Articles | Volume 20, issue 23
https://doi.org/10.5194/acp-20-14491-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-20-14491-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Microphysical properties of three types of snow clouds: implication for satellite snowfall retrievals
Hwayoung Jeoung
Department of Earth, Ocean and Atmospheric Science, Florida State
University, Tallahassee, Florida, USA
Department of Earth, Ocean and Atmospheric Science, Florida State
University, Tallahassee, Florida, USA
Kwonil Kim
Department of Astronomy and Atmospheric Sciences, Center for Atmospheric REmote Sensing (CARE), Kyungpook National University, Daegu 41566, Republic of Korea
Gyuwon Lee
Department of Astronomy and Atmospheric Sciences, Center for Atmospheric REmote Sensing (CARE), Kyungpook National University, Daegu 41566, Republic of Korea
Eun-Kyoung Seo
Department of Earth Science Education, Kongju National University, Kongju 314-701, Republic of Korea
Related authors
No articles found.
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025, https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary
Short summary
Microphysics model-based diagnosis, such as the spectral bin model (SBM), has recently been attempted to diagnose winter precipitation types. In this study, the accuracy of SBM-based precipitation type diagnosis is compared with other traditional methods. SBM has a relatively higher accuracy for dry-snow and wet-snow events, whereas it has lower accuracy for rain events. When the microphysics scheme in the SBM was optimized for the corresponding region, the accuracy for rain events improved.
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
EGUsphere, https://doi.org/10.5194/egusphere-2025-1908, https://doi.org/10.5194/egusphere-2025-1908, 2025
Short summary
Short summary
The WISSDOM is a practical scheme to derive 3D winds by using 11 radars in this study. The observations of shot-wavelength radars (i.e., C- and X-band) can be attributed to additional low-level precipitation and wind information in WISSDOM, which allowed for the capture of stronger updrafts in the convection areas of the squall line. Overall, these results highlight the advantages of using radars with multiple wavelengths in WISSDOM, especially C- and X-band radars.
Wei-Yu Chang, Yung-Chuan Yang, Chen-Yu Hung, Kwonil Kim, Gyuwon Lee, and Ali Tokay
Atmos. Chem. Phys., 24, 11955–11979, https://doi.org/10.5194/acp-24-11955-2024, https://doi.org/10.5194/acp-24-11955-2024, 2024
Short summary
Short summary
Snow density is derived by collocated Micro-Rain Radar (MRR) and Parsivel (ICE-POP 2017/2018). We apply the particle size distribution from Parsivel to a T-matrix backscattering simulation and compare with ZHH from MRR. Bulk density and bulk water fractions are derived from comparing simulated and calculated ZHH. Retrieved bulk density is validated by comparing snowfall rate measurements from Pluvio and the Precipitation Imaging Package. Snowfall rate consistency confirms the algorithm.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
Atmos. Meas. Tech., 16, 845–869, https://doi.org/10.5194/amt-16-845-2023, https://doi.org/10.5194/amt-16-845-2023, 2023
Short summary
Short summary
Since the winds in clear-air conditions usually play an important role in the initiation of various weather systems and phenomena, the modified Wind Synthesis System using Doppler Measurements (WISSDOM) synthesis scheme was developed to derive high-quality and high-spatial-resolution 3D winds under clear-air conditions. The performance and accuracy of derived 3D winds from this modified scheme were evaluated with an extreme strong wind event over complex terrain in Pyeongchang, South Korea.
Xuanli Li, Jason B. Roberts, Jayanthi Srikishen, Jonathan L. Case, Walter A. Petersen, Gyuwon Lee, and Christopher R. Hain
Geosci. Model Dev., 15, 5287–5308, https://doi.org/10.5194/gmd-15-5287-2022, https://doi.org/10.5194/gmd-15-5287-2022, 2022
Short summary
Short summary
This research assimilated the Global Precipitation Measurement (GPM) satellite-retrieved ocean surface meteorology data into the Weather Research and Forecasting (WRF) model with the Gridpoint Statistical Interpolation (GSI) system. This was for two snowstorms during the International Collaborative Experiments for PyeongChang 2018 Olympic and Paralympic Winter Games' (ICE-POP 2018) field experiments. The results indicated a positive impact of the data for short-term forecasts for heavy snowfall.
Jeong-Su Ko, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, Gregory Thompson, and Alexis Berne
Geosci. Model Dev., 15, 4529–4553, https://doi.org/10.5194/gmd-15-4529-2022, https://doi.org/10.5194/gmd-15-4529-2022, 2022
Short summary
Short summary
This study evaluates the performance of the four microphysics parameterizations, the WDM6, WDM7, Thompson, and Morrison schemes, in simulating snowfall events during the ICE-POP 2018 field campaign. Eight snowfall events are selected and classified into three categories (cold-low, warm-low, and air–sea interaction cases). The evaluation focuses on the simulated hydrometeors, microphysics budgets, wind fields, and precipitation using the measurement data.
Ki-Hong Min, Kao-Shen Chung, Ji-Won Lee, Cheng-Rong You, and Gyuwon Lee
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-18, https://doi.org/10.5194/gmd-2022-18, 2022
Revised manuscript not accepted
Short summary
Short summary
LETKF underestimated the water vapor mixing ratio and temperature compared to 3DVAR due to a lack of a water vapor mixing ratio and temperature observation operator. Snowfall in GWD was less simulated in LETKF. The results signify that water vapor assimilation is important in radar DA and significantly impacts precipitation forecasts, regardless of the DA method used. Therefore, it is necessary to apply observation operators for water vapor mixing ratio and temperature in radar DA.
Paul Joe, Gyuwon Lee, and Kwonil Kim
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-620, https://doi.org/10.5194/acp-2021-620, 2021
Preprint withdrawn
Short summary
Short summary
Strong gusty wind events were responsible for poor performance of competitors and schedule changes during the PyeongChang 2018 Olympic and Paralympic Winter Games. Three events were investigated and documented to articulate the challenges confronting forecasters which is beyond what they normally do. Quantitative evidence of the challenge and recommendations for future Olympics are provided.
Kwonil Kim, Wonbae Bang, Eun-Chul Chang, Francisco J. Tapiador, Chia-Lun Tsai, Eunsil Jung, and Gyuwon Lee
Atmos. Chem. Phys., 21, 11955–11978, https://doi.org/10.5194/acp-21-11955-2021, https://doi.org/10.5194/acp-21-11955-2021, 2021
Short summary
Short summary
This study analyzes the microphysical characteristics of snow in complex terrain and the nearby ocean according to topography and wind pattern during the ICE-POP 2018 campaign. The observations from collocated vertically pointing radars and disdrometers indicate that the riming in the mountainous region is likely caused by a strong shear and turbulence. The different behaviors of aggregation and riming were found by three different synoptic patterns (air–sea interaction, cold low, and warm low).
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, Jung-Hoon Kim, YongHee Lee, and GyuWon Lee
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-100, https://doi.org/10.5194/acp-2021-100, 2021
Preprint withdrawn
Short summary
Short summary
This study examines a strong downslope wind event during ICE-POP 2018 using Doppler lidars, and observations. 3D winds can be well retrieved by
WISSDOM. This is first time to document the mechanisms of strong wind in observational aspect under fine weather. The PGF causing by adiabatic warming and channeling effect are key factors to dominate the strong wind. The values of this study are improving our understanding of the strong wind and increase the predictability of the weather forecast.
Josué Gehring, Alfonso Ferrone, Anne-Claire Billault-Roux, Nikola Besic, Kwang Deuk Ahn, GyuWon Lee, and Alexis Berne
Earth Syst. Sci. Data, 13, 417–433, https://doi.org/10.5194/essd-13-417-2021, https://doi.org/10.5194/essd-13-417-2021, 2021
Short summary
Short summary
This article describes a dataset of precipitation and cloud measurements collected from November 2017 to March 2018 in Pyeongchang, South Korea. The dataset includes weather radar data and images of snowflakes. It allows for studying the snowfall intensity; wind conditions; and shape, size and fall speed of snowflakes. Classifications of the types of snowflakes show that aggregates of ice crystals were dominant. This dataset represents a unique opportunity to study snowfall in this region.
Cited articles
Battaglia, A., Rustemeier, E., Tokay, A., Blahak, U., and Simmer, C.:
PARSIVEL snow observations: A critical assessment, J. Atmos. Ocean.
Technol., 27, 333–344, https://doi.org/10.1175/2009JTECHA1332.1, 2010.
Bennartz, R. and Bauer, P.: Sensitivity of microwave radiances at 85-183 GHz
to precipitating ice particles, Radio Sci., 38, 8075,
https://doi.org/10.1029/2002rs002626, 2003.
Casella, D., Panegrossi, G., Sanò, P., Marra, A. C., Dietrich, S.,
Johnson, B. T., and Kulie, M. S.: Evaluation of the GPM-DPR snowfall
detection capability: Comparison with CloudSat-CPR, Atmos. Res., 197,
64–75, https://doi.org/10.1016/j.atmosres.2017.06.018, 2017.
Chen, H., Chandrasekar, V., and Bechini, R.: An improved dual-polarization
radar rainfall algorithm (DROPS2.0): Application in NASA IFloodS field
campaign, J. Hydrometeorol., 18, 917–937, https://doi.org/10.1175/JHM-D-16-0124.1, 2017.
Chen, S., Hong, Y., Kulie, M., Behrangi, A., Stepanian, P. M., Cao, Q., You,
Y., Zhang, J., Hu, J., and Zhang, X.: Comparison of snowfall estimates from
the NASA CloudSat Cloud Profiling Radar and NOAA/NSSL Multi-Radar
Multi-Sensor System, J. Hydrol., 541, 862–872,
https://doi.org/10.1016/j.jhydrol.2016.07.047, 2016.
Chung, S.-H., Byun, K.-Y., and Lee, T.-Y.: Classification of snowfalls over the
Korean peninsula based on developing mechanism, Atmosphere, 16, 33–48,
2006.
Draine, B. T. and Flatau, P. J.: Discrete-Dipole Approximation For
Scattering Calculations, J. Opt. Soc. Am. A, 11, 1491,
https://doi.org/10.1364/josaa.11.001491, 1994.
Garrett, T. J., Fallgatter, C., Shkurko, K., and Howlett, D.: Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall, Atmos. Meas. Tech., 5, 2625–2633, https://doi.org/10.5194/amt-5-2625-2012, 2012.
Geer, A. J. and Baordo, F.: Improved scattering radiative transfer for frozen hydrometeors at microwave frequencies, Atmos. Meas. Tech., 7, 1839–1860, https://doi.org/10.5194/amt-7-1839-2014, 2014.
Gehring, J., Oertel, A., Vignon, É., Jullien, N., Besic, N., and Berne, A.: Microphysics and dynamics of snowfall associated with a warm conveyor belt over Korea, Atmos. Chem. Phys., 20, 7373–7392, https://doi.org/10.5194/acp-20-7373-2020, 2020.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective
analysis for research and applications, version 2 (MERRA-2), J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gong, J. and Wu, D. L.: Microphysical properties of frozen particles inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) polarimetric measurements, Atmos. Chem. Phys., 17, 2741–2757, https://doi.org/10.5194/acp-17-2741-2017, 2017.
Grazioli, J., Genthon, C., Boudevillain, B., Duran-Alarcon, C., Del Guasta, M., Madeleine, J.-B., and Berne, A.: Measurements of precipitation in Dumont d'Urville, Adélie Land, East Antarctica, The Cryosphere, 11, 1797–1811, https://doi.org/10.5194/tc-11-1797-2017, 2017.
Honeyager, R., Liu, G., and Nowell, H.: Voronoi diagram-based spheroid model
for microwave scattering of complex snow aggregates, J. Quant. Spectrosc.
Radiat. Transf., 170, 28–44, https://doi.org/10.1016/j.jqsrt.2015.10.025, 2016.
Hudak, D., Rodriguez, P., and Donaldson, N.: Validation of the CloudSat
precipitation occurrence algorithm using the Canadian C band radar network,
J. Geophys. Res., 113, D00A07, https://doi.org/10.1029/2008JD009992, 2008.
Katsumata, M., Uyeda, H., Iwanami, K., and Liu, G.: The response of 36- and
89-GHz microwave channels to convective snow clouds over ocean: Observation
and modeling, J. Appl. Meteorol., 39, 2322–2335,
https://doi.org/10.1175/1520-0450(2000)039<2322:troagm>2.0.co;2,
2000.
Kim, M. J., Weinman, J. A., Olson, W. S., Chang, D. E., Skofronick-Jackson,
G., and Wang, J. R.: A physical model to estimate snowfall over land using
AMSU-B observations, J. Geophys. Res.-Atmos., 42, 1047–1058, https://doi.org/10.1029/2007JD008589,
2008.
Kim, J., Yoon, D., Cha, D. H., Choi, Y., Kim, J., and Son, S. W.: Impacts of
the East Asian winter monsoon and local sea surface temperature on heavy
snowfall over the Yeongdong region, J. Climate, 32, 6783–6802,
https://doi.org/10.1175/JCLI-D-18-0411.1. 2019.
Kim, T. and Jin, E. K.: Impact of an interactive ocean on numerical weather
prediction: A case of a local heavy snowfall event in eastern Korea, J.
Geophys. Res.-Atmos., 121, 8243–8253, https://doi.org/10.1002/2016JD024763, 2016.
Ko, A.-R., Kim, B.-G., Eun, S.-H., Park, Y.-S., and Choi, B.-C.: Analysis of
the relationship of water vapor with precipitation for the winter ESSAY
(Experiment on Snow Storms At Yeongdong) period, Atmosphere, 26, 19–33,
https://doi.org/10.14191/atmos.2016.26.1.019, 2016.
Kongoli, C., Meng, H., Dong, J., and Ferraro, R.: A snowfall detection
algorithm over land utilizing high-frequency passive microwave
measurements – Application to ATMS, J. Geophys. Res., 120, 1918–1932,
https://doi.org/10.1002/2014JD022427, 2015.
Kneifel, S., Löhnert, U., Battaglia, A., Crewell, S., and Siebler, D.:
Snow scattering signals in ground-based passive microwave measurements. J.
Geophys. Res., 115, D16214, https://doi.org/10.1029/2010JD013856, 2010.
Kneifel, S., Redl, S., Orlandi, E., Löhnert, U., Cadeddu, M. P., Turner,
D. D., and Chen, M.-T.: Absorption Properties of Supercooled Liquid Water
between 31 and 225 GHz: Evaluation of Absorption Models Using Ground-based
Observations, J. Appl. Meteor. Climatol., 53, 1028–1045,
https://doi.org/10.1175/JAMC-D-13-0214.1, 2014.
Kruger, A. and Krajewski, W. F.: Two-dimensional video disdrometer: A
description, J. Atmos. Ocean. Technol., 19, 602–617,
https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2,
2002.
Küchler, N., Kneifel, S., Löhnert, U., Kollias, P., Czekala, H., and
Rose, T.: A W-band radar–radiometer system for accurate and continuous
monitoring of clouds and precipitation, J. Atmos. Ocean. Technol., 34,
2375–2392, https://doi.org/10.1175/JTECH-D-17-0019.1, 2017.
Kulie, M. S. and Bennartz, R.: Utilizing spaceborne radars to retrieve dry
Snowfall, J. Appl. Meteorol. Climatol., 48, 2564–2580,
https://doi.org/10.1175/2009JAMC2193.1, 2009.
Kulie, M. S., Milani, L., Wood, N. B., Tushaus, S. A., Bennartz, R.,
L'Ecuyer, T. S., and L'Ecuyer, T. S.: A shallow cumuliform snowfall census
using spaceborne radar, J. Hydrometeorol., 17, 1261–1279,
https://doi.org/10.1175/JHM-D-15-0123.1, 2016.
Kummerow, C., Oison, W. S., and Giglio, L.: A simplified scheme for obtaining
precipitation and vertical hydrometeor profiles from passive microwave
sensors, IEEE Trans. Geosci. Remote Sens., 34, 1213–1232, https://doi.org/10.1109/36.536538, 1996.
Kummerow, C. D., Randel, D. L., Kulie, M., Wang, N. Y., Ferraro, R., Joseph
Munchak, S., and Petkovic, V.: The evolution of the goddard profiling
algorithm to a fully parametric scheme, J. Atmos. Ocean. Technol., 32, 2265–2280,
https://doi.org/10.1175/JTECH-D-15-0039.1, 2015.
Liebe, H. J., Hufford, G. A., and Cotton, M. G.: Propagation modeling of
moist air and suspended water/ice particles at frequencies below 1000 GHz,
AGARD Conf. Proc., 542, 3-1–3-10, 1993.
Liu, G.: A fast and accurate model for microwave radiance calculations, J.
Meteorol. Soc. Japan, 76, 335–243, https://doi.org/10.2151/jmsj1965.76.2_335, 1998.
Liu, G.: Approximation of Single Scattering Properties of Ice and Snow
Particles for High Microwave Frequencies, J. Atmos. Sci., 61,
2441–2456, https://doi.org/10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2, 2004.
Liu, G.: Deriving snow cloud characteristics from CloudSat observations, J.
Geophys. Res.-Atmos., 114, 1–13, https://doi.org/10.1029/2007JD009766, 2008a.
Liu, G.: A database of microwave single-scattering properties for
nonspherical ice particles, B. Am. Meteorol. Soc., 89, 1563–1570,
https://doi.org/10.1175/2008BAMS2486.1, 2008b.
Liu, G. and Curry, J. A.: Precipitation characteristics in
Greenland-Iceland-Norwegian Seas determined by using satellite microwave
data and modeling studies that require Observations Salinity satellite
retrievals are the only platform from described by Schmitt cycle for
tropical, J. Geophys. Res. - Atmos., 102, 13987–13997, https://doi.org/10.1029/96JD03090, 1997.
Liu, G. and Seo, E.-K. K.: Detecting snowfall over land by satellite
high-frequency microwave observations: The lack of scattering signature and
a statistical approach, J. Geophys. Res.-Atmos., 118, 1376–1387,
https://doi.org/10.1002/jgrd.50172, 2013.
Liu, G. and Takeda, T.: Observation of the degree of glaciation in middle-level stratiform clouds, J. Meteorol. Soc. Japan, 66, 645–660, https://doi.org/10.2151/jmsj1965.66.5_645, 1988.
Locatelli, J. D. and Hobbs, P. V.: Fall speeds and masses of solid
precipitation particles, J. Geophys. Res., 79, 2185–2197, https://doi.org/10.1029/jc079i015p02185,
1974.
Löffler-Mang, M. and Joss, J.: An optical disdrometer for measuring size
and velocity of hydrometeors, J. Atmos. Ocean. Technol., 17, 130–139,
https://doi.org/10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2,
2000.
Marchand, R., Mace, G. G., Ackerman, T., and Stephens, G.: Hydrometeor
detection using Cloudsat – An earth-orbiting 94-GHz cloud radar, J. Atmos.
Ocean. Technol., 25, 519–533, https://doi.org/10.1175/2007JTECHA1006.1, 2008.
Meng, H., Dong, J., Ferraro, R., Yan, B., Zhao, L., Kongoli, C., Wang, N. Y.,
and Zavodsky, B.: A 1DVAR-based snowfall rate retrieval algorithm for
passive microwave radiometers, J. Geophys. Res., 122, 6520–6540,
https://doi.org/10.1002/2016JD026325, 2017.
Nam, H. G., Kim, B. G., Han, S. O., Lee, C., and Lee, S. S.: Characteristics
of easterly-induced snowfall in Yeongdong and its relationship to air-sea
temperature difference, Asia-Pacific J. Atmos. Sci., 50, 541–552,
https://doi.org/10.1007/s13143-014-0044-3, 2014.
Noh, Y. J., Liu, G., Seo, E. K., Wang, J. R., and Aonashi, K.: Development of
a snowfall retrieval algorithm at high microwave frequencies, J. Geophys.
Res.-Atmos., 111, D22216, https://doi.org/10.1029/2005JD006826, 2006.
Olson, W. S., Kummerow, C. D., Heymsfield, G. M., and Giglio, L.: A method
for combined passive-active microwave retrievals of cloud and precipitation
profiles, J. Appl. Meteorol., 35, 1763–1789,
https://doi.org/10.1175/1520-0450(1996)035<1763:AMFCPM>2.0.CO;2,
1996.
Park, H., Lee, J., and Chang, E.: High-resolution simulation of snowfall over
the Korean eastern coastal pegion using WRF model: Sensitivity to domain
nesting-down strategy. Asia-Pacific J. Atmos. Sci., 55, 493–506,
https://doi.org/10.1007/s13143-019-00108-x, 2019.
Pettersen, C., Kulie, M. S., Bliven, L. F., Merrelli, A. J., Petersen, W.
A., Wagner, T. J., Wolff, D. B., and Wood, N. B: A composite analysis of
snowfall modes from four winter seasons in Marquette, Michigan. J. Appl.
Meteor. Climatol., 59, 103–124, doi:/10.1175/JAMC-D-19-0099.1,
2020.
Pettersen, C., Bennartz, R., Merrelli, A. J., Shupe, M. D., Turner, D. D., and Walden, V. P.: Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations, Atmos. Chem. Phys., 18, 4715–4735, https://doi.org/10.5194/acp-18-4715-2018, 2018.
Rosenkranz, P. W.: Water vapor microwave continuum absorption: A comparison
of measurements and models, Radio Sci., 33, 919–928, 1998.
RPG-FMCW: RPG-FMCW-94-SP/DP 94 GHz W-band Cloud Doppler Radar Instrument
Installation, Operation and Software Guide (Version 2.10-1),
available at: https://www.radiometer-physics.de/downloadftp/pub/PDF/Cloud Radar/RPG-FMCW-Instrument_Manual.pdf (last access: 20 October 2020), 2015.
Praz, C., Roulet, Y.-A., and Berne, A.: Solid hydrometeor classification and riming degree estimation from pictures collected with a Multi-Angle Snowflake Camera, Atmos. Meas. Tech., 10, 1335–1357, https://doi.org/10.5194/amt-10-1335-2017, 2017.
Schwartz, M. J.: Observation and Modeling of Atmospheric Oxygen
Millimeter-Wave Transmittance, Ph.D. Thesis, Massachusetts Institute of
Technology, Department of Physics, 1998.
Sekhon, R. S. and Srivastava, R. C.: Doppler radar observations of drop-
size distributions in a thunderstorm, J. Atmos. Sci., 28, 983–994, 1971.
Seo, E. K. and Liu, G.: Retrievals of cloud ice water path by combining
ground cloud radar and satellite high-frequency microwave measurements near
the ARM SGP site, J. Geophys. Res.-Atmos., 110, 1–15,
https://doi.org/10.1029/2004JD005727, 2005.
Sims, E. M. and Liu, G.: A parameterization of the probability of snow-rain
transition, J. Hydrometeorol., 16, 1466–1477,
https://doi.org/10.1175/JHM-D-14-0211.1, 2015.
Skofronick-Jackson, G. M. and Johnson, B. T.: Surface and atmospheric
contributions to passive microwave brightness temperatures for falling snow
events, J. Geophys. Res.-Atmos., 116, 1–16, https://doi.org/10.1029/2010JD014438,
2011.
Skofronick-Jackson, G. M., Petersen, W. A., Berg, W., Kidd, C., Stocker, E. F.,
Kirschbaum, D. B., Kakar, R., Braun, S. A., Huffman, G. J., Iguchi, T.,
Kirstetter, P. E., Kummerow, C., Meneghini, R., Oki, R., Olson, W. S.,
Takayabu, Y. N., Furukawa, K., and Wilheit, T.: The Global Precipitation
Measurement (GPM) Mission for Science and Society, B. Am. Meteorol. Soc.,
98, 1679–1695, https://doi.org/10.1175/BAMS-D-15-00306.1, 2017.
Skofronick-Jackson, G. M., Weinman, J. A., Kim, M. J., and Chang, D. E.: A
physical model to determine snowfall over land by microwave radiometry, IEEE
Trans. Geosci. Remote Sens., 42, 1047–1058,
https://doi.org/10.1109/TGRS.2004.825585, 2004.
Stephens, G. L., Austin, R. T., Benedetti, A., Mitrescu, C., Vane, D. G.,
Boain, R. J., Durden, S. L., Mace, G. G. J., Sassen, K., Wang, Z.,
Illingworth, A. J., O'Connor, E. J., Rossow, W. B. and Miller, S. D.: The
cloudsat mission and the A-Train: A new dimension of space-based
observations of clouds and precipitation, B. Am. Meteorol. Soc., 83,
1771–1790, https://doi.org/10.1175/BAMS-83-12-1771, 2002.
Tanelli, S., Durden, S. L., Im, E., Pak, K. S., Reinke, D. G., Partain, P.,
Haynes, J. M., and Marchand, R. T.: CloudSat's cloud profiling radar after
two years in orbit: Performance, calibration, and processing, IEEE Trans.
Geosci. Remote Sens., 46, 3560–3573, https://doi.org/10.1109/TGRS.2008.2002030,
2008.
Tang, G., Wen, Y., Gao, J., Long, D., Ma, Y., Wan, W., and Hong, Y.:
Similarities and differences between three coexisting spaceborne radars in
global rainfall and snowfall estimation, Water Resour. Res., 53,
3835–3853, https://doi.org/10.1002/2016WR019961, 2017.
Tokay, A., Wolff, D. B., and Petersen, W. A.: Evaluation of the new version
of the laser-optical disdrometer, OTT parsivel, J. Atmos. Ocean. Technol., 31, 1276–1288,
https://doi.org/10.1175/JTECH-D-13-00174.1, 2014.
Wang, Y., Chen, Y., Fu, F., and Liu, G.: Identifiction of precipitation
onset based on CloudSat observations. J. Quant. Spect. Ra. Transf., 188,
142–177, https://doi.org/10.1016/j.jqsrt.2016.06.028, 2017.
Wang, Y., Liu, G., Seo, E. K., and Fu, Y.: Liquid water in snowing clouds:
Implications for satellite remote sensing of snowfall, Atmos. Res., 131,
60–72, https://doi.org/10.1016/j.atmosres.2012.06.008, 2013.
Wood, N. B., L'Ecuyer, T. S., Vane, D. G., Stephens, G. L., and Partain, P.:
Level 2C snow profile process description and interface control document,
version 0, CloudSat Proj., (D), 21, available at:
http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P_R04.20130210.pdf, (last access: 20 October 2020), 2013.
Ye, B.-Y., Jung, E., Shin, S., and Lee, G.: Statistical Characteristics of
Cloud Occurrence and Vertical Structure Observed by a Ground-Based Ka-Band
Cloud Radar in South Korea, Remote Sens., 12, 2242, https://doi.org/10.3390/rs12142242,
2020.
Yin, M. and Liu, G.: Developing an a priori database for passive microwave
snow water retrievals over ocean, J. Geophys. Res.-Atmos., 122,
12960–12981, https://doi.org/10.1002/2017JD027636, 2017.
Yin, M. and Liu, G.: Assessment of GPM high-frequency microwave measurements
with radiative transfer simulation under snowfall conditions, Q. J. Roy.
Meteorol. Soc., 145, 1603–1616, https://doi.org/10.1002/qj.3515, 2019.
Yuter, S. E. and Houze, R. A.: Three-Dimensional Kinematic and Microphysical
Evolution of Florida Cumulonimbus. Part II: Frequency Distributions of
Vertical Velocity, Reflectivity, and Differential Reflectivity, Mon. Weather
Rev., 123, 1941–1963, https://doi.org/10.1175/1520-0493(1995)123<1941:tdkame>2.0.co;2, 1995.
Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., Grams, H.,
Wang, Y., Cocks, S., Martinaitis, S., Arthur, A., Cooper, K., Brogden, J.,
and Kitzmiller, D.: Multi-Radar Multi-Sensor (MRMS) Quantitative
Precipitation Estimation: Initial Operating Capabilities, B. Am.
Meteorol. Soc., 97, 621–638, https://doi.org/10.1175/BAMS-D-14-00174.1, 2016.
Short summary
Radar and radiometer observations were used to study cloud liquid and snowfall in three types of snow clouds. While near-surface and shallow clouds have an area fraction of 90 %, deep clouds contribute half of the total snowfall volume. Deeper clouds have heavier snowfall, although cloud liquid is equally abundant in all three cloud types. The skills of a GMI Bayesian algorithm are examined. Snowfall in deep clouds may be reasonably retrieved, but it is challenging for near-surface clouds.
Radar and radiometer observations were used to study cloud liquid and snowfall in three types of...
Altmetrics
Final-revised paper
Preprint