Articles | Volume 20, issue 4
https://doi.org/10.5194/acp-20-1887-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-1887-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dramatic increase in reactive volatile organic compound (VOC) emissions from ships at berth after implementing the fuel switch policy in the Pearl River Delta Emission Control Area
Zhenfeng Wu
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
Center for Excellence in Regional Atmospheric Environment, Institute
of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Junjie He
Guangzhou Environmental Monitoring Center, Guangzhou 510640, China
Hongzhan Chen
Guangzhou Environmental Monitoring Center, Guangzhou 510640, China
Xueliang Huang
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
Yunfu Total Pollutant Discharge Control Center, Yunfu 527300, China
Yujun Wang
Guangzhou Environmental Monitoring Center, Guangzhou 510640, China
Xu Yu
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
University of Chinese Academy of Sciences, Beijing 100049, China
Weiqiang Yang
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
University of Chinese Academy of Sciences, Beijing 100049, China
Runqi Zhang
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
University of Chinese Academy of Sciences, Beijing 100049, China
Ming Zhu
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
University of Chinese Academy of Sciences, Beijing 100049, China
Sheng Li
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
University of Chinese Academy of Sciences, Beijing 100049, China
Hua Fang
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
University of Chinese Academy of Sciences, Beijing 100049, China
Zhou Zhang
Changsha Center for Mineral Resources Exploration, Guangzhou Institute
of Geochemistry, Chinese Academy of Sciences, Changsha 410013, China
Xinming Wang
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
Center for Excellence in Regional Atmospheric Environment, Institute
of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
University of Chinese Academy of Sciences, Beijing 100049, China
Viewed
Total article views: 2,666 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 29 Oct 2019)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,805 | 832 | 29 | 2,666 | 229 | 30 | 64 |
- HTML: 1,805
- PDF: 832
- XML: 29
- Total: 2,666
- Supplement: 229
- BibTeX: 30
- EndNote: 64
Total article views: 2,151 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 19 Feb 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,575 | 554 | 22 | 2,151 | 143 | 24 | 54 |
- HTML: 1,575
- PDF: 554
- XML: 22
- Total: 2,151
- Supplement: 143
- BibTeX: 24
- EndNote: 54
Total article views: 515 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 29 Oct 2019)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
230 | 278 | 7 | 515 | 86 | 6 | 10 |
- HTML: 230
- PDF: 278
- XML: 7
- Total: 515
- Supplement: 86
- BibTeX: 6
- EndNote: 10
Viewed (geographical distribution)
Total article views: 2,666 (including HTML, PDF, and XML)
Thereof 2,533 with geography defined
and 133 with unknown origin.
Total article views: 2,151 (including HTML, PDF, and XML)
Thereof 2,038 with geography defined
and 113 with unknown origin.
Total article views: 515 (including HTML, PDF, and XML)
Thereof 495 with geography defined
and 20 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
13 citations as recorded by crossref.
- Source-oriented characterization of single particles from in-port ship emissions in Guangzhou, China Y. Zhou et al. 10.1016/j.scitotenv.2020.138179
- Emissions of nitrogen oxides and volatile organic compounds from liquefied petroleum gas-fueled taxis under idle and cruising modes J. Feng et al. 10.1016/j.envpol.2020.115623
- Decarbonisation of shipping: A state of the art survey for 2000–2020 A. Romano & Z. Yang 10.1016/j.ocecoaman.2021.105936
- Exploring the effectiveness of ECA policies in reducing pollutant emissions from merchant ships in Shanghai port waters K. Shi et al. 10.1016/j.marpolbul.2020.111164
- MAX-DOAS observation in the midlatitude marine boundary layer: Influences of typhoon forced air mass R. Zhang et al. 10.1016/j.jes.2021.12.010
- Ozone episodes during and after the 2018 Chinese National Day holidays in Guangzhou: Implications for the control of precursor VOCs J. Wang et al. 10.1016/j.jes.2021.09.009
- Effects of marine fuel sulfur restrictions on particle number concentrations and size distributions in ship plumes in the Baltic Sea S. Seppälä et al. 10.5194/acp-21-3215-2021
- Real-time chemical characterization of single ambient particles at a port city in Chinese domestic emission control area — Impacts of ship emissions on urban air quality L. Zhou et al. 10.1016/j.scitotenv.2022.153117
- High PM2.5 Emission from Typical Old, Small Fishing Vessels in China L. Wang et al. 10.1021/acs.estlett.1c00927
- Decrease in ambient volatile organic compounds during the COVID-19 lockdown period in the Pearl River Delta region, south China C. Pei et al. 10.1016/j.scitotenv.2022.153720
- Variability in real-world emissions and fuel consumption by diesel construction vehicles and policy implications C. Li et al. 10.1016/j.scitotenv.2021.147256
- Exploration of O3-precursor relationship and observation-oriented O3 control strategies in a non-provincial capital city, southwestern China Y. Xie et al. 10.1016/j.scitotenv.2021.149422
- Variations and characteristics of carbonaceous substances emitted from a heavy fuel oil ship engine under different operating loads F. Zhang et al. 10.1016/j.envpol.2021.117388
13 citations as recorded by crossref.
- Source-oriented characterization of single particles from in-port ship emissions in Guangzhou, China Y. Zhou et al. 10.1016/j.scitotenv.2020.138179
- Emissions of nitrogen oxides and volatile organic compounds from liquefied petroleum gas-fueled taxis under idle and cruising modes J. Feng et al. 10.1016/j.envpol.2020.115623
- Decarbonisation of shipping: A state of the art survey for 2000–2020 A. Romano & Z. Yang 10.1016/j.ocecoaman.2021.105936
- Exploring the effectiveness of ECA policies in reducing pollutant emissions from merchant ships in Shanghai port waters K. Shi et al. 10.1016/j.marpolbul.2020.111164
- MAX-DOAS observation in the midlatitude marine boundary layer: Influences of typhoon forced air mass R. Zhang et al. 10.1016/j.jes.2021.12.010
- Ozone episodes during and after the 2018 Chinese National Day holidays in Guangzhou: Implications for the control of precursor VOCs J. Wang et al. 10.1016/j.jes.2021.09.009
- Effects of marine fuel sulfur restrictions on particle number concentrations and size distributions in ship plumes in the Baltic Sea S. Seppälä et al. 10.5194/acp-21-3215-2021
- Real-time chemical characterization of single ambient particles at a port city in Chinese domestic emission control area — Impacts of ship emissions on urban air quality L. Zhou et al. 10.1016/j.scitotenv.2022.153117
- High PM2.5 Emission from Typical Old, Small Fishing Vessels in China L. Wang et al. 10.1021/acs.estlett.1c00927
- Decrease in ambient volatile organic compounds during the COVID-19 lockdown period in the Pearl River Delta region, south China C. Pei et al. 10.1016/j.scitotenv.2022.153720
- Variability in real-world emissions and fuel consumption by diesel construction vehicles and policy implications C. Li et al. 10.1016/j.scitotenv.2021.147256
- Exploration of O3-precursor relationship and observation-oriented O3 control strategies in a non-provincial capital city, southwestern China Y. Xie et al. 10.1016/j.scitotenv.2021.149422
- Variations and characteristics of carbonaceous substances emitted from a heavy fuel oil ship engine under different operating loads F. Zhang et al. 10.1016/j.envpol.2021.117388
Latest update: 04 Jun 2023
Short summary
As ship emissions impact air quality in coastal areas, ships are required to switch their fuel from high-sulfur residual fuel oil to
low-sulfur diesel or heavy oil in emission control areas (ECA). Our study reveals that while this policy did result in a large drop in ship emissions of particulate matter and sulfur dioxide, emissions of volatile organic compounds (VOCs), however, became over 10 times larger and therefore risks ozone pollution control in harbor cities.
As ship emissions impact air quality in coastal areas, ships are required to switch their fuel...
Altmetrics
Final-revised paper
Preprint