Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 20, issue 5
Atmos. Chem. Phys., 20, 3061–3078, 2020
https://doi.org/10.5194/acp-20-3061-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Surface Ocean Aerosol Production (SOAP) (ACP/OS inter-journal...

Atmos. Chem. Phys., 20, 3061–3078, 2020
https://doi.org/10.5194/acp-20-3061-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 16 Mar 2020

Research article | 16 Mar 2020

Methanethiol, dimethyl sulfide and acetone over biologically productive waters in the southwest Pacific Ocean

Sarah J. Lawson et al.

Data sets

DMS, acetone, methanethiol atmospheric data from SOAP voyage. v1. CSIRO. Data Collection. S. Lawson https://doi.org/10.25919/5d914b00c5759

Publications Copernicus
Download
Short summary
Methanethiol (MeSH) is a reduced sulfur gas originating from phytoplankton, with a global ocean source of ~ 17 % of dimethyl sulfide (DMS). It has been little studied and is rarely observed over the ocean. In this work, MeSH was measured at much higher levels than previously observed (3–36 % of parallel DMS mixing ratios). MeSH could be a significant source of atmospheric sulfur over productive regions of the ocean, but its distribution, and its atmospheric impact, requires more investigation.
Methanethiol (MeSH) is a reduced sulfur gas originating from phytoplankton, with a global ocean...
Citation
Final-revised paper
Preprint