Articles | Volume 20, issue 18
https://doi.org/10.5194/acp-20-10937-2020
https://doi.org/10.5194/acp-20-10937-2020
Research article
 | 
22 Sep 2020
Research article |  | 22 Sep 2020

Tropospheric ozone radiative forcing uncertainty due to pre-industrial fire and biogenic emissions

Matthew J. Rowlinson, Alexandru Rap, Douglas S. Hamilton, Richard J. Pope, Stijn Hantson, Steve R. Arnold, Jed O. Kaplan, Almut Arneth, Martyn P. Chipperfield, Piers M. Forster, and Lars Nieradzik

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Matthew Rowlinson on behalf of the Authors (20 Jun 2020)
ED: Referee Nomination & Report Request started (17 Jul 2020) by Kostas Tsigaridis
ED: Publish as is (01 Aug 2020) by Kostas Tsigaridis
AR by Matthew Rowlinson on behalf of the Authors (09 Aug 2020)
Download
Short summary
Tropospheric ozone is an important greenhouse gas which contributes to anthropogenic climate change; however, the effect of human emissions is uncertain because pre-industrial ozone concentrations are not well understood. We use revised inventories of pre-industrial natural emissions to estimate the human contribution to changes in tropospheric ozone. We find that tropospheric ozone radiative forcing is up to 34 % lower when using improved pre-industrial biomass burning and vegetation emissions.
Altmetrics
Final-revised paper
Preprint