Articles | Volume 20, issue 23
https://doi.org/10.5194/acp-20-14491-2020
https://doi.org/10.5194/acp-20-14491-2020
Research article
 | 
30 Nov 2020
Research article |  | 30 Nov 2020

Microphysical properties of three types of snow clouds: implication for satellite snowfall retrievals

Hwayoung Jeoung, Guosheng Liu, Kwonil Kim, Gyuwon Lee, and Eun-Kyoung Seo

Related authors

Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025,https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary
Advantages of using multiple Doppler radars with different wavelengths for three dimensional wind retrieval
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
EGUsphere, https://doi.org/10.5194/egusphere-2025-1908,https://doi.org/10.5194/egusphere-2025-1908, 2025
Short summary
Estimating the snow density using collocated Parsivel and Micro-Rain Radar measurements: a preliminary study from ICE-POP 2017/2018
Wei-Yu Chang, Yung-Chuan Yang, Chen-Yu Hung, Kwonil Kim, Gyuwon Lee, and Ali Tokay
Atmos. Chem. Phys., 24, 11955–11979, https://doi.org/10.5194/acp-24-11955-2024,https://doi.org/10.5194/acp-24-11955-2024, 2024
Short summary
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024,https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
High-resolution 3D winds derived from a modified WISSDOM synthesis scheme using multiple Doppler lidars and observations
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
Atmos. Meas. Tech., 16, 845–869, https://doi.org/10.5194/amt-16-845-2023,https://doi.org/10.5194/amt-16-845-2023, 2023
Short summary

Cited articles

Battaglia, A., Rustemeier, E., Tokay, A., Blahak, U., and Simmer, C.: PARSIVEL snow observations: A critical assessment, J. Atmos. Ocean. Technol., 27, 333–344, https://doi.org/10.1175/2009JTECHA1332.1, 2010. 
Bennartz, R. and Bauer, P.: Sensitivity of microwave radiances at 85-183 GHz to precipitating ice particles, Radio Sci., 38, 8075, https://doi.org/10.1029/2002rs002626, 2003. 
Casella, D., Panegrossi, G., Sanò, P., Marra, A. C., Dietrich, S., Johnson, B. T., and Kulie, M. S.: Evaluation of the GPM-DPR snowfall detection capability: Comparison with CloudSat-CPR, Atmos. Res., 197, 64–75, https://doi.org/10.1016/j.atmosres.2017.06.018, 2017. 
Chen, H., Chandrasekar, V., and Bechini, R.: An improved dual-polarization radar rainfall algorithm (DROPS2.0): Application in NASA IFloodS field campaign, J. Hydrometeorol., 18, 917–937, https://doi.org/10.1175/JHM-D-16-0124.1, 2017. 
Chen, S., Hong, Y., Kulie, M., Behrangi, A., Stepanian, P. M., Cao, Q., You, Y., Zhang, J., Hu, J., and Zhang, X.: Comparison of snowfall estimates from the NASA CloudSat Cloud Profiling Radar and NOAA/NSSL Multi-Radar Multi-Sensor System, J. Hydrol., 541, 862–872, https://doi.org/10.1016/j.jhydrol.2016.07.047, 2016. 
Download
Short summary
Radar and radiometer observations were used to study cloud liquid and snowfall in three types of snow clouds. While near-surface and shallow clouds have an area fraction of 90 %, deep clouds contribute half of the total snowfall volume. Deeper clouds have heavier snowfall, although cloud liquid is equally abundant in all three cloud types. The skills of a GMI Bayesian algorithm are examined. Snowfall in deep clouds may be reasonably retrieved, but it is challenging for near-surface clouds.
Share
Altmetrics
Final-revised paper
Preprint