Articles | Volume 20, issue 17
https://doi.org/10.5194/acp-20-10459-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-10459-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evolution of NO3 reactivity during the oxidation of isoprene
Patrick Dewald
Atmospheric Chemistry Department, Max-Planck-Institut für Chemie, 55128 Mainz, Germany
Jonathan M. Liebmann
Atmospheric Chemistry Department, Max-Planck-Institut für Chemie, 55128 Mainz, Germany
Nils Friedrich
Atmospheric Chemistry Department, Max-Planck-Institut für Chemie, 55128 Mainz, Germany
Justin Shenolikar
Atmospheric Chemistry Department, Max-Planck-Institut für Chemie, 55128 Mainz, Germany
Jan Schuladen
Atmospheric Chemistry Department, Max-Planck-Institut für Chemie, 55128 Mainz, Germany
Franz Rohrer
Institute of Energy and Climate Research, IEK-8: Troposphere,
Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
David Reimer
Institute of Energy and Climate Research, IEK-8: Troposphere,
Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
Ralf Tillmann
Institute of Energy and Climate Research, IEK-8: Troposphere,
Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
Anna Novelli
Institute of Energy and Climate Research, IEK-8: Troposphere,
Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
Changmin Cho
Institute of Energy and Climate Research, IEK-8: Troposphere,
Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
Kangming Xu
Institute for Marine and Atmospheric Research, IMAU, Utrecht
University, Utrecht, the Netherlands
Rupert Holzinger
Institute for Marine and Atmospheric Research, IMAU, Utrecht
University, Utrecht, the Netherlands
François Bernard
Institut de Combustion, Aérothermique, Réactivité et
Environnement (ICARE), CNRS (UPR 3021)/OSUC, 1C Avenue de la Recherche Scientifique, 45071 Orléans CEDEX 2, France
now at: Laboratoire de Physique et Chimie de l'Environnement et de
l'Espace (LPC2E), Centre National de la Recherche Scientifique (CNRS), Université d'Orléans, Observatoire des Sciences de l'Univers en région Centre – Val de Loire (OSUC), Orléans, France
Li Zhou
Institut de Combustion, Aérothermique, Réactivité et
Environnement (ICARE), CNRS (UPR 3021)/OSUC, 1C Avenue de la Recherche Scientifique, 45071 Orléans CEDEX 2, France
Wahid Mellouki
Institut de Combustion, Aérothermique, Réactivité et
Environnement (ICARE), CNRS (UPR 3021)/OSUC, 1C Avenue de la Recherche Scientifique, 45071 Orléans CEDEX 2, France
Steven S. Brown
NOAA Chemical Sciences Laboratory, 325 Broadway, Boulder, CO 80305,
USA
Department of Chemistry, University of Colorado Boulder, Boulder, CO 80209,
USA
Hendrik Fuchs
Institute of Energy and Climate Research, IEK-8: Troposphere,
Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
Jos Lelieveld
Atmospheric Chemistry Department, Max-Planck-Institut für Chemie, 55128 Mainz, Germany
Atmospheric Chemistry Department, Max-Planck-Institut für Chemie, 55128 Mainz, Germany
Viewed
Total article views: 2,753 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 11 May 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,802 | 894 | 57 | 2,753 | 353 | 47 | 63 |
- HTML: 1,802
- PDF: 894
- XML: 57
- Total: 2,753
- Supplement: 353
- BibTeX: 47
- EndNote: 63
Total article views: 1,870 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 08 Sep 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,332 | 500 | 38 | 1,870 | 186 | 40 | 50 |
- HTML: 1,332
- PDF: 500
- XML: 38
- Total: 1,870
- Supplement: 186
- BibTeX: 40
- EndNote: 50
Total article views: 883 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 11 May 2020)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
470 | 394 | 19 | 883 | 167 | 7 | 13 |
- HTML: 470
- PDF: 394
- XML: 19
- Total: 883
- Supplement: 167
- BibTeX: 7
- EndNote: 13
Viewed (geographical distribution)
Total article views: 2,753 (including HTML, PDF, and XML)
Thereof 2,726 with geography defined
and 27 with unknown origin.
Total article views: 1,870 (including HTML, PDF, and XML)
Thereof 1,963 with geography defined
and -93 with unknown origin.
Total article views: 883 (including HTML, PDF, and XML)
Thereof 763 with geography defined
and 120 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
10 citations as recorded by crossref.
- Experimental and theoretical study on the impact of a nitrate group on the chemistry of alkoxy radicals A. Novelli et al. 10.1039/D0CP05555G
- Fate of the nitrate radical at the summit of a semi-rural mountain site in Germany assessed with direct reactivity measurements P. Dewald et al. 10.5194/acp-22-7051-2022
- Gas-particle partitioning process contributes more to nitrate dominated air pollution than oxidation process in northern China X. Tian et al. 10.1080/02786826.2023.2294944
- A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry E. Tsiligiannis et al. 10.1029/2021GL097366
- Comparison of isoprene chemical mechanisms under atmospheric night-time conditions in chamber experiments: evidence of hydroperoxy aldehydes and epoxy products from NO3 oxidation P. Carlsson et al. 10.5194/acp-23-3147-2023
- NO3 reactivity measurements in an indoor environment: a pilot study P. Dewald et al. 10.1039/D3EA00137G
- Theoretical and experimental study of peroxy and alkoxy radicals in the NO3-initiated oxidation of isoprene L. Vereecken et al. 10.1039/D0CP06267G
- Conversion of Catechol to 4-Nitrocatechol in Aqueous Microdroplets Exposed to O3 and NO2 M. Rana et al. 10.1021/acsestair.3c00001
- Impact of ozone and inlet design on the quantification of isoprene-derived organic nitrates by thermal dissociation cavity ring-down spectroscopy (TD-CRDS) P. Dewald et al. 10.5194/amt-14-5501-2021
- Gas-Particle Partitioning and SOA Yields of Organonitrate Products from NO3-Initiated Oxidation of Isoprene under Varied Chemical Regimes B. Brownwood et al. 10.1021/acsearthspacechem.0c00311
9 citations as recorded by crossref.
- Experimental and theoretical study on the impact of a nitrate group on the chemistry of alkoxy radicals A. Novelli et al. 10.1039/D0CP05555G
- Fate of the nitrate radical at the summit of a semi-rural mountain site in Germany assessed with direct reactivity measurements P. Dewald et al. 10.5194/acp-22-7051-2022
- Gas-particle partitioning process contributes more to nitrate dominated air pollution than oxidation process in northern China X. Tian et al. 10.1080/02786826.2023.2294944
- A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry E. Tsiligiannis et al. 10.1029/2021GL097366
- Comparison of isoprene chemical mechanisms under atmospheric night-time conditions in chamber experiments: evidence of hydroperoxy aldehydes and epoxy products from NO3 oxidation P. Carlsson et al. 10.5194/acp-23-3147-2023
- NO3 reactivity measurements in an indoor environment: a pilot study P. Dewald et al. 10.1039/D3EA00137G
- Theoretical and experimental study of peroxy and alkoxy radicals in the NO3-initiated oxidation of isoprene L. Vereecken et al. 10.1039/D0CP06267G
- Conversion of Catechol to 4-Nitrocatechol in Aqueous Microdroplets Exposed to O3 and NO2 M. Rana et al. 10.1021/acsestair.3c00001
- Impact of ozone and inlet design on the quantification of isoprene-derived organic nitrates by thermal dissociation cavity ring-down spectroscopy (TD-CRDS) P. Dewald et al. 10.5194/amt-14-5501-2021
Latest update: 23 Nov 2024
Short summary
We present direct measurements of NO3 reactivity resulting from the oxidation of isoprene by NO3 during an intensive simulation chamber study. Measurements were in excellent agreement with values calculated from measured isoprene amounts and the rate coefficient for the reaction of NO3 with isoprene. Comparison of the measurement with NO3 reactivities from non-steady-state and model calculations suggests that isoprene-derived RO2 and HO2 radicals account to ~ 50 % of overall NO3 losses.
We present direct measurements of NO3 reactivity resulting from the oxidation of isoprene by NO3...
Altmetrics
Final-revised paper
Preprint