Articles | Volume 20, issue 23
Atmos. Chem. Phys., 20, 14491–14507, 2020
https://doi.org/10.5194/acp-20-14491-2020

Special issue: Winter weather research in complex terrain during ICE-POP...

Atmos. Chem. Phys., 20, 14491–14507, 2020
https://doi.org/10.5194/acp-20-14491-2020
Research article
30 Nov 2020
Research article | 30 Nov 2020

Microphysical properties of three types of snow clouds: implication for satellite snowfall retrievals

Hwayoung Jeoung et al.

Related authors

High Resolution 3D Winds Derived from a Newly Developed WISSDOM Synthesis Scheme using Multiple Doppler Lidars and Observations
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and Gyuwon Lee
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-218,https://doi.org/10.5194/amt-2022-218, 2022
Preprint under review for AMT
Short summary
Assimilation of GPM-retrieved ocean surface meteorology data for two snowstorm events during ICE-POP 2018
Xuanli Li, Jason B. Roberts, Jayanthi Srikishen, Jonathan L. Case, Walter A. Petersen, Gyuwon Lee, and Christopher R. Hain
Geosci. Model Dev., 15, 5287–5308, https://doi.org/10.5194/gmd-15-5287-2022,https://doi.org/10.5194/gmd-15-5287-2022, 2022
Short summary
Simulated microphysical properties of winter storms from bulk-type microphysics schemes and their evaluation in the Weather Research and Forecasting (v4.1.3) model during the ICE-POP 2018 field campaign
Jeong-Su Ko, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, Gregory Thompson, and Alexis Berne
Geosci. Model Dev., 15, 4529–4553, https://doi.org/10.5194/gmd-15-4529-2022,https://doi.org/10.5194/gmd-15-4529-2022, 2022
Short summary
Intercomparing radar data assimilation systems for ICE-POP 2018 snowfall cases
Ki-Hong Min, Kao-Shen Chung, Ji-Won Lee, Cheng-Rong You, and Gyuwon Lee
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-18,https://doi.org/10.5194/gmd-2022-18, 2022
Revised manuscript not accepted
Short summary
Measurement Report: Strong Valley Wind Events during the International Collaborative Experiment – PyeongChang 2018 Olympic and Paralympic Winter Games Project
Paul Joe, Gyuwon Lee, and Kwonil Kim
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-620,https://doi.org/10.5194/acp-2021-620, 2021
Preprint withdrawn
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Technical note: Identification of two ice-nucleating regimes for dust-related cirrus clouds based on the relationship between number concentrations of ice-nucleating particles and ice crystals
Yun He, Zhenping Yin, Fuchao Liu, and Fan Yi
Atmos. Chem. Phys., 22, 13067–13085, https://doi.org/10.5194/acp-22-13067-2022,https://doi.org/10.5194/acp-22-13067-2022, 2022
Short summary
Highly supercooled riming and unusual triple-frequency radar signatures over McMurdo Station, Antarctica
Frederic Tridon, Israel Silber, Alessandro Battaglia, Stefan Kneifel, Ann Fridlind, Petros Kalogeras, and Ranvir Dhillon
Atmos. Chem. Phys., 22, 12467–12491, https://doi.org/10.5194/acp-22-12467-2022,https://doi.org/10.5194/acp-22-12467-2022, 2022
Short summary
Ice microphysical processes in the dendritic growth layer: a statistical analysis combining multi-frequency and polarimetric Doppler cloud radar observations
Leonie von Terzi, José Dias Neto, Davide Ori, Alexander Myagkov, and Stefan Kneifel
Atmos. Chem. Phys., 22, 11795–11821, https://doi.org/10.5194/acp-22-11795-2022,https://doi.org/10.5194/acp-22-11795-2022, 2022
Short summary
Observing short-timescale cloud development to constrain aerosol–cloud interactions
Edward Gryspeerdt, Franziska Glassmeier, Graham Feingold, Fabian Hoffmann, and Rebecca J. Murray-Watson
Atmos. Chem. Phys., 22, 11727–11738, https://doi.org/10.5194/acp-22-11727-2022,https://doi.org/10.5194/acp-22-11727-2022, 2022
Short summary
Exploring relations between cloud morphology, cloud phase, and cloud radiative properties in Southern Ocean's stratocumulus clouds
Jessica Danker, Odran Sourdeval, Isabel L. McCoy, Robert Wood, and Anna Possner
Atmos. Chem. Phys., 22, 10247–10265, https://doi.org/10.5194/acp-22-10247-2022,https://doi.org/10.5194/acp-22-10247-2022, 2022
Short summary

Cited articles

Battaglia, A., Rustemeier, E., Tokay, A., Blahak, U., and Simmer, C.: PARSIVEL snow observations: A critical assessment, J. Atmos. Ocean. Technol., 27, 333–344, https://doi.org/10.1175/2009JTECHA1332.1, 2010. 
Bennartz, R. and Bauer, P.: Sensitivity of microwave radiances at 85-183 GHz to precipitating ice particles, Radio Sci., 38, 8075, https://doi.org/10.1029/2002rs002626, 2003. 
Casella, D., Panegrossi, G., Sanò, P., Marra, A. C., Dietrich, S., Johnson, B. T., and Kulie, M. S.: Evaluation of the GPM-DPR snowfall detection capability: Comparison with CloudSat-CPR, Atmos. Res., 197, 64–75, https://doi.org/10.1016/j.atmosres.2017.06.018, 2017. 
Chen, H., Chandrasekar, V., and Bechini, R.: An improved dual-polarization radar rainfall algorithm (DROPS2.0): Application in NASA IFloodS field campaign, J. Hydrometeorol., 18, 917–937, https://doi.org/10.1175/JHM-D-16-0124.1, 2017. 
Chen, S., Hong, Y., Kulie, M., Behrangi, A., Stepanian, P. M., Cao, Q., You, Y., Zhang, J., Hu, J., and Zhang, X.: Comparison of snowfall estimates from the NASA CloudSat Cloud Profiling Radar and NOAA/NSSL Multi-Radar Multi-Sensor System, J. Hydrol., 541, 862–872, https://doi.org/10.1016/j.jhydrol.2016.07.047, 2016. 
Download
Short summary
Radar and radiometer observations were used to study cloud liquid and snowfall in three types of snow clouds. While near-surface and shallow clouds have an area fraction of 90 %, deep clouds contribute half of the total snowfall volume. Deeper clouds have heavier snowfall, although cloud liquid is equally abundant in all three cloud types. The skills of a GMI Bayesian algorithm are examined. Snowfall in deep clouds may be reasonably retrieved, but it is challenging for near-surface clouds.
Altmetrics
Final-revised paper
Preprint