Articles | Volume 20, issue 24
https://doi.org/10.5194/acp-20-15793-2020
https://doi.org/10.5194/acp-20-15793-2020
Research article
 | 
18 Dec 2020
Research article |  | 18 Dec 2020

A foehn-induced haze front in Beijing: observations and implications

Ju Li, Zhaobin Sun, Donald H. Lenschow, Mingyu Zhou, Youjun Dou, Zhigang Cheng, Yaoting Wang, and Qingchun Li

Related authors

Identification and characterization of foehn events in Beijing and their impact on air-pollution episodes
Ju Li, Jingjiang Zhang, Mengxin Bai, Jie Su, Qingchun Li, and Xingcan Jia
EGUsphere, https://doi.org/10.5194/egusphere-2024-2684,https://doi.org/10.5194/egusphere-2024-2684, 2025
Short summary
Observational analyses of dramatic developments of a severe air pollution event in the Beijing area
Ju Li, Jielun Sun, Mingyu Zhou, Zhigang Cheng, Qingchun Li, Xiaoyan Cao, and Jingjiang Zhang
Atmos. Chem. Phys., 18, 3919–3935, https://doi.org/10.5194/acp-18-3919-2018,https://doi.org/10.5194/acp-18-3919-2018, 2018
Short summary

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Evidence of Tropospheric Uplift into the Stratosphere via the Tropical Western Pacific Cold Trap
Xiaoyu Sun, Katrin Müller, Mathias Palm, Christoph Ritter, Denghui Ji, Tim Balthasar Röpke, and Justus Notholt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3981,https://doi.org/10.5194/egusphere-2024-3981, 2025
Short summary
Impact of boundary layer stability on urban park cooling effect intensity
Martial Haeffelin, Jean-François Ribaud, Jonnathan Céspedes, Jean-Charles Dupont, Aude Lemonsu, Valéry Masson, Tim Nagel, and Simone Kotthaus
Atmos. Chem. Phys., 24, 14101–14122, https://doi.org/10.5194/acp-24-14101-2024,https://doi.org/10.5194/acp-24-14101-2024, 2024
Short summary
Investigation of non-equilibrium turbulence decay in the atmospheric boundary layer using Doppler lidar measurements
Maciej Karasewicz, Marta Wacławczyk, Pablo Ortiz-Amezcua, Łucja Janicka, Patryk Poczta, Camilla Kassar Borges, and Iwona S. Stachlewska
Atmos. Chem. Phys., 24, 13231–13251, https://doi.org/10.5194/acp-24-13231-2024,https://doi.org/10.5194/acp-24-13231-2024, 2024
Short summary
Measurement report: The promotion of the low-level jet and thermal effects on the development of the deep convective boundary layer at the southern edge of the Taklimakan Desert
Lian Su, Chunsong Lu, Jinlong Yuan, Xiaofei Wang, Qing He, and Haiyun Xia
Atmos. Chem. Phys., 24, 10947–10963, https://doi.org/10.5194/acp-24-10947-2024,https://doi.org/10.5194/acp-24-10947-2024, 2024
Short summary
Estimating scalar turbulent fluxes with slow-response sensors in the stable atmospheric boundary layer
Mohammad Allouche, Vladislav I. Sevostianov, Einara Zahn, Mark A. Zondlo, Nelson Luís Dias, Gabriel G. Katul, Jose D. Fuentes, and Elie Bou-Zeid
Atmos. Chem. Phys., 24, 9697–9711, https://doi.org/10.5194/acp-24-9697-2024,https://doi.org/10.5194/acp-24-9697-2024, 2024
Short summary

Cited articles

Ahrens, C. D.: Meteorology Today: An Introduction to Weather, Climate and the Environment, Thomson Learning, USA, 2003. 
Brinkmann, W.: What is a foehn?, Weather, 26, 230–239, https://doi.org/10.1002/j.1477-8696.1971.tb04200.x, 1971. 
Chen, J., Li, Z., Lv, M., Wang, Y., Wang, W., Zhang, Y., Wang, H., Yan, X., Sun, Y., and Cribb, M.: Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in northern China, Atmos. Chem. Phys., 19, 1327–1342, https://doi.org/10.5194/acp-19-1327-2019, 2019. 
Dang, R. and Liao, H.: Severe winter haze days in the Beijing–Tianjin–Hebei region from 1985 to 2017 and the roles of anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 10801–10816, https://doi.org/10.5194/acp-19-10801-2019, 2019. 
Dong, G., Yu, L., and Hao, T.: Analysis of meteorological characteristics of heavy haze process in Tianjin in autumn and winter and the role of sea breeze, Environ. Sci. Technol., 40, 117–123, 2017 (in Chinese). 
Download
Short summary
We analyzed a haze front event involving warm–dry downslope flow in December 2015 in Beijing, China. The haze front was formed by the collision between a clean warm–dry air mass flowing from a nearby mountainous region and a polluted cold–wet air mass over an urban area. We found that the polluted air advanced toward the clean air, resulting in a severe air pollution event. Our study highlights the need to further investigate the warm–dry downslope and its impacts on air pollution.
Share
Altmetrics
Final-revised paper
Preprint