Articles | Volume 20, issue 23
https://doi.org/10.5194/acp-20-14491-2020
https://doi.org/10.5194/acp-20-14491-2020
Research article
 | 
30 Nov 2020
Research article |  | 30 Nov 2020

Microphysical properties of three types of snow clouds: implication for satellite snowfall retrievals

Hwayoung Jeoung, Guosheng Liu, Kwonil Kim, Gyuwon Lee, and Eun-Kyoung Seo

Related authors

Introduction of Prognostic Graupel Density in Weather Research and Forecasting (WRF) Double-Moment 6-Class (WDM6) Microphysics and Evaluation of the Modified Scheme During the ICE-POP Field Campaign
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-241,https://doi.org/10.5194/gmd-2023-241, 2024
Revised manuscript under review for GMD
Short summary
Estimating the Snow Density using Collocated Parsivel and MRR Measurements: A Preliminary Study from ICE-POP 2017/2018
Wei-Yu Chang, Yung-Chuan Yang, Chen-Yu Hung, Kwonil Kim, and Gyuwon Lee
EGUsphere, https://doi.org/10.5194/egusphere-2023-3147,https://doi.org/10.5194/egusphere-2023-3147, 2024
Short summary
High-resolution 3D winds derived from a modified WISSDOM synthesis scheme using multiple Doppler lidars and observations
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
Atmos. Meas. Tech., 16, 845–869, https://doi.org/10.5194/amt-16-845-2023,https://doi.org/10.5194/amt-16-845-2023, 2023
Short summary
Assimilation of GPM-retrieved ocean surface meteorology data for two snowstorm events during ICE-POP 2018
Xuanli Li, Jason B. Roberts, Jayanthi Srikishen, Jonathan L. Case, Walter A. Petersen, Gyuwon Lee, and Christopher R. Hain
Geosci. Model Dev., 15, 5287–5308, https://doi.org/10.5194/gmd-15-5287-2022,https://doi.org/10.5194/gmd-15-5287-2022, 2022
Short summary
Simulated microphysical properties of winter storms from bulk-type microphysics schemes and their evaluation in the Weather Research and Forecasting (v4.1.3) model during the ICE-POP 2018 field campaign
Jeong-Su Ko, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, Gregory Thompson, and Alexis Berne
Geosci. Model Dev., 15, 4529–4553, https://doi.org/10.5194/gmd-15-4529-2022,https://doi.org/10.5194/gmd-15-4529-2022, 2022
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Characterisation of low-base and mid-base clouds and their thermodynamic phase over the Southern Ocean and Arctic marine regions
Barbara Dietel, Odran Sourdeval, and Corinna Hoose
Atmos. Chem. Phys., 24, 7359–7383, https://doi.org/10.5194/acp-24-7359-2024,https://doi.org/10.5194/acp-24-7359-2024, 2024
Short summary
A survey of radiative and physical properties of North Atlantic mesoscale cloud morphologies from multiple identification methodologies
Ryan Eastman, Isabel L. McCoy, Hauke Schulz, and Robert Wood
Atmos. Chem. Phys., 24, 6613–6634, https://doi.org/10.5194/acp-24-6613-2024,https://doi.org/10.5194/acp-24-6613-2024, 2024
Short summary
Extensive coverage of ultrathin tropical tropopause layer cirrus clouds revealed by balloon-borne lidar observations
Thomas Lesigne, François Ravetta, Aurélien Podglajen, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 24, 5935–5952, https://doi.org/10.5194/acp-24-5935-2024,https://doi.org/10.5194/acp-24-5935-2024, 2024
Short summary
The effects of warm-air intrusions in the high Arctic on cirrus clouds
Georgios Dekoutsidis, Martin Wirth, and Silke Groß
Atmos. Chem. Phys., 24, 5971–5987, https://doi.org/10.5194/acp-24-5971-2024,https://doi.org/10.5194/acp-24-5971-2024, 2024
Short summary
The characteristics of cloud macro-parameters caused by the seeder–feeder process inside clouds measured by millimeter-wave cloud radar in Xi'an, China
Huige Di and Yun Yuan
Atmos. Chem. Phys., 24, 5783–5801, https://doi.org/10.5194/acp-24-5783-2024,https://doi.org/10.5194/acp-24-5783-2024, 2024
Short summary

Cited articles

Battaglia, A., Rustemeier, E., Tokay, A., Blahak, U., and Simmer, C.: PARSIVEL snow observations: A critical assessment, J. Atmos. Ocean. Technol., 27, 333–344, https://doi.org/10.1175/2009JTECHA1332.1, 2010. 
Bennartz, R. and Bauer, P.: Sensitivity of microwave radiances at 85-183 GHz to precipitating ice particles, Radio Sci., 38, 8075, https://doi.org/10.1029/2002rs002626, 2003. 
Casella, D., Panegrossi, G., Sanò, P., Marra, A. C., Dietrich, S., Johnson, B. T., and Kulie, M. S.: Evaluation of the GPM-DPR snowfall detection capability: Comparison with CloudSat-CPR, Atmos. Res., 197, 64–75, https://doi.org/10.1016/j.atmosres.2017.06.018, 2017. 
Chen, H., Chandrasekar, V., and Bechini, R.: An improved dual-polarization radar rainfall algorithm (DROPS2.0): Application in NASA IFloodS field campaign, J. Hydrometeorol., 18, 917–937, https://doi.org/10.1175/JHM-D-16-0124.1, 2017. 
Chen, S., Hong, Y., Kulie, M., Behrangi, A., Stepanian, P. M., Cao, Q., You, Y., Zhang, J., Hu, J., and Zhang, X.: Comparison of snowfall estimates from the NASA CloudSat Cloud Profiling Radar and NOAA/NSSL Multi-Radar Multi-Sensor System, J. Hydrol., 541, 862–872, https://doi.org/10.1016/j.jhydrol.2016.07.047, 2016. 
Download
Short summary
Radar and radiometer observations were used to study cloud liquid and snowfall in three types of snow clouds. While near-surface and shallow clouds have an area fraction of 90 %, deep clouds contribute half of the total snowfall volume. Deeper clouds have heavier snowfall, although cloud liquid is equally abundant in all three cloud types. The skills of a GMI Bayesian algorithm are examined. Snowfall in deep clouds may be reasonably retrieved, but it is challenging for near-surface clouds.
Altmetrics
Final-revised paper
Preprint