Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-12391-2020
https://doi.org/10.5194/acp-20-12391-2020
Research article
 | 
30 Oct 2020
Research article |  | 30 Oct 2020

Gravitational separation of Ar∕N2 and age of air in the lowermost stratosphere in airborne observations and a chemical transport model

Benjamin Birner, Martyn P. Chipperfield, Eric J. Morgan, Britton B. Stephens, Marianna Linz, Wuhu Feng, Chris Wilson, Jonathan D. Bent, Steven C. Wofsy, Jeffrey Severinghaus, and Ralph F. Keeling

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Svenja Lange on behalf of the Authors (22 Jun 2020)  Author's response    Manuscript
ED: Publish subject to minor revisions (review by editor) (06 Jul 2020) by Andreas Engel
AR by Benjamin Birner on behalf of the Authors (06 Jul 2020)  Author's response    Manuscript
ED: Publish subject to minor revisions (review by editor) (24 Jul 2020) by Andreas Engel
AR by Benjamin Birner on behalf of the Authors (27 Jul 2020)  Author's response    Manuscript
ED: Publish as is (10 Aug 2020) by Andreas Engel
Download
Short summary
With new high-precision observations from nine aircraft campaigns and 3-D chemical transport modeling, we show that the argon-to-nitrogen ratio (Ar / N2) in the lowermost stratosphere provides a useful constraint on the “age of air” (the time elapsed since entry of an air parcel into the stratosphere). Therefore, Ar / N2 in combination with traditional age-of-air indicators, such as CO2 and N2O, could provide new insights into atmospheric mixing and transport.
Altmetrics
Final-revised paper
Preprint