed
with fine-mode sulfate and not
considered in the fine-particle
acidity calculation.

ISORROPIA II pHF for
inorganic-only composition of
fine and coarse modes (each in
equilibrium with gas).
Condensed water associated
with organic species is also
predicted (not considered in
fine-aerosol pHF in this work).

Aqueous species: SO2−
4 , CH3O3S−,

NO−3 , NH+4 , Na+, Ca2+, K+, Cl−, and
Mg2+.
Dissolved gases: SO2, CO2, HNO3,
NH3, and oxalic acid.

WRF-
Chem

Four aerosol size bins (0.039–
0.156, 0.156–0.625, 0.625–2.5,
and 2.5–10 µm in diameter)
treated dynamically.

Sulfate, HNO3/NO−3 ,
NH3/NH+4 , CH3O3S−,

Cl−, CO2−
3 , Na, and Ca; HCl

not considered with MOZART
chemistry (no displacement
of Cl− from sea salt aerosols
allowed).

MOSAIC
size-resolved pHF.

Aqueous species: OH−, HCO−3 , CO2−
3 ,

CO−3 , HSO−3 , SO2−
3 , HSO−4 , SO2−

4 ,
SO−4 , SO−5 , HSO−5 , HOCH2SO−3 ,
−OCH2SO−3 , NO−2 , NO−3 , HO−2 , O−2 ,
HCOO−, Cl−, Cl−2 , ClOH−, NH+4 ,
Fe3+, and Mn2+.
Dissolved gases: SO2, CO2, HNO3,
NH3, HO2, HCOOH, and H2O2.

CAM-
Chem

Four lognormal modes. Inorganic aerosol composition
considered: SO2−

4 , NH+4 , soil
dust, and sea salt.

Not considered in this work. Aqueous species: OH−, HCO−3 , NO−3 ,

HSO−3 , SO2−
3 , SO2−

4 , and NH+4 .
Dissolved gases: H2SO4, HNO3, and
NH3.

is mildly acidic to alkaline (see Sect. 6.2 for additional dis-
cussion) (Pilinis et al., 2000). While thermodynamic models
are not recommended for estimating pHF in field or labo-
ratory applications when only particle composition is avail-
able (reverse mode, open system; see discussion in Hennigan
et al., 2015, and Song et al., 2018), the reverse mode can
be used for a driving force in a chemical transport model
since CTMs represent a closed system, species concentra-
tions are not subject to measurement error, and the driving
force can be capped at the diffusion limitation. For coarse
particles in CMAQ, H+ determined via charge balance (as-
suming all particulate sulfur is in the form of sulfate, Eq. 13)
is output for diagnostic purposes but is not used within the
model. GEOS-Chem does not perform thermodynamic cal-
culations for coarse particles. However, it does keep track
of coarse-mode sea salt and dust alkalinity, which is rele-

vant for calculating heterogeneous reactions on coarse par-
ticles. For example, heterogeneous S(IV)+O3 only happens
in the model when the sea salt and dust aerosol is still al-
kaline (Alexander et al., 2005). Heterogeneous reactions be-
tween hypohalous acids and halide ions (e.g., HOBr+Br−)
on sea salt aerosol are acid catalyzed, so these reactions are
only allowed to occur in the model after the sea salt alkalinity
has been titrated (titrated coarse-mode pH is assumed to be
equal to 5) (Sherwen et al., 2016). The Weather Research and
Forecasting Model (Powers et al., 2017; Skamarock et al.,
2008) coupled with Chemistry (WRF-Chem version 3.9.1;
Fast et al., 2006; Grell et al., 2005) has four aerosol configu-
rations, including a bulk aerosol scheme, two modal aerosol
schemes, and a sectional aerosol scheme (eight or four bins).
Figures 19 and 21 use the four-bin sectional aerosol scheme
(bins 0.039–0.156, 0.156–0.625, 0.625–2.5, and 2.5–10 µm
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in diameter) with MOSAIC coupled to MOZART (Model for
Ozone and Related Chemical Tracers, version 4) gas-phase
chemistry and cloud water chemistry (Knote et al., 2015;
Zaveri et al., 2008). Within MOSAIC, the multicomponent
equilibrium solver for aerosols (MESA, Zaveri et al., 2005a)
solves inorganic aerosol thermodynamics for each aerosol
size bin (see also Sect. 2.6.3 for a description of MOSAIC).

Even models using the same thermodynamic algorithms
can produce different pHF estimates since CTMs differ in
their assumptions regarding equilibrium, mixing state, emis-
sion speciation, composition distribution across size, and
chemical constituents important for driving pH (see Table 7).
Especially notable are differences that occur with respect
to the presence, abundance, and mixing state of nonvolatile
cations, the presence of which tends to increase pHF – and
may further elevate pHF by co-condensation of nitrate and
its associated water uptake (e.g., Guo et al., 2018a). In TM4-
ECPL, SO2−

4 , NH3, NH+4 , HNO3, and NO−3 are explicitly
treated. Additional cations in TM4-ECPL (for fine submi-
crometer and coarse modes) are specified based on the com-
position of mineral dust and sea salt. However, TM4-ECPL
does not include Ca and Mg from dust in the fine-mode cal-
culations, as also proposed by Ito and Feng (2010), since
TM4-ECPL considers all submicrometer dust and sulfate
aerosol to be externally mixed in the atmosphere. The oppo-
site assumption is made for coarse particles in TM4-ECPL
since sulfate and nitrate are produced by heterogeneous pro-
cesses on coarse particles (leading to an internal mixture)
and coarse-particle lifetime is short (decreasing the likeli-
hood of distinct source plumes interacting). GEOS-Chem,
employing a bulk scheme for fine aerosol, considers SO2−

4 ,
NH3(g), NH+4 , HNO3(g), NO−3 , Na+, Ca2+, Mg2+, and Cl−

from fine-mode sea salt aerosol. Cations from dust are not
included in GEOS-Chem fine-aerosol pHF calculations by
default (version 12.0.0), but Ca2+ and Mg2+ from fine-
mode dust aerosol (assuming 3 % and 0.6 % by mass dis-
solution, respectively; Fairlie et al., 2010) were added to
simulations in this work (see Fig. S7). CMAQ v5.0 and
later, with Aitken and accumulation modes for fine aerosol,
considers nonvolatile cations from sea salt; wildfires; wind-
blown dust; and anthropogenic sources such as fugitive road
dust, agricultural soils, and coal combustion as described by
the EPA National Emissions Inventory (NEI) and SPECI-
ATE database (Reff et al., 2009). WRF-Chem configured as
MOZART–MOSAIC represents the major aerosol species in-
cluding sulfate, MSA−, NO−3 , Cl−, CO2−

3 , NH+4 , Na+, and
Ca2+ in the charge balance for H+ (other inorganic species,
primarily dust particles, are considered inert; Sect. 2.6.3).
Since HCl is not present in MOZART gas-phase chemistry,
displacement of Cl− from sea salt aerosols cannot be repre-
sented.

Chemical transport model predictions of particle acidity
in the literature as well as in this paper (Figs. 18–19) are
expressed as pHF and assume molarity- and molality-based
concentrations lead to equivalent pHF with water as the sol-

vent (Sect. 2.2 and Jia et al., 2018). CTMs, particularly those
that use ISORROPIA or assume externally mixed inorganic
and organic particles, assume the solvent for H+ is water
associated with inorganic electrolytes. In WRF-Chem with
MOSAIC, species that do not contribute directly to the ion
balance (e.g., organics and inert mass) can absorb water and
thereby indirectly influence the pHF via solvent abundance.
TM4-ECPL and CMAQ v5.3 can calculate pHF including
solvent water associated with both inorganic and organic
constituents, but in this paper, only water associated with
electrolytes is considered in pHF.

The limited literature to date evaluating CTM-predicted
pHF indicates agreement between models and observation-
ally constrained estimates within 1 pHF unit or better (sum-
marized in Table S10). Observationally constrained pHF val-
ues from the eastern US in summer at the surface (0.9±
0.6, Guo et al., 2015), summer aloft (1.1± 0.4, Xu et al.,
2016), and winter aloft (0.8± 1.0, Guo et al., 2016) all in-
dicate strongly acidic particles and are in good agreement
with the GEOS-Chem aloft predicted pHF of 1.3 during the
SEAC4RS 2013 (Marais et al., 2016) and WINTER 2015
(Shah et al., 2018) campaigns. CMAQ agreement with ob-
servations in the eastern US is sensitive to assumptions re-
garding nonvolatile cations with surface-level predictions of
pHF showing good agreement with observations in the work
of Vasilakos et al. (2018) (pHF = 0.82) and when nonvolatile
cations were excluded in the work of Pye et al. (2018)
(pHF = 0.9± 0.9). For Centreville, Alabama, in the work by
Vasilakos et al. (2018), CMAQ predicted excessively acidic
aerosol during the day and similar to or higher than observa-
tionally constrained pHF estimates by 1 unit at night. Reduc-
tions in nonvolatile cations, which may be overpredicted due
to errors in nocturnal mixing (Appel et al., 2013), reduced
the nocturnal pHF in CMAQ, making it more consistent with
observations (Vasilakos et al., 2018). pHF evaluation in other
locations is more limited. Guo et al. (2017b) indicate a pHF
for wintertime Beijing of 4.2, consistent with GEOS-Chem
simulations of Beijing for autumn/winter (pHF = 4.3, range:
3.6 to 5.0; Shao et al., 2019) and CMAQ (pHF of 4.5±0.8 for
Beijing February 2016, this work). Shao et al. (2019) found
that including Ca2+, K+, and Mg2+ from dust in the aerosol
pHF calculations had a small effect on predicted aerosol pHF
(increase of 0.1) in Beijing in autumn and winter, consistent
with Guo et al. (2017b).

An evaluation of CTM-predicted pHF can be leveraged to
understand the responsiveness of a model to changes in at-
mospheric composition. For example, Vasilakos et al. (2018)
show that modeling pHF correctly in CMAQ is critical to ac-
curately partition nitrate between the gas and aerosol phase
and thus capture trends in PM2.5 nitrate as sulfate is reduced
in the United States. Shah et al. (2018) provide insight into
the effectiveness of past and future emission reductions by
tracking pHF predicted by GEOS-Chem. Shah et al. (2018)
predict that pHF for winter in the eastern US increases from
0.39 to 1.7 between 2007 and 2023 using GEOS-Chem. As
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a result, nitrate aerosol concentrations are predicted to de-
crease less than the reductions of NOx emissions and total
nitrate would imply. Since regulatory guidance for model
application encourages the use of relative response factors
(RRFs) by the PM2.5 component (EPA, 2018), a pHF evalu-
ation can be particularly useful since a bias in pHF can result
in a bias in gas–particle partitioning sensitivity. However, ab-
solute abundances are also important in model applications,
and thus a pHF evaluation complements evaluation against
speciated PM2.5 measurements from networks and intensive
campaigns.

Figures 18 and 19 show results from four CTMs to give a
sense of whether common spatial features exist among mod-
els predicting fine-particle pHF. Differences in fine-particle
pHF between models are likely caused by differences in
model resolution as well as emission and meteorology sce-
narios as the ISORROPIA II and MESA/MOSAIC thermo-
dynamic models produce similar values (Sect. 4). pHF is
strongly influenced by nonvolatile cations in broad regions
affected by dust and sea spray. Some of the least acidic fine
aerosols (4< pHF < 7) are predicted in sea-spray-rich re-
gions and where strong westerlies occur over the southern
oceans just north of Antarctica. These pHF values are con-
sistent with those of fresh sea spray shortly (minutes) af-
ter emission (pH ∼ 5, Keene et al., 1998). Other areas over
the ocean, for example, the northern Pacific south of Alaska,
show more acidic aerosol, likely influenced by sulfur from
shipping in combination with lower concentrations of sea
spray cations due to colder water temperatures and relatively
low wind speed. For all models that include high latitudes
in the domain, extremely acidic particles are predicted in the
Arctic and over Greenland (pHF < 1). No estimates of Arctic
aerosol pHF are available in the literature, but several stud-
ies have inferred low amounts of ammonium and high acid-
ity from proxies (Fisher et al., 2011; Croft et al., 2016), yet
sources of NH3 from seabirds may neutralize particle acid-
ity in the Arctic (Wentworth et al., 2016). Other work has
noted that sulfur dioxide is able to escape scavenging more
effectively during lifting than ammonia or ammonium sulfate
(Park et al., 2004), thus providing for long-range transport
of acidity over alkalinity. The decrease in pHF (increase in
acidity) due to scavenging also appears in the westerly out-
flow from China (Fig. 18), consistent with the higher fraction
of soluble iron found in particles collected in the region (Li
et al., 2017). A similar pattern is also found in the easterly
outflow region from central America (Fig. 18), although ob-
servational confirmation is still needed.

Fine-mode pHF downwind of deserts varies by model but
is between 4 and 6 for dust-dominant conditions in CMAQ
and GEOS-Chem. TM4-ECPL does not include Ca and Mg
from dust in the fine mode (external mixture) while it consid-
ers those NVCs in the coarse-mode calculations of aerosol
pH. This assumption leads to an aerosol pHF in TM4 over
the Sahara of ∼ 2–3 for the fine mode and ∼ 6–7 for the
coarse mode (Fig. 18c, d), further implying that dust cations,

Figure 18. Particle pHF at the surface predicted by (a) CMAQv5.2
for Aitken + accumulation modes (2016 Northern Hemisphere an-
nual average), (b) GEOS-Chem for bulk fine aerosol (2015 an-
nual average, version 12.0.0 with additional dust cations), (c) TM4-
ECPL for PM1 (2009 annual average), and (d) TM4-ECPL for
coarse aerosol (2009 annual average). Values averaged over ALWC
content greater than 0.01 µgm−3. The solvent for H+ is water asso-
ciated with inorganic electrolytes.

if present and internally mixed in the fine mode, can affect
aerosol by ∼ 4 pHF units (see also Fig. S7 for GEOS-Chem
fine-aerosol pH predictions with and without dust NVCs).
pHF ∼ 6–7 fine aerosols are predicted in GEOS-Chem over
the Sahara and Atlantic outflow of dust, most notably in the
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Figure 19. Particle pHF predicted at the surface for June over the
contiguous United States by (a) CMAQv5.2 for Aitken + accumu-
lation modes (2016), (b) GEOS-Chem for bulk fine aerosol (2015),
(c) TM4-ECPL for PM1 (2009), (d) WRF-Chem v3.9.1 with MO-
SAIC for PM2.5 aerosols (1–14 June 2013, liquid-water-weighted
average), and (3) WRF-Chem for coarse aerosol (2.5 to 10 µm). Val-
ues averaged over ALWC greater than 0.01 µgm−3. The solvent for
H+ is water associated with inorganic electrolytes in (a)–(c) and
total aerosol water (including water associated with organics and
OIN) in (d)–(e).

winter and spring and to a lesser degree in the summer and
fall. SO2 emissions are nonzero in Saudi Arabia (Krotkov et
al., 2016), leading to lower pHF for the Middle East com-
pared to other desert regions such as the Sahara.

Anthropogenically dominated locations, such as Europe,
Asia, and the United States, show different aerosol pHF val-
ues but are universally predicted to be acidic. All the mod-
els in Fig. 18 show a gradient in pHF over Europe with lo-
cations in the northern part of western Europe (near Ger-
many) showing higher predicted fine-aerosol pH (pHF ∼ 2–
3) compared to the Mediterranean Sea where pHF values
can be less than 1 and approach 0. This gradient is consis-
tent with enhanced ammonia in northern Europe (Clarisse
et al., 2009) and the limited European pH data, which in-
clude observationally constrained estimates for Cabauw in
the Netherlands (pHF ∼ 3.6; Guo et al., 2018b); for aerosol
extracts from Germany (pH∼ 1–2; Scheinhardt et al., 2013);
and for Finokalia, Crete (pHF = 1.25± 1.14 excluding wa-
ter associated with organics; Bougiatioti et al., 2016). Pre-
dicted aerosol pHF indicates moderate acidity (pHF ∼ 3–4)
for locations such as Beijing, China, and northern India. The
eastern US is one of the more acidic anthropogenically dom-
inated locations with 0< pHF < 4 (Fig. 19), consistent with

or slightly higher than observationally constrained estimates
(Sect. 7.1.4). The fine horizontal resolution in WRF-Chem
and CMAQ continental US simulations captures localized in-
creases in pHF due to ammonia from agricultural activity in
eastern North Carolina, the Great Plains, Idaho’s Snake River
Valley, and California’s San Joaquin Valley (Fig. 19a, d).

The MOSAIC aerosol model in WRF-Chem provides
information on how predicted aerosol pHF varies among
different-size aerosols with different composition (Fig. S8).
The PM2.5 aerosol pHF (aerosol-water-weighted average for
bins 0.039–0.156, 0.156–0.625, and 0.625–2.5 µm in diam-
eter, Fig. 19d) shows higher values in regions where NaCl
aerosol dominates (off the coast of California, over the Great
Salt Lake), moderate pHF values over the Great Plains and
off the East Coast, low pHF in the Ohio River Valley (due
to large SOx emissions and sulfate formation), and the low-
est pHF in the southwestern US (where aerosol water is
low). CMAQ (Fig. 19a) predicts similar spatial trends over
the US for the fine-aerosol pHF (Aitken + accumulation
modes) but generally predicts less spatial heterogeneity with
more acidic particles (by∼ 1–2 pHF units) over the Midwest
and slightly less acidic particles (by ∼ 1 pHF) in the south-
west. GEOS-Chem and WRF-Chem exhibit differences over
Nevada of 5 pHF units during summer. WRF-Chem indi-
cates more acidic particles in the submicrometer range com-
pared to PM2.5. The most notable differences between PM2.5
(liquid-water-weighted sum over bins 1–3) and submicrome-
ter pHF (liquid-water-weighted sum over bins 1–2) in WRF-
Chem occur over the oceans, Gulf of Mexico, and Gulf of
California where predicted pHF > 5.6 for the larger fine (0.6
to 2.5 µm) bin. Similar values are not seen in the smaller
aerosol bins except for one plume of pHF > 5.6 (in bin 2,
0.156–0.625 µm). The two smallest aerosol size bins have
very similar pH values over the continent, while the largest
fine bin (bin 3) has similar pH values over the continent well
inland from the coast and higher pH values near the coasts
over land. Similarly TM4-ECPL shows differences of about
4 pHF units between fine- (submicrometer) and coarse-mode
particles from Arizona and Montana (Fig. 18c, d). Since dif-
ferent sources contribute differently across the size range,
heterogeneity in size-resolved pHF predictions also implies
mixing state assumptions in bulk schemes affect pHF esti-
mates and a single pHF value across a broad size range does
not capture the range of states present in the atmosphere (see
also Sect. 6 for a discussion on mixing state).

Coarse-mode aerosol pHF in the WRF-Chem MOSAIC
(aerosol size bin 4, 2.5–10 µm size range, Fig. 19e) is gener-
ally higher than PM2.5 values (Fig. 19d), especially over the
oceans where NaCl dominates (note that WRF-Chem v4.1
and earlier does not include HCl, thereby producing higher
aerosol pHF over oceans than expected). In the more arid re-
gions of the southwestern US and northern Mexico, coarse-
mode aerosol pHF is quite acidic, while elsewhere over the
conterminous US coarse-mode aerosol pHF ranges from 1 to
6, with low values over the Ohio River Valley. Coarse-mode
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aerosol pHF in TM4-ECPL (Fig. 18d) shows values near 4–6
over the central-western US and Canada and pHF < 2 in the
eastern US. Coarse-mode aerosol pHF has similarly low val-
ues in other anthropogenic regions (part of Europe, India, and
East Asia) as well as southern Africa, Indonesia, and most of
South America. Over the oceans and remote regions, coarse-
mode aerosol pHF predicted by TM4-ECPL has a value of 6
or greater.

8.2 Cloud pH

Compared to aerosol pH, cloud pH calculations have a longer
history in CTMs and climate models, given that sulfate is
the dominant secondary pollutant in fine particulate matter
that is produced primarily in cloud droplets. Recent work has
shown that when cloud pH increases from a combination of
SOx emission controls and increasing NH3 from intensified
agriculture, the efficiency at which SO2 converts to sulfate
via in-cloud O3 oxidation can increase, thus reducing the ef-
fectiveness of SOx controls close to emission regions (Paulot
et al., 2017).

Compared to CTMs, climate models are more limited in
their treatment of semivolatile inorganic species (e.g., par-
ticulate nitrate may not be considered as in CAM5; Liu et
al., 2012) but generally include sea salt and dust (even if as-
sumed inert) as well as sulfate. Modeling studies of acid rain
with regional models (Carmichael and Peters, 1986; Chang
et al., 1987; Venkatram et al., 1988) and sulfate production
in climate models (Barth et al., 2000; Feichter et al., 1996;
Koch et al., 1999) include pH since pH dictates the rate of
aqueous reactions that convert SO2 to sulfate (Sect. 5). Early
global model studies (Barth et al., 2000; Feichter et al., 1996;
Park et al., 2004) either prescribed cloud pH or diagnosed pH
from the concentration of cloud water S(IV)/S(VI) and as-
sumed ammonium-to-sulfate ratio. Even recent studies (e.g.,
Turnock et al., 2019) may prescribe cloud pH to simulate
sulfate production. In most CTMs, the calculation of cloud
pHF is more comprehensive. Five such models are described
here, and pHF estimates are presented in Figs. 20–21. Chem-
ical composition tracked for cloud chemistry can be the same
as or different from that used in aerosol chemistry (Table 7).

CESM2.0, including CAM6-chem (released in 2018,
Figs. 20a, 21a), includes an updated tropospheric chemistry
mechanism (MOZART-T1) and represents aerosols using a
modal aerosol model (MAM; Liu et al., 2012, 2016) with
four lognormal modes and including the species sulfate, am-
monium, primary and secondary organic matter, black car-
bon, soil dust, and sea salt. MAM considers the thermo-
dynamic partitioning of H2SO4 (gas) and NH3. The MAM
scheme does include cloud chemistry that represents S(IV)
oxidation by ozone and hydrogen peroxide to form sulfate
and nonreactive uptake of HNO3 and NH3. The pH is esti-
mated using an iterative method to solve the electroneutral-
ity equation using OH−, HCO−3 , NO−3 , HSO−3 , SO2−

3 , SO2−
4 ,

and NH+4 . The pHF is determined at each chemistry time step
and grid point where liquid cloud water exists.

In CMAQ, there are two varieties of the cloud chem-
istry module: the default cloud chemistry routine that as-
sumes instantaneous equilibrium to describe the distribution
of species between gas–aqueous–ionic forms and the rou-
tines that include kinetic mass transfer (KMT) considera-
tions. CMAQ’s default cloud chemistry module is based on
the work of Walcek and Taylor (1986). pHF (Figs. 20b, 21b)
is estimated throughout the course of the chemistry calcula-
tions by solving the system of nonlinear algebraic equations
resulting from electroneutrality and ionic/Henry’s law equi-
librium assumptions. Activity coefficients, estimated with
the Davies equation, are applied to ionic species in solution.
For the standard chemical mechanism (i.e., five S(IV) oxida-
tion reactions and two SOA reactions), the following species
are considered in the ion balance and ionic strength cal-
culations: H+, OH−, HSO−3 , SO2−

3 , HSO−4 , SO2−
4 , HCO−3 ,

CO2−
3 , HCO−2 , NH+4 , NO−3 , Cl−, Ca2+, Na+, K+, Mg2+.

Fe3+ and Mn2+, potentially important players in catalyz-
ing aqueous S oxidation, are included in the ionic strength
calculation but do not impact droplet pHF as they are as-
sumed to be associated with generic anions, A− and B−. pHF
evolves as S(IV) is oxidized to S(VI) and additional species
are scavenged from interstitial aerosol, allowing species to
redistribute between phases and different (non)ionic forms
for the duration of cloud processing. In CMAQ’s KMT
family of cloud chemistry modules, individual species/ions
are tracked, including [H+], and evolve dynamically, us-
ing forward and reverse reactions to represent ionic equi-
libria (Fahey et al., 2017). Initial pHF is estimated from
known concentrations of activated aerosol species (i.e., all
accumulation- and coarse-mode species) and electroneutral-
ity.

Bulk cloud pHF calculations were first implemented into
GEOS-Chem as described in Alexander et al. (2012). Prior
to this, cloud pH was assumed to equal 4.5 in GEOS-Chem.
In GEOS-Chem (version 12.0.0 with MERRA-2 reanalysis)
(Figs. 20c, 21c), bulk cloud pHF is calculated using local
concentrations of SO2−

4 , SO2(g), NH3(g), NH+4 , HNO3(g),
NO−3 , and CO2(g). The cloud water pHF calculation utilizes
the electroneutrality equation and the following forms of dis-
solved species (in moles L−1): SO2−

4 , OH−, HCO−3 , CO2−
3 ,

HSO−3 , SO2−
3 , NO−3 , and NH+4 . The concentration of HSO−4

is assumed negligible, which is valid given that most pHF
values are > 3 where the second dissociation of sulfuric acid
is virtually complete. The model assumes a cloud mass scav-
enging efficiency of 0.7 for SO2−

4 , NO−3 , and NH+4 aerosol
based on observations (Hegg and Hobbs, 1986; Hegg et al.,
1984; Schumann, 1991; Sellegri et al., 2003). The concentra-
tions of all species but SO2−

4 in the electroneutrality equation
are calculated based on cloud liquid water content, tempera-
ture, and each species’ effective Henry’s law constants. For
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example, NO−3 is calculated as follows:

[
NO−3

]
=

(
KHKa[

H+
] )pHNO3 , (R7)

where activities are approximated as aqueous concentrations,
KH is Henry’s law constant (Reaction R1) for HNO3, Ka
is the dissociation constant (Reaction R2) for HNO3, and
pHNO3 is the partial pressure of HNO3(g). The resulting cu-
bic equation is solved numerically. GEOS-Chem does not ac-
count for the effect of organic acids or cations originating
from sea salt or dust (e.g., Na+, Ca2+) on cloud water pHF.
HCl is also not part of the cloud pHF calculation because
HCl is not yet a transported species in the standard version of
the model (version 12.0.0). This can easily be implemented
into the cloud pHF calculation when the chlorine chemistry
in GEOS-Chem is updated (X. Wang et al., 2019).

Cloud pHF in GEOS-Chem (Figs. 20c, 21c), as well as
other models, is utilized for the calculation of sulfate produc-
tion rates from in-cloud oxidation of SO2(g). Bulk schemes,
such as those described above, tend to underestimate sulfate
production compared to calculations accounting for hetero-
geneity in pH with drop size (see Sect. 7.2.3 for a discus-
sion of drivers of heterogeneity). To account for this bias,
GEOS-Chem utilizes parameterizations developed by Fahey
and Pandis (2001) and Yuen et al. (1996). The Fahey and
Pandis (2001) parameterization is a decision algorithm that
determines whether or not cloud droplet heterogeneity will
impact sulfate production rates. The impact of cloud droplet
heterogeneity on sulfate production rates tends to be most
prevalent in the presence of alkaline aerosols such as sea salt
(Alexander et al., 2012; Fahey and Pandis, 2001). If cloud
water is acidic enough, heterogeneity will not matter. The
Fahey and Pandis (2001) algorithm considered this effect and
identified a condition where bulk cloud pHF will underesti-
mate sulfate production rates. GEOS-Chem corrects for this
low bias in the sulfate production rate utilizing the Yuen et
al. (1996) parameterization, which was developed by com-
paring calculated sulfate production rates from a bulk cloud
model with a cloud-resolving model that accounts for cloud
droplet size heterogeneity. Since the Yuen et al. (1996) pa-
rameterization was developed for warm clouds, its use is re-
stricted to temperatures above 268 K in GEOS-Chem. Addi-
tionally, the Yuen et al. (1996) parametrization is only used in
GEOS-Chem over the oceans, because the parameterization
considers alkalinity typical of sea salt aerosols. The impact of
cloud droplet heterogeneity on sulfate production rates was
implemented into GEOS-Chem by Alexander et al. (2012).

In TM4-ECPL (Figs. 20d, 21d), in-cloud pHF is controlled
by strong acids (SO2−

4 , methanesulfonate, HNO3, NO−3 ),
bases (ammonium ion, NH+4 ), and by the dissociations of hy-
drated CO2, SO2, and NH3 and of oxalic acid (Myriokefali-
takis et al., 2011). Cloud droplet heterogeneity and dust and
sea salt aerosol components are not considered for cloud pHF
calculations.

Figure 20. Liquid-water-weighted vertical-column-integrated cloud
water pHF predicted by (a) CAM6-Chem (convective clouds ex-
cluded, June 2015), (b) CMAQv5.3 (resolved clouds only, 2016
annual average), (c) GEOS-Chem (2015 annual average), and
(d) TM4-ECPL (2009 annual average). Note the different color
scale compared to particle predictions. White indicates no cloud
water.

The cloud chemistry configured with the WRF-Chem
v3.9.1 with MOZART gas chemistry and four-bin MOSAIC
aerosol scheme is a bulk cloud water approach that is sub-
sequently partitioned into the four cloud water bins (which
connect to the four aerosol size bins). The Fahey and Pan-
dis (2001) aqueous chemistry scheme is implemented and
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Figure 21. Liquid-water-weighted vertical column June aver-
age cloud water pHF over the contiguous United States pre-
dicted by (a) CAM6-Chem (convective clouds excluded, 2015),
(b) CMAQv5.3 (resolved clouds only, 2016), (c) GEOS-Chem
(2015), (d) TM4-ECPL (2009), and (e) WRF-Chem (2013). White
indicates no cloud water.

calculates sulfate formation as well as formaldehyde oxi-
dation and nonreactive uptake of nitric acid, hydrochloric
acid, ammonia, and other trace gases. The pHF is found us-
ing a bisection method to solve the electroneutrality equa-
tion, which includes the following species: OH−, HCO−3 ,
CO2−

3 , CO−3 , HSO−3 , SO2−
3 , HSO−4 , SO2−

4 , SO−4 , SO−5 ,
HSO−5 , HOCH2SO−3 , −OCH2SO−3 , NO−2 , NO−3 , HO−2 , O−2 ,
HCOO−, Cl−, Cl−2 , ClOH−, and NH+4 . While trace metal
ion chemistry is included in the aqueous-phase formation of
sulfate, these metals are not part of the pHF calculation. The
pHF is determined at each chemistry time step and grid point
where liquid cloud water exists (Fig. 21e).

Model-predicted cloud droplet pHF (Figs. 20–21) reflects
atmospheric sources of inorganic species, similar to fine-
mode aerosol pHF, but is further modulated by the pres-
ence of clouds and abundance of condensed water. Since
cloud droplets are more dilute than particles, pHF is gener-
ally higher than for fine aerosol. The Southern Ocean clouds
have pHF 4.5–6, with TM4-ECPL showing more acidic cloud
droplets (pHF = 4.5) in the southern oceans compared to
GEOS-Chem and CAM-Chem (pHF ∼ 5–6) due to lack of
sea spray and dust aerosol components in TM4-ECPL cloud
pHF calculations. Cloud droplet pHF is often greater over
oceans than continents at the same latitude. GEOS-Chem
and CAM-Chem show slightly different north–south trends
in cloud pH over the Southern Ocean, with GEOS-Chem in-
dicating clouds decrease in acidity from Antarctica to the

Equator and CAM-Chem indicating increasing acidity. One
cloud water pH measurement gives a value of about 5 for off
the coast of Chile/Peru (Fig. 15), but more measurements are
needed, particularly in the Southern Hemisphere. Note that
CAM-Chem, GEOS-Chem, TM4-ECPL, and WRF-Chem do
not include dust cations in the cloud pH calculations (CMAQ
does include fine and coarse dust), and deserts and their
downwind areas such as the Sahara and western US (e.g.,
Hand et al., 2017) show diversity on the order of 3–4 pHF
units among the models. Measured cloud pH over northern
Africa is 6–7 (Fig. 15), consistent with CMAQ. TM4-ECPL,
which does not consider dust cations in cloud pH calcula-
tions, predicts pHF < 4 cloud droplets in arid regions such
as over the Sahara, southwestern US, and inland Asia, where
liquid cloud water may be very low. Dust regions also coin-
cide with limited cloud coverage so aqueous chemistry is less
important. Several models (CMAQ, CAM-Chem, GEOS-
Chem, WRF-Chem, TM4-ECPL) correctly capture locally
enhanced acidity for the cloud droplets in the vicinity of
the Ohio River Valley in the eastern United States as well
as in upstate New York at Whiteface Mountain, where pH
has been 4.5–5.0 since 2010 (Table S11). The pHF gradient
from northern to southern Europe is reversed for cloud wa-
ter compared to aerosols, with Germany and Poland showing
more acidic cloud droplets than over Italy and Spain (GEOS-
Chem, CMAQ, TM4-ECPL). For both clouds and particles,
aerosol pHF is higher in northern China (e.g., Beijing) com-
pared to southern China (e.g., the Pearl River Delta) except in
TM4-ECPL. CAM-Chem, CMAQ, GEOS-Chem, and WRF-
Chem do not predict present-day average cloud droplet pHF
below 3 (which is not strictly the lower limit in observed
cloud pH, Fig. 15). For select locations and models (Ta-
ble S11), predicted cloud pH was generally within 2 pH units
of observations and often showed better agreement.

8.3 Recommendations for improving models

Evaluation of CTM predictions of fine-aerosol pHF in the
literature (Table S10) suggests reasonable agreement be-
tween models and observations (pHF within 1 unit for fine
aerosols). However, observed estimates of pHF (Sect. 7.1) are
extremely limited in location and do not fully cover the diver-
sity of environments and values covered by CTM predictions.
Furthermore, the models that have been most evaluated (e.g.,
CMAQ, GEOS-Chem) tend to use a relatively complete set
of inorganic species and advanced thermodynamic routines
such as ISORROPIA II, but this may not reflect the entire
CTM or climate model community (e.g., CAM-Chem). CTM
predictions here indicate that assumptions regarding non-
volatile cations, from both dust and sea salt, play a large role
in CTM predictions of pHF. Prior to the inclusion of Ca, K,
and Mg ions from dust in GEOS-Chem aerosol pHF calcula-
tions (this work, Fig. S7), CMAQ and GEOS-Chem showed
large pHF differences (multiple pHF units) in dust outflow
regions. Similarly, cloud droplet pHF predictions varied by
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up to 3–4 pHF units between models in nonvolatile-cation-
rich environments. Despite cloud droplets generally occupy-
ing a smaller range in pHF than particles (Fig. 2), models ex-
amined here provide no indication that cloud droplet pHF is
predicted more consistently across models than aerosol pHF.
Spatial and temporal variability in clouds, which are chal-
lenging to predict and represented differently across models,
could contribute to some of this model variability. (Note that
for 10 of the 11 cases where select models were compared
to observations, models tended to systematically underesti-
mate or overestimate rather than bracket the observed cloud
pHF value, Table S11). Model-to-model differences in many
locations amount to multiple pHF units, and observational
constraints would be needed to evaluate models. In addition
to measuring inorganic aerosol constituents and gas-phase
semivolatiles to perform thermodynamic calculations, parti-
cle mixing state and cloud properties may also need to be
characterized with measurements. Remote locations (includ-
ing over oceans, most of the Southern Hemisphere, and likely
aloft) are locations with diverse CTM predictions of cloud
and particle pHF and are particularly lacking observational
constraints of pHF.

9 Conclusions

Aerosol and cloud acidity are key drivers of atmospheric
chemistry and processes that link emissions to impacts on air
quality, human health, ecosystems, and climate. Despite their
importance, limited information exists on the spatiotemporal
distribution of atmospheric acidity, its drivers, and its influ-
ences. For aerosol acidity, only recently have data become
available that can be used for model evaluation and improve-
ment. This review aims to provide a comprehensive overview
of the state of knowledge of atmospheric acidity, considering
particulate matter as well as clouds and fogs. Apart from a re-
view of the published literature, the study also includes a rig-
orous set of definitions for acidity, the methods used to mea-
sure and infer the in situ levels of acidity in each condensed-
phase type, and a synthesis and critical evaluation of current
estimates. Across the review, the following major messages
emerge (see the sections listed for more discussion):

– The various pH definitions in use for characterizing
aerosol and cloud water acidity differ in important ways
from each other and from the definition of pH by IU-
PAC, which is based on the negative base-10 logarithm
of the molal activity of H+. A nomenclature is provided
for the community to document how different studies
calculate and express aerosol acidity. The use of the def-
inition of pH by IUPAC (Eq. 1), involving the activity
coefficient of H+, is recommended to best and consis-
tently quantify the pH. (Sect. 2.)

– Methods for measuring cloud water pH are relatively
established, but methods for measuring aerosol pH re-

main challenging. Measuring aerosol pH is difficult due
to the extremely high ionic strengths that are typically
found in aqueous aerosol, the low amounts of mass, and
the extreme sensitivity to environmental perturbations,
as well as the chemical heterogeneity found in particles
across size, location, and time. Methods for determin-
ing the pH of bulk aerosol samples and individual par-
ticles continue to be developed and will address an im-
portant measurement gap that still exists for determin-
ing the acidity of aerosol. Particularly important is the
application of such methods to understand the pH en-
vironment from particle to particle and within particles,
especially under conditions where the aerosol is not at
equilibrium or not internally mixed. (Sects. 2, 6, 7.)

– None of the observationally based aerosol acidity prox-
ies in use today are suitable as a universal indicator
of pH. Under certain conditions (strongly acidic con-
ditions), certain proxies may be of limited use and
when combined with gas-phase measurements exhibit
some correlation with pH. However, the uncertainty of
these proxies remains very large, and even the best
ones require verification with models. The best esti-
mates of particle pH are obtained from thermodynamic
model calculations when gas–particle partitioning ob-
servations are available for evaluation as well as for con-
straining the calculations. These estimates generally re-
quire a thermodynamic equilibrium assumption, which
is reasonable for submicrometer aerosol. Direct mea-
surement of NH3 is extremely important, since com-
bined with aerosol data, it provides a constraint on
model-derived acidity estimates and a metric for eval-
uation. Other semivolatile inorganic acidic gases (like
HNO3 and HCl) also provide constraints on acidity but
are subject to higher uncertainty due to interaction with
the coarse mode. (Sect. 3 and elsewhere.)

– Different box-model-based estimates of pH using the
same inputs differ on average by 0.3 pH units (but can
vary up to 1 pH unit, increasing with decreasing RH) de-
pending on the model framework used and the approach
for estimating the H+ activity coefficient. When single-
ion activity coefficients are unavailable, an approxima-
tion based on the mean molal activity coefficient of a
relevant ion pair (e.g., γ± (H+, Cl−) yielding a pH±)
can reduce the bias in acidity by up to 0.43 pH units for
atmospherically relevant conditions. The ion pair that
leads to the best single-ion activity coefficient for H+

may be model dependent; for example, γ± (H+, NO−3 )
yields the best pH± from ISORROPIA II. (Sect. 4.)

– While thermodynamic partitioning and ionic equilib-
ria are the dominant factors that drive aerosol pH lev-
els, models are frequently lacking H+ that is kinetically
generated as a result of transient gas- and liquid-phase
chemical reactions. The representation of kinetic pro-
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cesses is necessary to determine sulfate levels important
for driving pH. The consequences of varying acidity for
organic particle and cloud chemistry have only started
to be investigated. (Sect. 5 and Tilgner et al., 2020)

– The limited observationally constrained pH estimates to
date establish that acidic aerosol is ubiquitous and can
be extremely acidic (pH as low as −1 averaged over
long timescales and episodically even lower). Aerosol
pH depends on the size, composition, and mixing state
of particles. Fine-mode aerosols are often dominated by
ammonium, sulfate, nitrate, and organics and are sys-
tematically more acidic (up to 5 pH units) than coarse-
mode aerosols, which are rich in nonvolatile cations
originating from sea salt and dust. Most observation-
ally constrained estimates of particle acidity to date
are the approximation, pHF. Since the accuracy of pHF
as a measure of pH depends on RH and composition
(Sect. 6), characterization of ambient pH is incomplete.
(Sect. 7.1.)

– Although aerosols and clouds both tend to be acidic, the
response of acidity to changes in precursor emissions is
distinctly different in the two media. Published studies
suggest that reductions in sulfur dioxide and nitrogen
oxide emissions across the US and Canada have had lit-
tle impact on aerosol pH, and pH is relatively insen-
sitive to changes in NH3. Conversely, clouds and fogs
exhibit a broad pH range that is quite sensitive to the
relative abundance of H2SO4, HNO3, and NH3, with
multiple locations showing increases in cloud pH as an-
thropogenic emissions are controlled. This is a direct
consequence of the difference in liquid water content,
which is higher in clouds than fine aerosols (Sect. 7).

– Large-scale model variation in predicted pHF, up to
5 pH units in specific locations, is likely not driven by
the thermodynamic representations in models but by the
composition that feeds the thermodynamic calculations
(especially the emission and microphysical interactions
of nonvolatile cations with other aerosol components).
For locations with observationally constrained pH esti-
mates, agreement between models and observations can
be within 1 pH unit. In addition, the global acidity dis-
tribution in models and observations can be surprisingly
similar (Fig. 2). Cloud pH does not seem better con-
strained than aerosol pH, suggesting that there is con-
siderable work to be done refining simulations to reach
agreement with observational values and trends. Spa-
tial gradients in CTM pH predictions (that do not coin-
cide with availability of measurements) suggest regions
where future measurements should be made. The level
of agreement required between models and observations
depends on the target of a specific assessment (e.g.,
PM sensitivity to emissions, deposition of nutrients and
acidity, metal solubility). Therefore, model frameworks

should evaluate their endpoint of interest (e.g., deposi-
tion, PM2.5 concentration) and consider how an error
in predicted pH could lead to a bias. The error in pH
may be important for some applications but not others
(Sect. 8).

Perhaps one of the more important outcomes of this review
is the recognition that cloud and aerosol pH emerge as an im-
portant property for influencing a wide range of CTM predic-
tions, and therefore improvements to how aerosol and cloud
pH are represented in CTMs could potentially enhance pol-
icy and programs informed by these models. pH determines
the innate response of a model to emission changes; can pro-
vide insights that established approaches (evaluation of gas–
aerosol composition) are not able to provide; and determines
the chemical regime for PM formation, deposition, and solu-
ble metals. Including and reporting pH (or an approximation
thereof) in future studies will increase the understanding of
the effects of emissions, human activity, and climate change
on society and the Earth system as a whole.
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Appendix A: Nomenclature

Symbol Description
aH+ The activity of hydrogen ions in aqueous solution on a molality basis
a
(c)

H+ The activity of H+ ions on a molarity (concentration) basis
a
(x)

H+ The activity of H+ ions on a mole fraction basis
αHSO4 Fraction of HSO−4 dissociated into H+ and SO2−

4
ai The activity of species i (usually molality based for ions in aqueous solutions)
ACSM Aerosol chemical speciation monitor
adjGR Adjusted gas ratio (see Table 3)
ALPHA Adapted Low-cost Passive High Absorption
ALWC Aerosol liquid water content (mass per volume of air)
AMS Aerosol mass spectrometer
c	 The standard state (unit) molarity
cH+ The molarity or “molar concentration” of hydrogen ions in an aqueous solution (also written using

square brackets as [H+])
CCN Cloud condensation nuclei
CTM Chemical transport model
DELTA DEnuder for Long-Term Atmospheric sampling
DON Degree of neutralization (see Table 3)
DSN Degree of sulfate neutralization (see Table 3)
f ∗H+ The (rational) activity coefficient of H+ based on the mole fraction concentration scale
Fp,i Fraction of species i in the particle vs. particle + gas phase
FR Flex ratio, identifies the NH3 emissions level at which the nitrate concentration switches from NH3-

insensitive (or negative sensitivity) to positive NH3 sensitivity
GR Gas ratio (see Table 3)
H+air Concentration of aerosol H+ per volume of air (e.g., moles per m−3 of air)
H+air,cb H+air determined from charge balance (see Table 3)
HOx Hydrogen oxides (OH + HO2)
IN Ice nuclei
Ka Acid dissociation constant for HXH++X−

Kb Acid association constant for H++X− HX or H+ + XXH+

KH Dimensionless Henry’s law constant
Kw Activity-based equilibrium constant for the dissociation of water into H+ and OH− (see Bandura

and Lvov, 2005, for tabulation of values)
KMT Kinetic mass transfer
LLPS Liquid–liquid phase separation
m	 The standard state (unit) molality
mH+ Molality of H+ (mol kg−1 solvent)
Mw Molar mass of water: 0.018015 kg mol−1

ni Number (e.g., moles) of species i
NEI National Emissions Inventory (for the United States)
NOx Nitrogen oxides (NO + NO2)
NVCs Nonvolatile cations
PAHs Polycyclic aromatic hydrocarbons
PFASs Polyfluoroalkyl substances
PFSAs Perfluoroalkyl sulfonic acids
PFCAs Perfluoroalkyl carboxylic acids
pH Hydrogen ion potential with activity coefficient and concentration expressed on a molality concen-

tration scale (see Table 1)
pHc pH on a concentration (molarity) basis
pHx pH on a mole fraction basis
pHT Total pH based on the molality of sulfate and bisulfate ions (see Table 1)

www.atmos-chem-phys.net/20/4809/2020/ Atmos. Chem. Phys., 20, 4809–4888, 2020



4866 H. O. T. Pye et al.: The acidity of atmospheric particles and clouds

pHF Free-ion approximation of pH obtained when the activity coefficient of H+ is unity (see Table 1)
pH± (H,X) Approximation of pH using the mean molal ion activity coefficient of an H+ and anion X pair (see

Table 1)
pKi −log10(Ki)
PM Particulate matter, synonymous with aerosol
PM1 Particulate mass with an equivalent diameter below 1 µm
PM2.5 Particulate mass with an aerodynamic equivalent diameter below 2.5 µm
PSC Pitzer–Simonson–Clegg (model)
R Universal gas constant
r2 Coefficient of determination
RH Relative humidity
RRF Relative response factor, relative change in concentration due to relative change in emission
SOx Sulfur oxides (usually SO2+TSO4)
T Temperature
TMIs Transition metal ions
TCl Total chloride (sum of gas-phase hydrochloric acid and aerosol chloride)
TNO3 Total nitrate (sum of gas-phase nitric acid and particulate nitrate)
TNH4 Total ammonia (sum of gas-phase ammonia and particulate ammonium)
TSO4 Total particulate sulfate (sum of sulfate and bisulfate)
VOCs Volatile organic compounds
WSOC Water-soluble organic compounds
xH+ The mole fraction of H+ in the solution
XT Molal sulfate ratio indicating sulfate-rich vs. sulfate-poor domain (Eq. 9)
Z Charge balance on total gas and particle phases used to estimate initial amount of H+ (Eq. 19)
ZSR Zdanovskii–Stokes–Robinson (method for calculation of aerosol water)
γi The molal activity coefficient of species i
γ
(c)

H+ The molarity-based activity coefficient of H+

γ±,HX The mean ion activity coefficient (for monovalent acid HX)
ρ0 The density of the reference solvent (water)
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Appendix B: Models, data, and related methods
discussed in the text

Type Examples
Activity coefficient models AIOMFAC, UNIFAC
Gas–particle thermodynamic models AIOMFAC–GLE, ADDEM, E-AIM, EQSAM, EQUISOLV II,

GFEMN, ISORROPIA II, MOSAIC, SCAPE, UHAERO
Three-dimensional models CAM-Chem, CESM, CMAQ, GEOS-Chem, GISS, PM-CAMx,

TM4-ECPL, WRF-Chem
Supporting algorithms/chemistry/databases ASTEM, CAM6, HETV, MAM, MESA, MOZART, MTEM,

SPECIATE
Observational datasets (networks, satellites, field
campaigns)

ACTRIS, AIRS, AMoN, CalNex, CASTNET, CrIS, CSN,
EMEP/EBAS, IASI, IMPROVE, MAN, NAMN, SEARCH,
SEAC4RS, SOAS, WINTER
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Code and data availability. E-AIM can be run at http://www.aim.
env.uea.ac.uk/aim/ (Clegg et al., 2017).

AIOMFAC can be run at https://aiomfac.lab.mcgill.ca (Zuend
and Gervasi, 2020) for single liquid phases; code is available at
https://github.com/andizuend/AIOMFAC (Zuend et al., 2012).

MOSAIC is available upon request from its author (Rahul Za-
veri).

ISORROPIA II is available at http://isorropia.epfl.ch (last access:
15 April 2020) (access to source code requires login provided by
Athanasios Nenes upon request).

EQUISOLV II output was obtained from its creator, Mark Jacob-
son (jacobson@stanford.edu).

CAM6-Chem code is available as part of CESM available at http:
//github.com/ESCOMP/cesm (CESM, 2020).

CMAQ v5.2 and v5.3 code is available at https://github.
com/USEPA/CMAQ (US EPA Office of Research and Develop-
ment, 2020a) and at https://doi.org/10.5281/zenodo.1167892 (v5.2,
US EPA Office of Research and Development, 2017) and and
https://doi.org/10.5281/zenodo.3379043 (v5.3, US EPA Office of
Research and Development, 2019).

GEOS-Chem code is available at
https://doi.org/10.5281/zenodo.1343547 (The International
GEOS-Chem User Community, 2018).

TM4-ECPL code is available from its authors (Stelios Myrioke-
falitakis and Maria Kanakidou) upon request.

Instructions for obtaining WRF-Chem are available at http://
www2.mmm.ucar.edu/wrf/users/download/get_source.html (WRF,
2020).

Box model inputs used in Sect. 4, observed cloud and fine-
aerosol pH estimates from literature (Sect. 7), and other sup-
porting data will be deposited in electronic tabular format at
https://doi.org/10.23719/1504059 (US EPA Office of Research and
Development, 2020b).

Supplement. The Supplement related to this article is available on-
line and includes additional documentation for definitions of pH,
methods used to estimate sulfur production as a function of pH
(Fig. 9), and details regarding the proxy evaluation (Fig. 8). In ad-
dition, figures further exploring the gas ratio, suitability of pH ap-
proximations, an ISORROPIA–MOSAIC intercomparison, and ad-
ditional CTM predictions are shown. Data used as box model input
(idealized scenarios), to create spatial maps of particle and cloud
pH, and for CTM-observation comparisons of pH are available in
the Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-20-4809-2020-supplement.
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