Articles | Volume 20, issue 17
https://doi.org/10.5194/acp-20-10459-2020
https://doi.org/10.5194/acp-20-10459-2020
Research article
 | 
08 Sep 2020
Research article |  | 08 Sep 2020

Evolution of NO3 reactivity during the oxidation of isoprene

Patrick Dewald, Jonathan M. Liebmann, Nils Friedrich, Justin Shenolikar, Jan Schuladen, Franz Rohrer, David Reimer, Ralf Tillmann, Anna Novelli, Changmin Cho, Kangming Xu, Rupert Holzinger, François Bernard, Li Zhou, Wahid Mellouki, Steven S. Brown, Hendrik Fuchs, Jos Lelieveld, and John N. Crowley

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Patrick Dewald on behalf of the Authors (07 Jul 2020)  Author's response   Manuscript 
ED: Publish as is (31 Jul 2020) by Thomas Karl
AR by Patrick Dewald on behalf of the Authors (03 Aug 2020)
Download
Short summary
We present direct measurements of NO3 reactivity resulting from the oxidation of isoprene by NO3 during an intensive simulation chamber study. Measurements were in excellent agreement with values calculated from measured isoprene amounts and the rate coefficient for the reaction of NO3 with isoprene. Comparison of the measurement with NO3 reactivities from non-steady-state and model calculations suggests that isoprene-derived RO2 and HO2 radicals account to ~ 50 % of overall NO3 losses.
Altmetrics
Final-revised paper
Preprint