Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 20, issue 7
Atmos. Chem. Phys., 20, 4059–4084, 2020
https://doi.org/10.5194/acp-20-4059-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: New observations and related modelling studies of the aerosol–cloud–climate...

Atmos. Chem. Phys., 20, 4059–4084, 2020
https://doi.org/10.5194/acp-20-4059-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 06 Apr 2020

Research article | 06 Apr 2020

Open cells exhibit weaker entrainment of free-tropospheric biomass burning aerosol into the south-east Atlantic boundary layer

Steven J. Abel et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Wenzel on behalf of the Authors (10 Jan 2020)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (03 Feb 2020) by Paola Formenti
RR by Anonymous Referee #2 (06 Feb 2020)
RR by Anonymous Referee #3 (03 Mar 2020)
ED: Publish as is (05 Mar 2020) by Paola Formenti
AR by Steven Abel on behalf of the Authors (05 Mar 2020)  Author's response    Manuscript
Publications Copernicus
Download
Short summary
In situ measurements of a free-tropospheric (FT) biomass burning aerosol plume in contact with the boundary layer inversion overriding a pocket of open cells (POC) and surrounding stratiform cloud are presented. The data highlight the contrasting thermodynamic, aerosol and cloud properties in the two cloud regimes and further demonstrate that the cloud regime plays a key role in regulating the flow of FT aerosols into the boundary layer, which has implications for the aerosol indirect effect.
In situ measurements of a free-tropospheric (FT) biomass burning aerosol plume in contact with...
Citation
Final-revised paper
Preprint