Articles | Volume 20, issue 23
https://doi.org/10.5194/acp-20-14669-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-14669-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Role of equatorial waves and convective gravity waves in the 2015/16 quasi-biennial oscillation disruption
Min-Jee Kang
CORRESPONDING AUTHOR
Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
Hye-Yeong Chun
CORRESPONDING AUTHOR
Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
Rolando R. Garcia
National Center for Atmospheric Research, Boulder, Colorado, USA
Related authors
Ji-Hee Yoo, Hye-Yeong Chun, and Min-Jee Kang
Atmos. Chem. Phys., 23, 10869–10881, https://doi.org/10.5194/acp-23-10869-2023, https://doi.org/10.5194/acp-23-10869-2023, 2023
Short summary
Short summary
The January 2021 sudden stratospheric warming was preceded by unusual double westerly jets with polar stratospheric and subtropical mesospheric cores. This wind structure promotes anomalous dissipation of tropospheric planetary waves between the two maxima, leading to unusually strong shear instability. Shear instability generates the westward-propagating planetary waves with zonal wavenumber 2 in situ, thereby splitting the polar vortex just before the onset.
Min-Jee Kang and Hye-Yeong Chun
Atmos. Chem. Phys., 21, 9839–9857, https://doi.org/10.5194/acp-21-9839-2021, https://doi.org/10.5194/acp-21-9839-2021, 2021
Short summary
Short summary
In winter 2019/20, the westerly quasi-biennial oscillation (QBO) phase was disrupted again by easterly winds. It is found that strong Rossby waves from the Southern Hemisphere weaken the jet core in early stages, and strong mixed Rossby–gravity waves reverse the wind in later stages. Inertia–gravity waves and small-scale convective gravity waves also provide negative forcing. These strong waves are attributed to an anomalous wind profile, barotropic instability, and slightly strong convection.
Ji-Hee Yoo and Hye-Yeong Chun
EGUsphere, https://doi.org/10.5194/egusphere-2025-748, https://doi.org/10.5194/egusphere-2025-748, 2025
Short summary
Short summary
This study revisits the Southern Hemisphere’s only major sudden stratospheric warming in September 2002, marked by an unprecedented polar vortex split. In addition to upward-propagating planetary wave 2 (PW2), westward PW2 generated in situ by barotropic–baroclinic instability, contributed to the vortex split. Unstable PW2 growth resulted from nonlinear wave-wave interactions and over-reflection. Vortex destabilization occurred as the anomalously poleward-shifted vortex reversed to easterlies.
Ji-Hee Yoo, Hye-Yeong Chun, and Min-Jee Kang
Atmos. Chem. Phys., 23, 10869–10881, https://doi.org/10.5194/acp-23-10869-2023, https://doi.org/10.5194/acp-23-10869-2023, 2023
Short summary
Short summary
The January 2021 sudden stratospheric warming was preceded by unusual double westerly jets with polar stratospheric and subtropical mesospheric cores. This wind structure promotes anomalous dissipation of tropospheric planetary waves between the two maxima, leading to unusually strong shear instability. Shear instability generates the westward-propagating planetary waves with zonal wavenumber 2 in situ, thereby splitting the polar vortex just before the onset.
Flossie Brown, Lauren Marshall, Peter H. Haynes, Rolando R. Garcia, Thomas Birner, and Anja Schmidt
Atmos. Chem. Phys., 23, 5335–5353, https://doi.org/10.5194/acp-23-5335-2023, https://doi.org/10.5194/acp-23-5335-2023, 2023
Short summary
Short summary
Large-magnitude volcanic eruptions have the potential to alter large-scale circulation patterns, such as the quasi-biennial oscillation (QBO). The QBO is an oscillation of the tropical stratospheric zonal winds between easterly and westerly directions. Using a climate model, we show that large-magnitude eruptions can delay the progression of the QBO, with a much longer delay when the shear is easterly than when it is westerly. Such delays may affect weather and transport of atmospheric gases.
Khalil Karami, Rolando Garcia, Christoph Jacobi, Jadwiga H. Richter, and Simone Tilmes
Atmos. Chem. Phys., 23, 3799–3818, https://doi.org/10.5194/acp-23-3799-2023, https://doi.org/10.5194/acp-23-3799-2023, 2023
Short summary
Short summary
Alongside mitigation and adaptation efforts, stratospheric aerosol intervention (SAI) is increasingly considered a third pillar to combat dangerous climate change. We investigate the teleconnection between the quasi-biennial oscillation in the equatorial stratosphere and the Arctic stratospheric polar vortex under a warmer climate and an SAI scenario. We show that the Holton–Tan relationship weakens under both scenarios and discuss the physical mechanisms responsible for such changes.
Soo-Hyun Kim, Jeonghoe Kim, Jung-Hoon Kim, and Hye-Yeong Chun
Atmos. Meas. Tech., 15, 2277–2298, https://doi.org/10.5194/amt-15-2277-2022, https://doi.org/10.5194/amt-15-2277-2022, 2022
Short summary
Short summary
The cube root of the energy dissipation rate (EDR), as a standard reporting metric of atmospheric turbulence, is estimated using 1 Hz commercial quick access recorder data from Korean-based national air carriers with two different types of aircraft. Various EDRs are estimated using zonal, meridional, and derived vertical wind components and the derived equivalent vertical gust. Characteristics of the observed EDR estimates using 1 Hz flight data are examined to observe strong turbulence cases.
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
Min-Jee Kang and Hye-Yeong Chun
Atmos. Chem. Phys., 21, 9839–9857, https://doi.org/10.5194/acp-21-9839-2021, https://doi.org/10.5194/acp-21-9839-2021, 2021
Short summary
Short summary
In winter 2019/20, the westerly quasi-biennial oscillation (QBO) phase was disrupted again by easterly winds. It is found that strong Rossby waves from the Southern Hemisphere weaken the jet core in early stages, and strong mixed Rossby–gravity waves reverse the wind in later stages. Inertia–gravity waves and small-scale convective gravity waves also provide negative forcing. These strong waves are attributed to an anomalous wind profile, barotropic instability, and slightly strong convection.
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, and Jonathon S. Wright
Atmos. Chem. Phys., 21, 1267–1285, https://doi.org/10.5194/acp-21-1267-2021, https://doi.org/10.5194/acp-21-1267-2021, 2021
Short summary
Short summary
The Asian summer monsoon (ASM) is known to foster transport of polluted tropospheric air into the stratosphere. To test and amend our picture of ASM vertical transport, we analyse distributions of airborne trace gas observations up to 20 km altitude near the main ASM vertical conduit south of the Himalayas. We also show that a new high-resolution version of the global chemistry climate model WACCM is able to reproduce the observations well.
Cited articles
Andrews, D. G. and Mcintyre, M. E.:
Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration,
J. Atmos. Sci.,
33, 2031–2048, 1976.
Andrews, D. G., Mahlman, J. D., and Sinclair, R. W.:
Eliassen–Palm diagnostics of wave-mean flow interaction in the GFDL” SKYHI” general circulation model,
J. Atmos. Sci.,
40, 2768–2784, 1983.
Andrews, D. G., Holton, J. R., and Leovy, C. B.:
Middle Atmosphere Dynamics,
Academic, San Diego, California, 1987.
Anstey, J. A. and Shepherd, T. G.:
High-latitude influence of the quasi-biennial oscillation,
Q. J. Roy. Meteorol. Soc.,
140, 1–21, https://doi.org/10.1002/qj.2132, 2014.
Baldwin, M. P. and Dunkerton, T. J.:
Stratospheric harbingers of anomalous Weather Regimes,
Science,
294, 581–584, 2001.
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M.:
The quasi-biennial oscillation,
Rev. Geophys.,
39, 179–229, 2001.
Barton, C. A. and McCormack, J. P.:
Origin of the 2016 QBO disruption and its relationship to extreme El Niño events,
Geophys. Res. Lett.,
44, 11150–11157, https://doi.org/10.1002/2017GL075576, 2017.
Boer, G. and Hamilton, K.:
QBO influence on extratropical predictive skill,
Clim. Dynam.,
31, 987–1000, https://doi.org/10.1007/s00382-008-0379-5, 2008.
Bosilovich, M. G., Lucchesi, R., and Suarez, M.:
MERRA-2: File specification GMAO Office Note No. 9 (Version 1.1),
available at: http://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf, last access: 20 June 2016.
Chao, W. C., Yang, B., and Fu, X.:
A revised method of presenting wavenumber-frequency power spectrum diagrams that reveals the asymmetric nature of tropical large-scale waves,
Clim. Dynam.,
33, 843–847, https://doi.org/10.1007/s00382-008-0494-3, 2009.
Collimore, C. C., Martin, D. W., Hitchman, M. H., Huesmann, A., and Waliser, D. E.:
On the relationship between the QBO and tropical deep convection,
J. Climate,
16, 2552–2568, https://doi.org/10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2, 2003.
Coy, L., Newman, P. A., Pawson, S., and Lait, L. R.:
Dynamics of the disrupted 2015/16 quasi-biennial oscillation,
J. Climate,
30, 5661–5674, https://doi.org/10.1175/JCLI-D-16-0663.1, 2017.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.:
The ERA-Interim reanalysis: configuration and performance of the data assimilation system,
Q. J. Roy. Meteorol. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dunkerton, T. J.:
Nonlinear propagation of zonal winds in an atmosphere with Newtonian cooling and equatorial wavedriving,
J. Atmos. Sci.,
48, 236–263, 1991.
Dunkerton, T. J.: The quasi-biennial oscillation of 2015–2016: Hiccup or death spiral?, Geophys. Res. Lett., 43, 10547–10552, https://doi.org/10.1002/2016GL070921, 2016.
ECMWF – European Centre for Medium-RangeWeather Forecasts: ERA Interim, 6-hourly, instantaneous, model-level, analysis, Reading, UK, ECMWF Meteorological Archival and Retrieval System (MARS), available at: https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=ml (last access: 10 January 2020), 2009.
Ern, M., Ploeger, F., Preusse, P., Gille, J. C., Gray, L. J., Kalisch, S., Mlynczak, M. G., Russell III, J. M., and Riese, M.:
Interaction of gravity waves with the QBO: A satellite perspective,
J. Geophys. Res.-Atmos.,
119, 2329–2355, https://doi.org/10.1002/2013JD020731, 2014.
Evan, S., Alexander, M. J., and Dudhia, J.:
WRF simulations of convectively generated gravity waves in opposite QBO phases,
J. Geophys. Res.,
117, D12117, https://doi.org/10.1029/2011JD017302, 2012.
Garcia, R. R. and Richter, J. H.:
On the momentum budget of the quasi-biennial oscillation in the Whole Atmosphere Community Climate Model,
J. Atmos. Sci.,
76, 69–87, https://doi.org/10.1175/JAS-D-18-0088.1, 2019.
Garfinkel, C. I. and Hartmann, D. L.:
The influence of the quasi-biennial oscillation on the troposphere in wintertime in a hierarchy of models. Part I: Simplified dry GCMs,
J. Atmos. Sci.,
68, 1273–1289, 2011.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.:
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2),
J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Geller, M. A., Zhou, T., and Yuan, W.:
The QBO, gravity waves forced by tropical convection, and ENSO,
J. Geophys. Res.-Atmos.,
121, 8886–8895, https://doi.org/10.1002/2015JD024125, 2016.
Gill, A. E.:
Atmosphere-Ocean Dynamics,
Academic Press, New York, 1982.
Giorgetta, M. A. and Bengtsson, L.:
The potential role of the quasi-biennial oscillation in the stratosphere-troposphere exchange as found in water vapor in general circulation model experiments,
J. Geophys. Res.,
104, 6003–6020, 1999.
GISTEMP Team:
GISS Surface Temperature Analysis (GISTEMP), version 4,
NASA Goddard Institute for Space Studies,
Dataset, available at: https://data.giss.nasa.gov/gistemp/, last access: 10 September 2020.
GMAO:
MERRA-2 inst3_3d_asm_Nv: 3D, 3-hourly, instantaneous, model-level, assimilation, assimilated meteorological fields, version 5.12.4,
Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, USA,
https://doi.org/10.5067/WWQSXQ8IVFW8, 2015.
GPM Science Team:
GPM DPR (Gridded Convective Stratiform Heating) L3 1.5 hours 0.5 degree × 0.5 degree V06,
Goddard Earth Sciences Data and Information Services Center (GES DISC),
https://doi.org/10.5067/GPM/DPRGMI/CSH/3G/06, 2017.
Gray, L. J., Anstey, J. A., Kawatani, Y., Lu, H., Osprey, S., and Schenzinger, V.: Surface impacts of the Quasi Biennial Oscillation, Atmos. Chem. Phys., 18, 8227–8247, https://doi.org/10.5194/acp-18-8227-2018, 2018.
Hamilton, K. P.:
Mean wind evolution through the quasi-biennial cycle of the tropical lower stratosphere,
J. Atmos. Sci.,
41, 2113–2125, 1984.
He, C., Wang, Y., and Li, T.:
Weakened impact of the developing El Niño on tropical Indian Ocean climate variability under global warming,
J. Climate,
32, 7265–7279, https://doi.org/10.1175/JCLI-D-19-0165.1, 2019.
Hirota, N., Shiogama, H., Akiyoshi, H., Ogura, T., Takahashi, M., Kawatani, Y., Kimoto, M., and Mori, M.:
The influences of El Nino and Arctic sea-ice on the QBO disruption in February 2016,
Nat. Clim. Atmos. Sci.,
1, 1–5, https://doi.org/10.1038/s41612-018-0020-1, 2018.
Hitchcock, P., Haynes, P. H., Randel, W. J., and Birner, T.:
The emergence of shallow easterly jets within QBO westerlies,
J. Atmos. Sci.,
75, 21–40, https://doi.org/10.1175/JAS-D-17-0108.1, 2018.
Ho, C., Kim, H., Jeong, J. and Son, S.:
Influence of stratospheric quasi-biennial oscillation on tropical cyclone tracks in the western North Pacific,
Geophys. Res. Lett.,
36, L06702, https://doi.org/10.1029/2009GL037163, 2009.
Holton, J. R. and Lindzen, R. S.:
An updated theory for the quasi-biennial cycle of the tropical stratosphere,
J. Atmos. Sci.,
29, 1076–1080, https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2, 1972.
Holton, J. R. and Tan, H.-C.:
The influence of the equatorial quasi-biennial oscillation on global circulation at 50 mb,
J. Atmos. Sci.,
37, 2200–2208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2, 1980.
Horinouchi, T., Pawson, S., Shibata, K., Manzini, E., Giorgetta, M., and Sassi, F.:
Tropical cumulus convection and upward propagating waves in middle-atmospheric GCMs,
J. Atmos. Sci.,
60, 2765–2782, 2003.
Huffman, G., Bolvin, D., Braithwaite, D., Hsu, K., Joyce, R., and Xie, P.:
Integrated Multi-satellite Retrievals for GPM (IMERG), version 4.4,
NASA's Precipitation Processing Center,
available at: ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/ (last access: 31 March 2015), 2014.
Jewtoukoff, V., Plougonven, R., and Hertzog, A.:
Gravity waves generated by deep tropical convection: Estimates from balloon observations and mesoscale simulations,
J. Geophys. Res.-Atmos.,
118, 9690–9707, https://doi.org/10.1002/jgrd.50781, 2013.
Kang, M.-J., Chun, H.-Y., and Kim, Y.-H.:
Momentum flux of convective gravity waves derived from an offline gravity wave parameterization. Part I: Spatiotemporal variations at source level,
J. Atmos. Sci.,
74, 3167–3189, https://doi.org/10.1175/JAS-D-17-0053.1, 2017.
Kang, M.-J., Chun, H.-Y., Kim, Y.-H., Preusse, P., and Ern, M.:
Momentum flux of convective gravity waves derived from an offline gravity wave parameterization. Part II: Impacts on the quasi-biennial oscillation,
J. Atmos. Sci.,
75, 3753–3775, https://doi.org/10.1175/JAS-D-18-0094.1, 2018.
Kawatani, Y., Watanabe, S., Sato, K., Dunkerton, T. J., Miyahara, S., and Takahashi, M.:
The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing,
J. Atmos. Sci.,
67, 963–980, https://doi.org/10.1175/2009JAS3222.1, 2010.
Kawatani, Y., Hamilton, K., Sato, K., Dunkerton, T. J., Watanabe, S., and Kikuchi, K.:
ENSO modulation of the QBO: Results from MIROC models with and without nonorographic gravity wave parameterization,
J. Atmos. Sci.,
76, 3893–3917, 2019.
Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N., Baldwin, M. P., and Gray, L. J.:
Stratospheric influence on tropospheric jet streams, storm tracks and surface weather,
Nat. Geosci.,
8, 433–440, 2015.
Kim, Y.-H. and Chun, H.-Y.:
Contributions of equatorial wave modes and parameterized gravity waves to the tropical QBO in HadGEM2,
J. Geophys. Res.-Atmos.,
120, 1065–1090, https://doi.org/10.1002/2014JD022174, 2015a.
Kim, Y.-H. and Chun, H.-Y.: Momentum forcing of the quasi-biennial oscillation by equatorial waves in recent reanalyses, Atmos. Chem. Phys., 15, 6577–6587, https://doi.org/10.5194/acp-15-6577-2015, 2015b.
Kim, Y.-H., Kiladis, G. N., Albers, J. R., Dias, J., Fujiwara, M., Anstey, J. A., Song, I.-S., Wright, C. J., Kawatani, Y., Lott, F., and Yoo, C.: Comparison of equatorial wave activity in the tropical tropopause layer and stratosphere represented in reanalyses, Atmos. Chem. Phys., 19, 10027–10050, https://doi.org/10.5194/acp-19-10027-2019, 2019.
Kumar, K. K., Mathew, S. S., and Subrahmanyam, K. V.:
Anomalous tropical planetary wave activity during 2015/2016 quasi biennial oscillation disruption,
J. Atmos. Sol.-Ter. Phy.,
167, 184–189, https://doi.org/10.1016/j.jastp.2017.12.004, 2018.
Lang, S. E. and Tao, W.-K.:
The next-generation Goddard convective-stratiform heating algorithm: New tropical and warm-season retrievals for GPM,
J. Climate,
31, 5997–6026, 2018.
Lee, J.-H., Kang, M.-J., and Chun, H.-Y.:
Differences in the tropical convective activities at the opposite phases of the quasi-biennial oscillation,
Asia-Pac. J. Atmos. Sci.,
55, 317–336, 2019.
Li, H., Pilch Kedzierski, R., and Matthes, K.: On the forcings of the unusual Quasi-Biennial Oscillation structure in February 2016, Atmos. Chem. Phys., 20, 6541–6561, https://doi.org/10.5194/acp-20-6541-2020, 2020.
Liess, S. and Geller, M. A.:
On the relationship between QBO and distribution of tropical deep convection,
J. Geophys. Res.,
117, D03108, https://doi.org/10.1029/2011JD016317, 2012.
Lin, P., Held, I., and Ming, Y.:
The early development of the 2015/16 quasi-biennial oscillation disruption,
J. Atmos. Sci.,
76, 821–836, https://doi.org/10.1175/JAS-D-18-0292.1, 2019.
Lindzen, R. S.:
Turbulence and stress owing to gravity wave and tidal breakdown,
J. Geophys. Res.,
86, 9707–9714, https://doi.org/10.1029/JC086iC10p09707, 1981.
Lindzen, R. S. and Holton, J. R.:
A theory of the quasi-biennial oscillation,
J. Atmos. Sci.,
25, 1095–1107, https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2, 1968.
Marshall, A. G., Hendon, H. H., Son, S.-W., and Lim, Y.:
Impact of the quasi-biennial oscillation on predictability of the Madden-Julian oscillation,
Clim. Dynam.,
49, 1365–1377, https://doi.org/10.1007/s00382-016-3392-0, 2017.
Newman, P. A., Coy, L., Pawson, S. and Lait, L. R.:
The anomalous change in the QBO in 2015–2016,
Geophys. Res. Lett.,
43, 8791–8797, https://doi.org/10.1002/2016GL070373, 2016.
Osprey, S. M., Butchart, N., Knight, J. R., Scaife, A. A., Hamilton, K., Anstey, J. A., Schenzinger, V., and Zhang, C.:
An unexpected disruption of the atmospheric quasi-biennial oscillation,
Science,
353, 1424–1427, https://doi.org/10.1126/science.aah4156, 2016.
O'Sullivan, D.:
Interaction of extratropical Rossby waves with westerly quasi-biennial oscillation winds,
J. Geophys. Res.,
102, 19461–19469, https://doi.org/10.1029/97JD01524, 1997.
Patra, P. K., Lal, S., Venkataramani, S., and Chand, D.: Halogen Occultation Experiment (HALOE) and balloon-borne in situ measurements of methane in stratosphere and their relation to the quasi-biennial oscillation (QBO), Atmos. Chem. Phys., 3, 1051–1062, https://doi.org/10.5194/acp-3-1051-2003, 2003.
Randel, W. J. and Wu, F.:
Isolation of the ozone QBO in SAGE II data by singular-value decomposition,
J. Atmos. Sci.,
53, 2546–2559, 1996.
Richter, J. H., Solomon, A., and Bacmeister, J. T.:
On the simulation of the quasi-biennial oscillation in the Community Atmosphere Model, version 5,
J. Geophys. Res.-Atmos.,
119, 3045–3062, https://doi.org/10.1002/2013JD021122, 2014.
Richter, J. H., Butchart, N., Kawatani, Y., Bushell, A. C., Holt, L., Serva., F., Anstey, J., Simipson, I. R., Osprey, S., Hamilton, K., Braesicke, P., Cagnazzo, C., Chen, C.-C., Garcia, R. R., Gray, L. J., Kerzenmacher, T., Lott, F., McLandress, C., Naoe, H., Scinocca, J., Stockdale, T. N., Versick, S., Watanabe. S., Yoshida, K., and Yukimoto, S.:
Response of the quasi-biennial oscillation to a warming climate in global climate models, Q. J. Roy. Meteorol. Soc., 1–29, https://doi.org/10.1002/qj.3749, 2020.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.:
The NCEP Climate Forecast System Reanalysis,
B. Am. Meteorol. Soc.,
91, 1015–1057, 2010
Scaife, A. A., Athanassiadou, M., Andrews, M., Arribas, A., Baldwin, M., Dunstone, N., Knight, J., MacLachlan, C., Manzini, E., Müller, W. A., Pohlmann, H., Smith, D., Stockdale, T., and Williams, A.:
Predictability of the quasi-biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales,
Geophys. Res. Lett.,
41, 1752–1758, 2014.
Song, I.-S. and Chun, H.-Y.:
Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: Theory,
J. Atmos. Sci.,
62, 107–124, https://doi.org/10.1175/JAS-3363.1, 2005.
Watanabe, S. and Miyahara, S.:
Quantification of the gravity wave forcing of the migrating diurnal tide in a gravity wave-resolving general circulation model,
J. Geophys. Res.,
114, D07110, https://doi.org/10.1029/2008JD011218, 2009.
Watanabe, S., Hamilton, K., Osprey, S., Kawatani, Y., and Nishimoto, E.:
First successful hindcast of the 2016 disruption of the stratospheric quasi-biennial oscillation,
Geophys. Res. Lett.,
45, 1602–1610, https://doi.org/10.1002/2017GL076406, 2018.
Wheeler, M. and Kiladis, G. N.:
Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain,
J. Atmos. Sci.,
56, 374–399, 1999.
Yang, G., Hoskins, B., and Slingo, J.:
Equatorial waves in opposite QBO phases,
J. Atmos. Sci.,
68, 839–862, https://doi.org/10.1175/2010JAS3514.1, 2011.
Yoo, C. and Son, S.-W.:
Modulation of the boreal wintertime Madden-Julian oscillation by the stratospheric quasi-biennial oscillation,
Geophys. Res. Lett.,
43, 1392–1398, https://doi.org/10.1002/2016GL067762, 2016.
Short summary
In winter 2015/16, the descent of the westerly quasi-biennial oscillation (QBO) jet was interrupted by easterly winds. We find that Rossby–gravity and inertia–gravity waves weaken the jet core in early stages, and small-scale convective gravity waves, as well as horizontal and vertical components of Rossby waves, reverse the wind sign in later stages. The strong negative wave forcing in the tropics results from the enhanced convection, an anomalous wind profile, and barotropic instability.
In winter 2015/16, the descent of the westerly quasi-biennial oscillation (QBO) jet was...
Altmetrics
Final-revised paper
Preprint