Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-12889-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-12889-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A test of the ability of current bulk optical models to represent the radiative properties of cirrus cloud across the mid- and far-infrared
Richard J. Bantges
CORRESPONDING AUTHOR
National Centre for Earth Observation, Imperial College London, SW7 2AZ, UK
Department of Physics, Imperial College London, SW7 2AZ, UK
Helen E. Brindley
National Centre for Earth Observation, Imperial College London, SW7 2AZ, UK
Department of Physics, Imperial College London, SW7 2AZ, UK
Jonathan E. Murray
Department of Physics, Imperial College London, SW7 2AZ, UK
Alan E. Last
Department of Physics, Imperial College London, SW7 2AZ, UK
Jacqueline E. Russell
Department of Physics, Imperial College London, SW7 2AZ, UK
Cathryn Fox
Met Office, Exeter, EX1 3PB, UK
Stuart Fox
Met Office, Exeter, EX1 3PB, UK
Chawn Harlow
Met Office, Exeter, EX1 3PB, UK
Sebastian J. O'Shea
Department of Earth and Environmental Sciences, University of Manchester, M13 9PL, UK
Keith N. Bower
Department of Earth and Environmental Sciences, University of Manchester, M13 9PL, UK
Bryan A. Baum
Science and Technology Corporation, Madison, WI 53705, USA
Ping Yang
Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA
Hilke Oetjen
Earth and Mission Science Division, ESA/ESTEC, 2201 AZ Noordwijk, the Netherlands
Juliet C. Pickering
Department of Physics, Imperial College London, SW7 2AZ, UK
Related authors
Gianluca Di Natale, Helen Brindley, Laura Warwick, Sanjeevani Panditharatne, Ping Yang, Robert Oscar David, Tim Carlsen, Sorin Nicolae Vâjâiac, Alex Vlad, Sorin Ghemulet, Richard Bantges, Andreas Foth, Martin Flügge, Reidar Lyngra, Hilke Oetjen, Dirk Schuettemeyer, Luca Palchetti, and Jonathan Murray
EGUsphere, https://doi.org/10.5194/egusphere-2025-3547, https://doi.org/10.5194/egusphere-2025-3547, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Cirrus clouds play a vital role in regulating the energy balance of our planet. Unfortunately, these are still not completely understood representing the major source of error in the predictive performance of climate models. We show that a good consinstency between in situ measurements of cirrus cloud microphysics and remote sensing observations from ground base is achievable by simulating the emitted spectrum with the current parameterization of cirrus optical properties.
Sanjeevani Panditharatne, Helen Brindley, Caroline Cox, Rui Song, Richard Siddans, Richard Bantges, Jonathan Murray, Stuart Fox, and Cathryn Fox
EGUsphere, https://doi.org/10.5194/egusphere-2025-647, https://doi.org/10.5194/egusphere-2025-647, 2025
Short summary
Short summary
Upwelling radiation with wavelengths between 15 and 100 microns is theorised to be highly sensitive to the properties of ice clouds, particularly the shape of the ice crystals. We exploit this sensitivity and perform the first retrieval of ice cloud properties using these wavelengths from an observation taken on an aircraft and evaluate it against measurements of the cloud’s properties.
Jacqueline E. Russell, Richard J. Bantges, Helen E. Brindley, and Alejandro Bodas-Salcedo
Earth Syst. Sci. Data, 16, 4243–4266, https://doi.org/10.5194/essd-16-4243-2024, https://doi.org/10.5194/essd-16-4243-2024, 2024
Short summary
Short summary
We present a dataset of top-of-atmosphere diurnally resolved reflected solar and emitted thermal energy for Earth system model evaluation. The multi-year, monthly hourly dataset, derived from observations made by the Geostationary Earth Radiation Budget instrument, covers the range 60° N–60° S, 60° E–60° W at 1° resolution. Comparison with two versions of the Hadley Centre Global Environmental Model highlight how the data can be used to assess updates to key model parameterizations.
Karina McCusker, Chris Westbrook, Alessandro Battaglia, Kamil Mroz, Benjamin M. Courtier, Peter G. Huggard, Hui Wang, Richard Reeves, Christopher J. Walden, Richard Cotton, Stuart Fox, and Anthony J. Baran
EGUsphere, https://doi.org/10.5194/egusphere-2025-3974, https://doi.org/10.5194/egusphere-2025-3974, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This work presents the first known retrievals of ice cloud and snowfall properties using G-band radar, representing a major step forward in the use of high-frequency radar for atmospheric remote sensing. We present theory and simulations to show that ice water content (IWC) and snowfall rate (S) can be retrieved efficiently with a single frequency G-band radar if the mass of a wavelength-sized particle is known or can be assumed, while details of the particle size distribution are not required.
Gianluca Di Natale, Helen Brindley, Laura Warwick, Sanjeevani Panditharatne, Ping Yang, Robert Oscar David, Tim Carlsen, Sorin Nicolae Vâjâiac, Alex Vlad, Sorin Ghemulet, Richard Bantges, Andreas Foth, Martin Flügge, Reidar Lyngra, Hilke Oetjen, Dirk Schuettemeyer, Luca Palchetti, and Jonathan Murray
EGUsphere, https://doi.org/10.5194/egusphere-2025-3547, https://doi.org/10.5194/egusphere-2025-3547, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Cirrus clouds play a vital role in regulating the energy balance of our planet. Unfortunately, these are still not completely understood representing the major source of error in the predictive performance of climate models. We show that a good consinstency between in situ measurements of cirrus cloud microphysics and remote sensing observations from ground base is achievable by simulating the emitted spectrum with the current parameterization of cirrus optical properties.
Huihui Wu, Nicholas Marsden, Paul Connolly, Michael Flynn, Paul I. Williams, Declan Finney, Kezhen Hu, Graeme J. Nott, Navaneeth Thamban, Keith Bower, Alan Blyth, Martin Gallagher, and Hugh Coe
EGUsphere, https://doi.org/10.5194/egusphere-2025-2600, https://doi.org/10.5194/egusphere-2025-2600, 2025
Short summary
Short summary
Airborne observations over the Magdalena Mountains in New Mexico underscore the combined influence of meteorological conditions and aerosol characteristics on the development of deep-convective clouds under different flow regimes. Model-observation comparisons emphasize the critical role of aerosol entrainment in reproducing the observed broad cloud droplet spectra. This study provides valuable constraints for improving parameterizations of aerosol-cloud interactions in deep convective systems.
Sanjeevani Panditharatne, Helen Brindley, Caroline Cox, Rui Song, Richard Siddans, Richard Bantges, Jonathan Murray, Stuart Fox, and Cathryn Fox
EGUsphere, https://doi.org/10.5194/egusphere-2025-647, https://doi.org/10.5194/egusphere-2025-647, 2025
Short summary
Short summary
Upwelling radiation with wavelengths between 15 and 100 microns is theorised to be highly sensitive to the properties of ice clouds, particularly the shape of the ice crystals. We exploit this sensitivity and perform the first retrieval of ice cloud properties using these wavelengths from an observation taken on an aircraft and evaluate it against measurements of the cloud’s properties.
Sanjeevani Panditharatne, Helen Brindley, Caroline Cox, Richard Siddans, Jonathan Murray, Laura Warwick, and Stuart Fox
Atmos. Meas. Tech., 18, 717–735, https://doi.org/10.5194/amt-18-717-2025, https://doi.org/10.5194/amt-18-717-2025, 2025
Short summary
Short summary
Observations from the upcoming European Space Agency’s Far-Infrared Outgoing Radiation Understanding and Monitoring (FORUM) satellite are theorised to be highly sensitive to distributions of water vapour within Earth’s atmosphere. We exploit this sensitivity and extend the Infrared Microwave Sounding retrieval scheme for use on observations from FORUM. This scheme is evaluated on both simulated and observed measurements and shows good agreement with references of the atmospheric state.
Huihui Wu, Fanny Peers, Jonathan W. Taylor, Chenjie Yu, Steven J. Abel, Paul A. Barrett, Jamie Trembath, Keith Bower, Jim M. Haywood, and Hugh Coe
EGUsphere, https://doi.org/10.5194/egusphere-2024-3975, https://doi.org/10.5194/egusphere-2024-3975, 2025
Short summary
Short summary
This study investigates the transport history of African Biomass-Burning aerosols (BBAs) over the southeast Atlantic (SEA), and the relationship between transported BBAs and clouds around Ascension Island using in-situ airborne measurements. The work provides critical simplified parameterizations of aerosol-cloud interaction for improving the evaluation of radiative forcing over the SEA. It also identifies key entrainment regions for understanding the vertical transport process of African BBAs.
Erin N. Raif, Sarah L. Barr, Mark D. Tarn, James B. McQuaid, Martin I. Daily, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Paul R. Field, Kenneth S. Carslaw, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 14045–14072, https://doi.org/10.5194/acp-24-14045-2024, https://doi.org/10.5194/acp-24-14045-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) allow ice to form in clouds at temperatures warmer than −35°C. We measured INP concentrations over the Norwegian and Barents seas in weather events where cold air is ejected from the Arctic. These concentrations were among the highest measured in the Arctic. It is likely that the INPs were transported to the Arctic from distant regions. These results show it is important to consider hemispheric-scale INP processes to understand INP concentrations in the Arctic.
Jacqueline E. Russell, Richard J. Bantges, Helen E. Brindley, and Alejandro Bodas-Salcedo
Earth Syst. Sci. Data, 16, 4243–4266, https://doi.org/10.5194/essd-16-4243-2024, https://doi.org/10.5194/essd-16-4243-2024, 2024
Short summary
Short summary
We present a dataset of top-of-atmosphere diurnally resolved reflected solar and emitted thermal energy for Earth system model evaluation. The multi-year, monthly hourly dataset, derived from observations made by the Geostationary Earth Radiation Budget instrument, covers the range 60° N–60° S, 60° E–60° W at 1° resolution. Comparison with two versions of the Hadley Centre Global Environmental Model highlight how the data can be used to assess updates to key model parameterizations.
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024, https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Short summary
Satellite microwave observations are used for weather forecasting. In Arctic regions this is complicated by natural emission from snow. By simulating airborne observations from in situ measurements of snow, this study shows how snow properties affect the signal within the atmosphere. Fresh snowfall between flights changed airborne measurements. Good knowledge of snow layering and structure can be used to account for the effects of snow and could unlock these data to improve forecasts.
Stuart Fox, Vinia Mattioli, Emma Turner, Alan Vance, Domenico Cimini, and Donatello Gallucci
Atmos. Meas. Tech., 17, 4957–4978, https://doi.org/10.5194/amt-17-4957-2024, https://doi.org/10.5194/amt-17-4957-2024, 2024
Short summary
Short summary
Airborne observations are used to evaluate two models for absorption and emission by atmospheric gases, including water vapour and oxygen, at microwave and sub-millimetre wavelengths. These models are needed for the Ice Cloud Imager (ICI) on the next generation of European polar-orbiting weather satellites, which measures at frequencies up to 664 GHz. Both models can provide a good match to measurements from airborne radiometers and are sufficiently accurate for use with ICI.
Laura Warwick, Jonathan E. Murray, and Helen Brindley
Atmos. Meas. Tech., 17, 4777–4787, https://doi.org/10.5194/amt-17-4777-2024, https://doi.org/10.5194/amt-17-4777-2024, 2024
Short summary
Short summary
We describe a method for measuring the emissivity of natural surfaces using data from the new Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) instrument. We demonstrate our method by making measurements of the emissivity of water. We then compare our results to the emissivity predicted using a model and find good agreement. The observations from FINESSE are novel because they allow us to determine surface emissivity at longer wavelengths than have been routinely measured before.
Jonathan E. Murray, Laura Warwick, Helen Brindley, Alan Last, Patrick Quigley, Andy Rochester, Alexander Dewar, and Daniel Cummins
Atmos. Meas. Tech., 17, 4757–4775, https://doi.org/10.5194/amt-17-4757-2024, https://doi.org/10.5194/amt-17-4757-2024, 2024
Short summary
Short summary
The Far INfrarEd Spectrometer for Surface Emissivity, FINESSE, is designed to measure the ability of natural surfaces to emit infrared radiation. FINESSE combines a commercial instrument with custom-built optics to view a surface from different angles with complementary views of the sky. Its choice of internal components means it can cover a wide range of wavelengths, extending into the far-infrared. We characterize FINESSE’s uncertainty budget and provide examples of its measurement capability.
Donatello Gallucci, Domenico Cimini, Emma Turner, Stuart Fox, Philip W. Rosenkranz, Mikhail Y. Tretyakov, Vinia Mattioli, Salvatore Larosa, and Filomena Romano
Atmos. Chem. Phys., 24, 7283–7308, https://doi.org/10.5194/acp-24-7283-2024, https://doi.org/10.5194/acp-24-7283-2024, 2024
Short summary
Short summary
Nowadays, atmospheric radiative transfer models are widely used to simulate satellite and ground-based observations. A meaningful comparison between observations and simulations requires an estimate of the uncertainty associated with both. This work quantifies the uncertainty in atmospheric radiative transfer models in the microwave range, providing the uncertainty associated with simulations of new-generation satellite microwave sensors.
Karina McCusker, Anthony J. Baran, Chris Westbrook, Stuart Fox, Patrick Eriksson, Richard Cotton, Julien Delanoë, and Florian Ewald
Atmos. Meas. Tech., 17, 3533–3552, https://doi.org/10.5194/amt-17-3533-2024, https://doi.org/10.5194/amt-17-3533-2024, 2024
Short summary
Short summary
Polarised radiative transfer simulations are performed using an atmospheric model based on in situ measurements. These are compared to large polarisation measurements to explore whether such measurements can provide information on cloud ice, e.g. particle shape and orientation. We find that using oriented particle models with shapes based on imagery generally allows for accurate simulations. However, results are sensitive to shape assumptions such as the choice of single crystals or aggregates.
Gary Lloyd, Alan Blyth, Zhiqiang Cui, Thomas Choularton, Keith Bower, Martin Gallagher, Michael Flynn, Nicholas Marsden, Leif Denby, and Peter Gallimore
EGUsphere, https://doi.org/10.5194/egusphere-2024-142, https://doi.org/10.5194/egusphere-2024-142, 2024
Preprint archived
Short summary
Short summary
Clouds that develop in the tropical trade-wind regions are extensive and persistent in nature. They are important for understanding how the magnitude of warming by these cloud systems might change in a warming climate. This paper describes measurements of common cloud types in these regions (shallow cumulus clouds) and the way in which they produce rainfall. During different periods, with different amounts of particulate in the air, the characteristics of the clouds were very different.
Declan L. Finney, Alan M. Blyth, Martin Gallagher, Huihui Wu, Graeme J. Nott, Michael I. Biggerstaff, Richard G. Sonnenfeld, Martin Daily, Dan Walker, David Dufton, Keith Bower, Steven Böing, Thomas Choularton, Jonathan Crosier, James Groves, Paul R. Field, Hugh Coe, Benjamin J. Murray, Gary Lloyd, Nicholas A. Marsden, Michael Flynn, Kezhen Hu, Navaneeth M. Thamban, Paul I. Williams, Paul J. Connolly, James B. McQuaid, Joseph Robinson, Zhiqiang Cui, Ralph R. Burton, Gordon Carrie, Robert Moore, Steven J. Abel, Dave Tiddeman, and Graydon Aulich
Earth Syst. Sci. Data, 16, 2141–2163, https://doi.org/10.5194/essd-16-2141-2024, https://doi.org/10.5194/essd-16-2141-2024, 2024
Short summary
Short summary
The DCMEX (Deep Convective Microphysics Experiment) project undertook an aircraft- and ground-based measurement campaign of New Mexico deep convective clouds during July–August 2022. The campaign coordinated a broad range of instrumentation measuring aerosol, cloud physics, radar signals, thermodynamics, dynamics, electric fields, and weather. The project's objectives included the utilisation of these data with satellite observations to study the anvil cloud radiative effect.
Kirsty Wivell, Stuart Fox, Melody Sandells, Chawn Harlow, Richard Essery, and Nick Rutter
The Cryosphere, 17, 4325–4341, https://doi.org/10.5194/tc-17-4325-2023, https://doi.org/10.5194/tc-17-4325-2023, 2023
Short summary
Short summary
Satellite microwave observations improve weather forecasts, but to use these observations in the Arctic, snow emission must be known. This study uses airborne and in situ snow observations to validate emissivity simulations for two- and three-layer snowpacks at key frequencies for weather prediction. We assess the impact of thickness, grain size and density in key snow layers, which will help inform development of physical snow models that provide snow profile input to emissivity simulations.
Paul A. Barrett, Steven J. Abel, Hugh Coe, Ian Crawford, Amie Dobracki, James Haywood, Steve Howell, Anthony Jones, Justin Langridge, Greg M. McFarquhar, Graeme J. Nott, Hannah Price, Jens Redemann, Yohei Shinozuka, Kate Szpek, Jonathan W. Taylor, Robert Wood, Huihui Wu, Paquita Zuidema, Stéphane Bauguitte, Ryan Bennett, Keith Bower, Hong Chen, Sabrina Cochrane, Michael Cotterell, Nicholas Davies, David Delene, Connor Flynn, Andrew Freedman, Steffen Freitag, Siddhant Gupta, David Noone, Timothy B. Onasch, James Podolske, Michael R. Poellot, Sebastian Schmidt, Stephen Springston, Arthur J. Sedlacek III, Jamie Trembath, Alan Vance, Maria A. Zawadowicz, and Jianhao Zhang
Atmos. Meas. Tech., 15, 6329–6371, https://doi.org/10.5194/amt-15-6329-2022, https://doi.org/10.5194/amt-15-6329-2022, 2022
Short summary
Short summary
To better understand weather and climate, it is vital to go into the field and collect observations. Often measurements take place in isolation, but here we compared data from two aircraft and one ground-based site. This was done in order to understand how well measurements made on one platform compared to those made on another. Whilst this is easy to do in a controlled laboratory setting, it is more challenging in the real world, and so these comparisons are as valuable as they are rare.
Maya Ben-Yami, Hilke Oetjen, Helen Brindley, William Cossich, Dulce Lajas, Tiziano Maestri, Davide Magurno, Piera Raspollini, Luca Sgheri, and Laura Warwick
Atmos. Meas. Tech., 15, 1755–1777, https://doi.org/10.5194/amt-15-1755-2022, https://doi.org/10.5194/amt-15-1755-2022, 2022
Short summary
Short summary
Spectral emissivity is a key property of the Earth's surface. Few measurements exist in the far-infrared, despite recent work showing that its contribution is important for accurate modelling of global climate. In preparation for ESA’s EE9 FORUM mission (launch in 2026), this study takes the first steps towards the development of an operational emissivity retrieval for FORUM by investigating the sensitivity of the emissivity product to different physical and operational parameters.
Waldemar Schledewitch, Gary Lloyd, Keith Bower, Thomas Choularton, Michael Flynn, and Martin Gallagher
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-69, https://doi.org/10.5194/acp-2022-69, 2022
Publication in ACP not foreseen
Short summary
Short summary
Ice crystals on the surface of ice and snow covered terrain are thought to be transported into clouds that cover the surface. This has important implications for the properties of clouds in these regions. This research measured the potential transport of surface based ice crystals into the surrounding clouds at a mountain top site.
Simon Pfreundschuh, Stuart Fox, Patrick Eriksson, David Duncan, Stefan A. Buehler, Manfred Brath, Richard Cotton, and Florian Ewald
Atmos. Meas. Tech., 15, 677–699, https://doi.org/10.5194/amt-15-677-2022, https://doi.org/10.5194/amt-15-677-2022, 2022
Short summary
Short summary
We test a novel method to remotely measure ice particles in clouds. This is important because such measurements are required to improve climate and weather models. The method combines a radar with newly developed sensors measuring microwave radiation at very short wavelengths. We use observations made from aircraft flying above the cloud and compare them to real measurements from inside the cloud. This works well given that one can model the ice particles in the cloud sufficiently well.
Zhiqiang Cui, Alan Blyth, Yahui Huang, Gary Lloyd, Thomas Choularton, Keith Bower, Paul Field, Rachel Hawker, and Lindsay Bennett
Atmos. Chem. Phys., 22, 1649–1667, https://doi.org/10.5194/acp-22-1649-2022, https://doi.org/10.5194/acp-22-1649-2022, 2022
Short summary
Short summary
High concentrations of ice particles were observed at temperatures greater than about –8 C. The default scheme of the secondary ice production cannot explain the high concentrations. Relaxing the conditions for secondary ice production or considering dust aerosol alone is insufficient to produce the observed amount of ice particles. It is likely that multi-thermals play an important role in producing very high concentrations of secondary ice particles in some tropical clouds.
Luca Sgheri, Claudio Belotti, Maya Ben-Yami, Giovanni Bianchini, Bernardo Carnicero Dominguez, Ugo Cortesi, William Cossich, Samuele Del Bianco, Gianluca Di Natale, Tomás Guardabrazo, Dulce Lajas, Tiziano Maestri, Davide Magurno, Hilke Oetjen, Piera Raspollini, and Cristina Sgattoni
Atmos. Meas. Tech., 15, 573–604, https://doi.org/10.5194/amt-15-573-2022, https://doi.org/10.5194/amt-15-573-2022, 2022
Short summary
Short summary
The FORUM instrument will look at the Earth's atmosphere from a satellite, covering a spectral range responsible for about 95 % of the radiation lost by our planet. FORUM helps to measure the imbalance between incoming and outgoing radiation that is responsible for the increasing average temperatures on Earth. The end-to-end simulator is a chain of codes that simulates the FORUM measurement process. The goal of the project is to study how the instrument reacts to different retrieval conditions.
Nicholas J. Kedzuf, J. Christine Chiu, V. Chandrasekar, Sounak Biswas, Shashank S. Joshil, Yinghui Lu, Peter Jan van Leeuwen, Christopher Westbrook, Yann Blanchard, and Sebastian O'Shea
Atmos. Meas. Tech., 14, 6885–6904, https://doi.org/10.5194/amt-14-6885-2021, https://doi.org/10.5194/amt-14-6885-2021, 2021
Short summary
Short summary
Ice clouds play a key role in our climate system due to their strong controls on precipitation and the radiation budget. However, it is difficult to characterize co-existing ice species using radar observations. We present a new method that separates the radar signals of pristine ice embedded in snow aggregates and retrieves their respective abundances and sizes for the first time. The ability to provide their quantitative microphysical properties will open up many research opportunities.
Luca Palchetti, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Bertrand Cluzet, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Dina Khordakova, Alessio Montori, Hilke Oetjen, Markus Rettinger, Christian Rolf, Dirk Schuettemeyer, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Frank Gunther Wienhold
Earth Syst. Sci. Data, 13, 4303–4312, https://doi.org/10.5194/essd-13-4303-2021, https://doi.org/10.5194/essd-13-4303-2021, 2021
Short summary
Short summary
The FIRMOS far-infrared (IR) prototype, developed for the preparation of the ESA FORUM mission, was deployed for the first time at Mt. Zugspitze at 3000 m altitude to measure the far-IR spectrum of atmospheric emissions. The measurements, including co-located radiometers, lidars, radio soundings, weather, and surface properties, provide a unique dataset to study radiative properties of water vapour, cirrus clouds, and snow emissivity over the IR emissions, including the under-explored far-IR.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Florian Ewald, Silke Groß, Martin Wirth, Julien Delanoë, Stuart Fox, and Bernhard Mayer
Atmos. Meas. Tech., 14, 5029–5047, https://doi.org/10.5194/amt-14-5029-2021, https://doi.org/10.5194/amt-14-5029-2021, 2021
Short summary
Short summary
In this study, we show how solar radiance observations can be used to validate and further constrain ice cloud microphysics retrieved from the synergy of radar–lidar measurements. Since most radar–lidar retrievals rely on a global assumption about the ice particle shape, ice water content and particle size biases are to be expected in individual cloud regimes. In this work, we identify and correct these biases by reconciling simulated and measured solar radiation reflected from these clouds.
Huihui Wu, Jonathan W. Taylor, Justin M. Langridge, Chenjie Yu, James D. Allan, Kate Szpek, Michael I. Cotterell, Paul I. Williams, Michael Flynn, Patrick Barker, Cathryn Fox, Grant Allen, James Lee, and Hugh Coe
Atmos. Chem. Phys., 21, 9417–9440, https://doi.org/10.5194/acp-21-9417-2021, https://doi.org/10.5194/acp-21-9417-2021, 2021
Short summary
Short summary
Seasonal biomass burning over West Africa is a globally significant source of carbonaceous particles in the atmosphere, which have important climate impacts but are poorly constrained. We conducted in situ airborne measurements to investigate the evolution of smoke aerosol properties in this region. We observed absorption enhancement for both black carbon and brown carbon after emission, which provides new field results and constraints on aerosol parameterizations for future climate models.
Sebastian O'Shea, Jonathan Crosier, James Dorsey, Louis Gallagher, Waldemar Schledewitz, Keith Bower, Oliver Schlenczek, Stephan Borrmann, Richard Cotton, Christopher Westbrook, and Zbigniew Ulanowski
Atmos. Meas. Tech., 14, 1917–1939, https://doi.org/10.5194/amt-14-1917-2021, https://doi.org/10.5194/amt-14-1917-2021, 2021
Short summary
Short summary
The number, shape, and size of ice crystals in clouds are important properties that influence the Earth's radiation budget, cloud evolution, and precipitation formation. This work suggests that one of the most widely used methods for in situ measurements of these properties has significant uncertainties and biases. We suggest methods that dramatically improve these measurements, which can be applied to past and future datasets from these instruments.
Fanny Peers, Peter Francis, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Michael I. Cotterell, Ian Crawford, Nicholas W. Davies, Cathryn Fox, Stuart Fox, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, Kate Szpek, and Jim M. Haywood
Atmos. Chem. Phys., 21, 3235–3254, https://doi.org/10.5194/acp-21-3235-2021, https://doi.org/10.5194/acp-21-3235-2021, 2021
Short summary
Short summary
Satellite observations at high temporal resolution are a valuable asset to monitor the transport of biomass burning plumes and the cloud diurnal cycle in the South Atlantic, but they need to be validated. Cloud and above-cloud aerosol properties retrieved from SEVIRI are compared against MODIS and measurements from the CLARIFY-2017 campaign. While some systematic differences are observed between SEVIRI and MODIS, the overall agreement in the cloud and aerosol properties is very satisfactory.
E. Eva Borbas, Elisabeth Weisz, Chris Moeller, W. Paul Menzel, and Bryan A. Baum
Atmos. Meas. Tech., 14, 1191–1203, https://doi.org/10.5194/amt-14-1191-2021, https://doi.org/10.5194/amt-14-1191-2021, 2021
Short summary
Short summary
As the VIIRS satellite sensor has no infrared (IR) H2O absorption bands, we construct the missing bands through the fusion of imager (VIIRS) and sounder (CrIS) data in an attempt to improve derivation of moisture products. This study clearly demonstrates the positive impact by adding fusion IR absorption spectral bands and the potential for continuing the moisture record from MODIS and the previous generations of polar-orbiting satellite sensors.
Jim M. Haywood, Steven J. Abel, Paul A. Barrett, Nicolas Bellouin, Alan Blyth, Keith N. Bower, Melissa Brooks, Ken Carslaw, Haochi Che, Hugh Coe, Michael I. Cotterell, Ian Crawford, Zhiqiang Cui, Nicholas Davies, Beth Dingley, Paul Field, Paola Formenti, Hamish Gordon, Martin de Graaf, Ross Herbert, Ben Johnson, Anthony C. Jones, Justin M. Langridge, Florent Malavelle, Daniel G. Partridge, Fanny Peers, Jens Redemann, Philip Stier, Kate Szpek, Jonathan W. Taylor, Duncan Watson-Parris, Robert Wood, Huihui Wu, and Paquita Zuidema
Atmos. Chem. Phys., 21, 1049–1084, https://doi.org/10.5194/acp-21-1049-2021, https://doi.org/10.5194/acp-21-1049-2021, 2021
Short summary
Short summary
Every year, the seasonal cycle of biomass burning from agricultural practices in Africa creates a huge plume of smoke that travels many thousands of kilometres over the Atlantic Ocean. This study provides an overview of a measurement campaign called the cloud–aerosol–radiation interaction and forcing for year 2017 (CLARIFY-2017) and documents the rationale, deployment strategy, observations, and key results from the campaign which utilized the heavily equipped FAAM atmospheric research aircraft.
Georgia Sotiropoulou, Étienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 21, 755–771, https://doi.org/10.5194/acp-21-755-2021, https://doi.org/10.5194/acp-21-755-2021, 2021
Short summary
Short summary
Summer clouds have a significant impact on the radiation budget of the Antarctic surface and thus on ice-shelf melting. However, these are poorly represented in climate models due to errors in their microphysical structure, including the number of ice crystals that they contain. We show that breakup from ice particle collisions can substantially magnify the ice crystal number concentration with significant implications for surface radiation. This process is currently missing in climate models.
Patrick A. Barker, Grant Allen, Martin Gallagher, Joseph R. Pitt, Rebecca E. Fisher, Thomas Bannan, Euan G. Nisbet, Stéphane J.-B. Bauguitte, Dominika Pasternak, Samuel Cliff, Marina B. Schimpf, Archit Mehra, Keith N. Bower, James D. Lee, Hugh Coe, and Carl J. Percival
Atmos. Chem. Phys., 20, 15443–15459, https://doi.org/10.5194/acp-20-15443-2020, https://doi.org/10.5194/acp-20-15443-2020, 2020
Short summary
Short summary
Africa is estimated to account for approximately 52 % of global biomass burning (BB) carbon emissions. Despite this, there has been little previous in situ study of African BB emissions. This work presents BB emission factors for various atmospheric trace gases sampled from an aircraft in two distinct areas of Africa (Senegal and Uganda). Intracontinental variability in biomass burning methane emission is identified, which is attributed to difference in the specific fuel mixtures burnt.
Huihui Wu, Jonathan W. Taylor, Kate Szpek, Justin M. Langridge, Paul I. Williams, Michael Flynn, James D. Allan, Steven J. Abel, Joseph Pitt, Michael I. Cotterell, Cathryn Fox, Nicholas W. Davies, Jim Haywood, and Hugh Coe
Atmos. Chem. Phys., 20, 12697–12719, https://doi.org/10.5194/acp-20-12697-2020, https://doi.org/10.5194/acp-20-12697-2020, 2020
Short summary
Short summary
Airborne measurements of highly aged biomass burning aerosols (BBAs) over the remote southeast Atlantic provide unique aerosol parameters for climate models. Our observations demonstrate the persistence of strongly absorbing BBAs across wide regions of the South Atlantic. We also found significant vertical variation in the single-scattering albedo of these BBAs, as a function of relative chemical composition and size. Aerosol properties in the marine BL are suggested to be separated from the FT.
Jonathan W. Taylor, Huihui Wu, Kate Szpek, Keith Bower, Ian Crawford, Michael J. Flynn, Paul I. Williams, James Dorsey, Justin M. Langridge, Michael I. Cotterell, Cathryn Fox, Nicholas W. Davies, Jim M. Haywood, and Hugh Coe
Atmos. Chem. Phys., 20, 11201–11221, https://doi.org/10.5194/acp-20-11201-2020, https://doi.org/10.5194/acp-20-11201-2020, 2020
Short summary
Short summary
Every year, huge plumes of smoke hundreds of miles wide travel over the south Atlantic Ocean from fires in central and southern Africa. These plumes absorb the sun’s energy and warm the climate. We used airborne optical instrumentation to determine how absorbing the smoke was as well as the relative importance of black and brown carbon. We also tested different ways of simulating these properties that could be used in a climate model.
Hamish Gordon, Paul R. Field, Steven J. Abel, Paul Barrett, Keith Bower, Ian Crawford, Zhiqiang Cui, Daniel P. Grosvenor, Adrian A. Hill, Jonathan Taylor, Jonathan Wilkinson, Huihui Wu, and Ken S. Carslaw
Atmos. Chem. Phys., 20, 10997–11024, https://doi.org/10.5194/acp-20-10997-2020, https://doi.org/10.5194/acp-20-10997-2020, 2020
Short summary
Short summary
The Met Office's Unified Model is widely used both for weather forecasting and climate prediction. We present the first version of the model in which both aerosol and cloud particle mass and number concentrations are allowed to evolve separately and independently, which is important for studying how aerosols affect weather and climate. We test the model against aircraft observations near Ascension Island in the Atlantic, focusing on how aerosols can "activate" to become cloud droplets.
Cited articles
Anderson G., Chetwynd, J., Clough, S., Shettle, E., and Kneizys, F.: AFGL
atmospheric constituent profiles (0–120 km). Technical Report, U.S. Air
Force Geophysics Laboratory, Hanscom Air Force Base, MA, p. 01731, 1986.
Bantges, R. J., Russell, J. E., and Haigh, J. D.: Cirrus cloud
top-of-atmosphere radiance spectra in the thermal infrared, J. Quant. Spect.
Radiat. Trans., 63, 487–498, 1999.
Baran, A.: The dependence of cirrus infrared radiative properties on ice
crystal geometry and shape of the size-distribution function, Q. J. R.
Meteorol. Soc., 131, 1129–1142, https://doi.org/10.1256/qj.04.91, 2005.
Baran, A.: The impact of cirrus microphysical and macrophysical properties
on upwelling far-infrared spectra, Q. J. R. Meteorol. Soc., 133, 1425–1437, 2007.
Baran, A.: From the single-scattering properties of ice crystals to climate
prediction: A way forward, Atmos. Res., 112, 45–69,
https://doi.org/10.1016/j.atmosres.2012.04.010, 2012.
Baran, A. and Francis, P.: On the radiative properties of cirrus cloud at
solar and thermal wavelengths: A test of model consistency using
high-resolution airborne radiance measurements, Q. J. R. Meteorol. Soc.,
130, 763–778, https://doi.org/10.1256/qj.03.151, 2004.
Baran, A., Cotton, R., Furtado, K., Havemann, S., Labonnote, L.-C., Marenco,
F. , Smith, A., and Thelen, J.-C.: A self-consistent scattering model for
cirrus, II: The high and low frequencies, Q. J. R. Meteorol. Soc., 140,
1039–1057, https://doi.org/10.1002/qj.2193, 2014a.
Baran, A., Hill, P., Furtado, K., Field, P., and Manners, J.: A coupled cloud
physics-radiation parameterization of the bulk optical properties of cirrus
and its impact on the Met Office Unified Model Global Atmosphere 5.0
configuration, J. Clim., 27, 7725–7752, 2014b.
Baran, A. J., Furtado, K., Labonnote, L.-C., Havemann, S., Thelen, J.-C.,
and Marenco, F.: On the relationship between the scattering phase function
of cirrus and the atmospheric state, Atmos. Chem. Phys., 15, 1105–1127,
https://doi.org/10.5194/acp-15-1105-2015, 2015.
Baum, B., Heymsfield, A., Yang, P., and Bedka, S.: Bulk Scattering Properties
for the Remote Sensing of Ice Clouds, Part I: Microphysical Data and Models,
J. Appl. Meteorol., 44, 1885–1895, 2005a.
Baum, B., Yang, P., Heymsfield, A., Platnick, S., King, M., Hu, Y., and
Bedka, S.: Bulk Scattering Properties for the Remote Sensing of Ice Clouds,
Part II: Narrowband Models, J. Appl. Meteorol., 44, 1896–1911, 2005b.
Baum, B., Yang, P., Nasiri, S., Heidinger, A. K., Heymsfield, A., and Li, J.:
Bulk Scattering Properties for the Remote Sensing of Ice Clouds, Part III:
High-Resolution Spectral Models from 100 to 3250 cm−1, J. Appl. Meteorol.
Clim., 46, 423–434, https://doi.org/10.1175/JAM2473.1, 2007.
Baum, B., Yang, P., Heymsfield, A., Schmitt, C., Xie, Y., Bansemer, A., Hu,
Y.-X., and Zhang, Z.: Improvements in Shortwave Bulk Scattering and
Absorption Models for the Remote Sensing of Ice Clouds, J. Appl. Meteorol.
Clim., 50, 1037–1056, https://doi.org/10.1175/2010JAMC2608.1, 2011.
Baum, B., Yang, P., Heymsfield, A., Bansemer, A., Cole, B., Merrelli, A.,
Schmitt, C., and Wang, C.: Ice cloud single-scattering property models with
the full phase matrix at wavelengths from 0.2 to 100 µm, J. Q.
Sp. Ra. T., 146, 123–139, https://doi.org/10.1016/j.jqsrt.2014.02.029,
2014.
Bianchini, G. and Palchetti, L.: Technical Note: REFIR-PAD level 1 data analysis and performance characterization, Atmos. Chem. Phys., 8, 3817–3826, https://doi.org/10.5194/acp-8-3817-2008, 2008.
Brindley H. and Harries, J. E.: The impact of far IR absorption on clear sky
greenhouse forcing, J. Q. Sp. Ra. T., 60, 151–180, 1998.
Canas, T., Murray, J., Harries, J., and Haigh, J.: Tropospheric Airborne
Fourier Transform Spectrometer (TAFTS), P. Soc. Photo.-Opt. Ins. II, 3220, 91–102, 1997.
CEDA:
Facility for Airborne Atmospheric Measurements; Natural Environment Research Council; Met Office, FAAM B895 CIRCCREX and ISMAR flight: Airborne atmospheric measurements from core and non-core instrument suites on board the BAE-146 aircraft, NCAS British Atmospheric Data Centre, available at: https://catalogue.ceda.ac.uk/uuid/6ba397d6c8854da19bcced8ea588c1f9 (last access: 2 November 2020), 2016.
Chen, W.-N., Chiang, C.-W., and Nee, J.-B.: Lidar ratio and depolarization ratio
for cirrus clouds, Appl. Opt., 41, 6470–6476, https://doi.org/10.1364/AO.41.006470,
2002.
Clough, S. A. and Iacono, M. J.: Line-by-line calculation of atmospheric
fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane,
nitrous oxide and the halocarbons, J. Geophys. Res.-Atmos., 100,
16519–16535, https://doi.org/10.1029/95JD01386, 1995.
Clough, S., Shephard, M., Mlawer, E., Delamere, J., Iacono, M.,
Cady-Pereira, K., Boukabara, S., and Brown, P.: Atmospheric radiative
transfer modeling: a summary of the AER codes, J. Q. Sp. Ra.
T., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005.
Cox, C., Harries, J., Taylor, J., Green, P., Baran, A., Pickering, J., Last,
A., and Murray, J.: Measurement and simulation of mid- and far-infrared
spectra in the presence of cirrus, Q. J. R. Meteorol. Soc., 136, 718–739,
https://doi.org/10.1002/qj.596, 2010.
Dee, D. P., Uppala, S. M., Simmons, A. J., , Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohlera, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. -J., Park, B. K. , Peubey, C., deRosnay, P., Tavolato, C., Thepaut, J. -N., and Vitart, F.: The ERA-Interim reanalysis: configuration and
performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137,
553–597, https://doi.org/10.1002/qj.828, 2011.
Dessler, A. E. and Yang, P.: The distribution of tropical thin cirrus clouds
inferred from Terra MODIS data, J. Clim., 16, 1241–1247,
2003.
Di Natale, G., Palchetti, L., Bianchini, G., and Del Guasta, M.: Simultaneous retrieval of water vapour, temperature and cirrus clouds properties from measurements of far infrared spectral radiance over the Antarctic Plateau, Atmos. Meas. Tech., 10, 825–837, https://doi.org/10.5194/amt-10-825-2017, 2017.
Dlugokencky, E. J., Mund, J. W., Crotwell, A. M., Crotwell, M. J., and Thoning,
K. W.: Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA GML
Carbon Cycle Cooperative Global Air Sampling Network, 1968–2019, Version:
2019-07, https://doi.org/10.15138/wkgj-f215, 2019.
Edwards, J. M. and Slingo, A.: Studies with a flexible new radiation code,
I: Choosing a configuration for a large-scale model, Q. J. Roy. Meteorol.
Soc., 122, 689–719, https://doi.org/10.1002/qj.49712253107, 1996.
Elsasser, W. M.: Heat Transfer by Infrared Radiation in the Atmosphere, Vol.
6, Harvard Meteorological Studies, Harvard University Press, 107 pp., 1942.
Fox, S., Mendrok, J., Eriksson, P., Ekelund, R., O'Shea, S. J., Bower, K.
N., Baran, A. J., Harlow, R. C., and Pickering, J. C.: Airborne validation of
radiative transfer modelling of ice clouds at millimetre and sub-millimetre
wavelengths, Atmos. Meas. Tech., 12, 1599–1617,
https://doi.org/10.5194/amt-12-1599-2019, 2019.
Gouveia, D. A., Barja, B., Barbosa, H. M. J., Seifert, P., Baars, H.,
Pauliquevis, T., and Artaxo, P.: Optical and geometrical properties of cirrus
clouds in Amazonia derived from 1 year of ground-based lidar measurements,
Atmos. Chem. Phys., 17, 3619–3636, https://doi.org/10.5194/acp-17-3619-2017, 2017.
Harries, J., Carli, B., Rizzi, R., Serio, C., Mlynczak, M., Palchetti, L.,
Maestri, T., Brindley, H., and Masiello, G.: The far-infrared Earth, Rev.
Geophys., 46, RG4004, https://doi.org/10.1029/2007RG000233, 2008.
Heymsfield, A. J., Protat, A., Austin, R. T., Bouniol, D., Hogan, R. J., Delanoe, J., Okamoto, H., Sato., K., Van Zadelhoff, G.-J., Donovan, D. P., and Wang, Z.: Testing IWC retrieval methods using
radar and ancillary measurements with in situ data, J. Appl. Meteorol.
Clim., 47, 135–163, https://doi.org/10.1175/2007JAMC1606.1, 2008.
Heymsfield, A. J., Schmitt, C., and Bansemer, A.: Ice cloud particle size
distributions and pressure dependent terminal velocities from in situ
observations at temperatures from 0∘ to −86 ∘C, J.
Atmos. Sci., 70, 4123–4154, https://doi.org/10.1175/JAS-D-12-0124.1, 2013.
Hong, Y. and Liu, G.: The characteristics of ice cloud properties derived
from CloudSat and CALIPSO measurements, J. Clim., 28, 3880–3901, https://doi.org/10.1175/JCLI-D-14-00666.1, 2015.
Hong, Y., Liu, G., and Li, J. F.: Assessing the radiative effects of global
ice clouds based on CloudSat and CALIPSO measurements, J. Clim., 29,
7651–7674, https://doi.org/10.1175/JCLI-D-15-0799.1, 2016.
Iwabuchi, H. and Yang, P.: Temperature dependence of ice optical constants:
Implications for simulating the single-scattering properties of cold ice
clouds, J. Q. Sp. Rad. T., 112, 2520–2525, 2011.
Kuo, C.-P., Yang, P., Huang, X., Feldman, D., Flanner, M., Kuo, C., and
Mlawer, E. J.: Impact of multiple scattering on longwave radiative transfer
involving clouds, J. Adv. Model. Earth Syst., 9, 3082–3098,
https://doi.org/10.1002/2017MS001117, 2017.
Lawson, R., O'Connor, D., Zmarzly, P., Weaver, K., Baker, B., and Mo, Q.: The
2D-S (Stereo) Probe: Design and Preliminary Tests of a New Airborne,
High-Speed, High-Resolution Particle Imaging Probe, J. Atmos. Ocean.
Technol., 23, 1462–1477, 2006.
Libois, Q. and Blanchet, J. -P.: Added value of far-infrared radiometry for
remote sensing of ice clouds, J. Geophys. Res.-Atmos., 122, 6541–6564,
https://doi.org/10.1002/2016JD026423, 2017.
Loeb, N. G., Yang, P., Rose, F. G., Hong, G., Sun-Mack, S., Minnis, P.,
Kato, S., Ham, S. -H., Smith, J., Hioki, S., and Tang, G.: Impact of ice
cloud microphysics on satellite cloud retrievals and broadband flux
radiative transfer model calculations, J. Clim., 31, 1851–1864,
https://doi.org/10.1175/JCLI-D-17-0426.1, 2018.
Maestri, T.: Spectral infrared analysis of a cirrus cloud based on Airborne
Research Interferometer Evaluation System (ARIES) measurements, J. Geophys.
Res., 110, D06111, https://doi.org/10.1029/2004JD005098, 2005.
Maestri, T. and Rizzi, R.: A study of infrared diabatic forcing of ice
clouds in the tropical atmosphere, J. Geophys. Res., 108, 4139,
https://doi.org/10.1029/2002JD002146, 2003.
Maestri, T., Rizzi, R., Tosi, E., Veglio, P., Palchetti, L., Bianchini, G.,
Di Girolamo, P., Masiello, G., Serio, C., and Summa, D.: Analysis of cirrus
cloud spectral signatures in the far infrared, J. Q. Sp. Ra.
T., 141, 49–64, https://doi.org/10.1016/j.jqsrt.2014.02.030, 2014.
Maestri, T., Arosio, C., Rizzi, R., Palchetti, L., Bianchini, G., and Del
Guasta, M.: Antarctic ice cloud identification and properties using downwelling
spectral radiance from 100 to 1,400 cm−1, J. Geophys. Res.-Atmos., 124,
4761–4781, 2019.
Marenco, F.: Capabilities and operation of the FAAM EZlidar, Met Office OBR
Tech. Note, no. 79, 18 pp., 2010.
Marenco, F., Johnson, B., Turnbull, K., Newman, S., Haywood, J., Webster, H.,
and Ricketts, H.: Airborne lidar observations of the 2010
Eyjafjallajökull volcanic ash plume, J. Geophys. Res.-Atmos., J. Geophys. Res., 116, D00U05,
https://doi.org/10.1029/2011JD016396, 2011.
Masuda, K., Takashima, T., and Takayama, Y.: Emissivity of pure and sea
waters for the model sea surface in the infrared window regions, Remote
Sens. Environ., 24, 313–329, 1988.
Mlawer, E. J., Turner, D. D., Paine, S. N., Palchetti, L., Bianchini, G.,
Payne, V. H., Cady-Pereira, K. E., Pernak, R. L., Alvarado, M. J., Gombos,
D., Delamere, J. S., and Mlynczak, M. G.: Analysis of water vapour absorption
in the Far-infrared and submillimeter regions using surface radiometric
measurements from extremely dry location. J. Geophys. Res.-Atmos., 124,
8134–8160, https://doi.org/10.1029/2018JD029508, 2019.
O'Shea, S. J., Choularton, T. W., Lloyd, G., Crosier, J., Bower, K. N., Gallagher, M., Abel, S. J., Cotton, R. J., Brown, P. R. A., Fugal, J. P., Schlenczek, O., Borrmann, S., and Pickering, J. C.: Airborne observations of the microphysical
structure of two contrasting cirrus clouds, J. Geophys. Res.-Atmos., 121,
13510–13536, https://doi.org/10.1002/2016JD025278, 2016.
Palchetti, L., Di Natale, G., and Bianchini, G.: Remote sensing of cirrus
cloud microphysical properties using spectral measurements over the full
range of their thermal emission: Cirrus cloud far IR signature, J. Geophys.
Res.-Atmos., 121, 10804–10819, https://doi.org/10.1002/2016JD025162, 2016.
Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant, B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz, R. E., Yang, P., Ridgway, W. L., and Riedi, J.: The MODIS cloud optical and microphysical
products: Collection 6 updates and examples from Terra and Aqua, IEEE Trans.
Geosci. Remote Sens., 55, 502–525, https://doi.org/10.1109/TGRS.2016.2610522, 2017.
Rothman, L. S., Gordon, I. E., Babikov, Y., et al.: The HITRAN 2012 molecular spectroscopic
database, J. Q. Sp. Ra. T., 130, 4–50, 2013.
Saito, M., Yang, P., Huang, X., Brindley, H. E., Mlynczak, M. G., and Kahn,
B. H.: Spaceborne mid- and far-infrared observations improving nighttime ice
cloud property retrievals, Geophys. Res. Lett., 47, e2020GL087491, https://doi.org/10.1029/2020GL087491, 2020.
Stamnes, K., Tsay, S.-C., and Laszlo, I.: DISORT, a General-Purpose Fortran
Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and
Emitting Layered Media: Documentation of Methodology, DISORT Report v1.1
available at: http://www.libradtran.org/lib/exe/fetch.php?media=disortreport1.1.pdf (last access: 28 October 2020), 2000.
Turner, D. D.: Arctic mixed-phase cloud properties from AERI-lidar
observations: Algorithm and results from SHEBA, J. Appl. Meteorol., 44,
427–444, https://doi.org/10.1175/JAM2208.1, 2005.
Turner, D. D., Shupe, M. D., and Zwink, A. B.: Characteristic atmospheric
radiative heating rate profiles in Arctic clouds as observed at Barrow,
Alaska, J. Appl. Meteorol. Clim., 57, 953–968, https://doi.org/10.1175/JAMC-D-17-0252.1,
2018.
Vaisala: Vaisala Dropsonde RD94 Technical Datasheet, available at: https://www.vaisala.com/sites/default/files/documents/RD94-Datasheet-B210936EN-B.pdf (last access: 28 October 2020) 2010.
van Diedenhoven, B. and Cairns, B.: A flexible parameterization for
shortwave and longwave optical properties of ice crystals and derived bulk
optical properties for climate models, J. Atmos. Sci., 77, 1245–1260,
https://doi.org/10.1175/JAS-D-19-0193.1, 2020.
Voigt, C., Schumann, U., and Minikin, A.: ML-CIRRUS, The airborne experiment on natural
cirrus and contrail cirrus with the high-altitude long-range research
aircraft HALO, Bull. Am. Meteorol. Soc., 98, 271–288,
https://doi.org/10.1175/BAMS-D-15-00213.1, 2017.
Wilson, S., Atkinson, N., and Smith, J.: The development of an airborne
infrared interferometer for meteorological sounding studies, J. Atmos.
Ocean. Tech., 16, 1912–1927, 1999.
Yang, H., Dobbie, S., Herbert, R., Connolly, P., Gallagher, M., Ghosh, S.,
Al-Jumur, S., and Clayton, J.: The effect of observed vertical structure,
habits, and size distributions on the solar radiative properties and cloud
evolution of cirrus clouds, Q. J. R. Meteorol. Soc., 138, 1221–1232,
https://doi.org/10.1002/qj.973, 2012.
Yang, P.: Spectral signature of ice clouds in the far-infrared region:
Single-scattering calculations and radiative sensitivity study, J. Geophys.
Res., 108, 4569, https://doi.org/10.1029/2002JD003291, 2003.
Yang, P., Kattawar, G., Hong, G., Minnis, P., and Hu, Y.-X.: Uncertainties
Associated With the Surface Texture of Ice Particles in Satellite-Based
Retrieval of Cirrus Clouds – Part I: Single-Scattering Properties of Ice
Crystals With Surface Roughness, IEEE Trans. Geosci. Remote Sens., 46,
1940–1947, https://doi.org/10.1109/TGRS.2008.916471, 2008.
Yang, P., Bi, L., Baum, B. A., Liou, K-N., Kattawar, G. W., Mishchenko, M.
I., and Cole, B.: Spectrally consistent scattering, absorption, and
polarization properties of atmospheric ice crystals at wavelengths from 0.2
to 100 µm, J. Atmos. Sci., 70, 330–347, 2013.
Yang, P., Liou, K.-N. , Bi, L., Liu, C., Yi, B., and Baum, B. A.: On the
radiative properties of ice clouds: Light scattering, remote sensing and
radiation parameterization, Adv. Atmos. Sci., 32, 32–63,
https://doi.org/10.1007/s00376-014-0011-z, 2015.
Yang, P., Hioki, S., Saito, M., Kuo, C.-P., Baum, B. A., and Liou, K.-N.: A
review of ice cloud optical property models for passive satellite remote
sensing, Atmosphere, 9, 1–31, https://doi.org/10.3390/atmos9120499, 2018.
Young, S. A., Vaughan, M. A., Kuehn, R. E., and Winker, D. M.: The Retrieval
of Profiles of Particulate Extinction from Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) Data: Uncertainty and Error
Sensitivity Analyses, J. Atmos. Ocean. Tech., 30, 395–428,
https://doi.org/10.1175/JTECH-D-12-00046.1, 2013.
Zhang, Y., Macke, A., and Albers, F.: Effect of crystal size spectrum and
crystal shape on stratiform cirrus radiative forcing, Atmos. Res., 52,
59–75, https://doi.org/10.1016/S0169-8095(99)00026-5, 1999.
Short summary
Understanding how ice clouds influence the Earth's energy balance remains a key challenge for predicting the future climate. These clouds are ubiquitous and are composed of ice crystals that have complex shapes that are incredibly difficult to model. This work exploits new measurements of the Earth's emitted thermal energy made from instruments flown on board an aircraft to test how well the latest ice cloud models can represent these clouds. Results indicate further developments are required.
Understanding how ice clouds influence the Earth's energy balance remains a key challenge for...
Altmetrics
Final-revised paper
Preprint