Evolution of NO₃ reactivity during the oxidation of isoprene

Patrick Dewald¹, Jonathan M. Liebmann¹, Nils Friedrich¹, Justin Shenolikar¹, Jan Schuladen¹, Franz Rohrer², David Reimer², Ralf Tillmann², Anna Novelli², Changmin Cho², Kangming Xu³, Rupert Holzinger³, François Bernard^{4,a}, Li Zhou⁴, Wahid Mellouki⁴, Steven S. Brown^{5,6}, Hendrik Fuchs², Jos Lelieveld¹ and John N. Crowley¹

5

¹Atmospheric Chemistry Department, Max Planck Institut für Chemie, 55128 Mainz, Germany ²Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany ³Institute for Marine and Atmospheric Research, IMAU, Utrecht University, Utrecht, Netherlands ⁴Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021) /OSUC, 1C Avenue de la

- 10 Recherche Scientifique, 45071 Orléans Cedex 2, France ⁵NOAA Chemical Sciences Laboratory, 325 Broadway, Boulder, CO 80305, USA ⁶Department of Chemistry, University of Colorado, Boulder, CO 80209, USA ^anow at: Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E). Centre National de la Recherche Scientifique (CNRS), Université d'Orléans, Observatoire des Sciences de l'Univers en région Centre - Val de Loire (OSUC).
- Orléans, France 15

Correspondence to: John N. Crowley (john.crowley@mpic.de)

Supplementary Information

20

Box-Model

Table S1: Reactions, rate coefficients and definitions in the model used for analysis. The isoprene oxidation scheme until the 3rd / 4th generation from the Master Chemical Mechansism (MCM) version 3.3.1 is used (Jenkin et al., 2015). Any change from MCMv3.3.1 is annotated.

Reaction	Reaction constant	Annotations
NOx chemistry		
$N2O5 \rightarrow NO3 + NO2$	((1.3e-3*(T/300)@-3.5*exp(-11000/T))*M*	
	(9.7e14*(T/300)@0.1*exp(-11080/T)))/((1.3e-3*	
	(T/300) @-3.5* exp(-11000/T))*M + (9.7e14*(T/300) @0.1*	
	exp(-11080/T)))*10@(log10(0.35)/(1+(log10((1.3e-	
	3*(T/300)@-3.5	
	$\label{eq:exp(-11000/T)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	/(0.75-1.27*log10(0.35)))@2))	
NO2 + NO3 → N2O5	((3.6e-30*(T/300)@-4.1)*M*(1.9e-12*(T/300)@0.2))	
	/((3.6e-30*(T/300)@-4.1)*M+(1.9e-12*(T/300)@0.2))*	
	10@(log10(0.35)/(1+(log10((3.6e-30*(T/300)@-4.1)*	
	$M/(1.9e\text{-}12^{*}(T/300)@0.2))/(0.75\text{-}1.27^{*}log10(0.35)))@2))$	
$NO + O3 \rightarrow NO2 + O2$	1.8E-11*exp(110/T)	
$NO2 + O3 \rightarrow NO3 + O2$	1.4E-13 * exp (-2470/T)	
$NO + O3 \rightarrow NO2 + O2$	2.07E-12 * exp (-1400/T)	
NO3 + CO →	4E-19	Hjorth et al., 1986
OH + NO2 → HNO3	((3.2e-30*(T/300)@-4.5)*M*(3.0e-11))/	
	$((3.2e30^{*}(T/300)@4.5)^{*}M\text{+}(3.0e11))^{*}10@(\log 10(0.41)/$	
	(1+(log10((3.2e-30*(T/300)@-4.5)*M/(3.0e-11))/	
	$(0.75 - 1.27 * \log 10(0.41)))@2))$	
OH + NO3 → HO2 + NO2	2E-11	
$HO2 + NO3 \rightarrow OH + NO2$	4E-12	
$OH + NO \rightarrow HONO$	((7.4e-31*(T/300)@-2.4)*M*(3.3e-11*(T/300)@-0.3))/	
	((7.4e-31*(T/300)@-2.4)*M+(3.3e-11*(T/300)@-0.3))*	
	10@(log10(0.81)/(1+(log10((7.4e-31*(T/300)@-2.4)*M/	
	(3.3e-11*(T/300)@-0.3))/(0.75-1.27*log10(0.81)))@2))	
$HO2 + NO \rightarrow OH + NO2$	3.45E-12*exp(270/T)	
HO2 + NO2 → HO2NO2	((1.4e-31*(T/300)@-3.1)*M*(4.0e-12))/	
	$((1.4e\text{-}31^{*}(T/300)@\text{-}3.1)^{*}M\text{+}(4.0e\text{-}12))^{*}10@(\log 10(0.4)/$	
	(1+(log10((1.4e-31*(T/300)@-3.1)*M/(4.0e-12))/	
	$(0.75 - 1.27 * \log 10(0.4)))@2))$	
HO2NO2 + OH → NO2	3.2e-13*EXP(690/T)	
HO2NO2 → HO2 + NO2	((4.1e-5*exp(-10650/T))*M*(6.0e15*exp(-11170/T)))/	
	((4.1e-5*exp(-10650/T))*M+(6.0e15*exp(-11170/T)))*	
	10@(log10(0.4)/(1+(log10((4.1e-5*exp(-10650/T))*M/	
	(6.0e15*exp(-11170/T)))/(0.75-1.27*log10(0.4)))@2))	

OH + HONO → NO2	2.5e-12*EXP(260/T)	
OH + HNO3 → NO3	2.40E-14*EXP(460/T) + ((6.50E-34*EXP(1335/T)*M)/	
	(1+(6.50E-34*EXP(1335/T)*M/2.70E-17*EXP(2199/T))))	
HOx chemistry		
OH + O3 → HO2	1.70E-12*EXP(-940/T)	
HO2 + O3 → OH	2.03E-16*(T/300)@4.57*EXP(693/T)	
OH + HO2 →	4.8E-11*EXP(250/T)	
HO2 + HO2 → H2O2	2.20E-13*(1+(1.40E-21*EXP(2200/T)*H2O))*EXP(600/T)	
OH + H2O2 → HO2	2.9E-12*exp(-160/T)	
OH + CO → HO2	1.44E-13*(1+(M/4.2E19))	
Primary oxidation of isoprene		
NO3 + C5H8 → NISOPO2	2.95E-12 * exp (-450/T)	IUPAC, 2019
O3 + C5H8 → CH2OOE +	0.3 * 1.03E-14 * exp (-1995/T)	
MACR		
O3 + C5H8 → CH2OOE + MVK	0.2 * 1.03E-14 * exp (-1995/T)	
O3 + C5H8 → HCHO +	0.3 * 1.03E-14 * exp (-1995/T)	
MACROOA		
O3 + C5H8 → HCHO +	0.2 * 1.03E-14 * exp (-1995/T)	
MVKOOA		
OH + C5H8 → CISOPA	0.288*2.7E-11 * exp (390/T)	
OH + C5H8 → CISOPC	0.238*2.7E-11 * exp (390/T)	
OH + C5H8 → ISOP34O2	0.022*2.7E-11 * exp (390/T)	
OH + C5H8 → ME3BU3ECHO	0.02*2.7E-11 * exp (390/T)	
+ HO2		
$OH + C5H8 \rightarrow PE4E2CO + HO2$	0.042*2.7E-11 * exp (390/T)	
OH + C5H8 → TISOPA	0.288*2.7E-11 * exp (390/T)	
OH + C5H8 → TISOPC	0.102*2.7E-11 * exp (390/T)	
Secondary oxidation		
(1st generation)		
NISOPO2 + HO2 → NISOPOOH	0.706*2.91E-13 * EXP(1300/T)	
NISOPO2 + NO3 \rightarrow NISOPO +	2.3E-12	
NO2		
NISOPO2 + RO2 → ISOPCNO3	0.2*1.3E-12	
NISOPO2 + RO2 → NC4CHO	0.2*1.3E-12	
NISOPO2 + RO2 → NISOPO	0.6*1.3E-12	
CH2OOE → CH2OO	0.22*1E6	
CH2OOE → CO	0.51*1E6	
CH2OOE → HO2 + CO + OH	0.27*1E6	
MACR + NO3 → MACO3 +	3.4E-15	
HNO3		

MACR + O3 \rightarrow HCHO +	0.12*1.4E-15*EXP(-2100/T)	
MGLYOOB		
MACR + O3 \rightarrow MGLYOX +	0.88*1.4E-15*EXP(-2100/T)	
CH2OOG		
MACR + OH → MACO3	0.45*8.0E-12*EXP(380/T)	
MACR + OH → MACRO2	0.47*8.0E-12*EXP(380/T)	
MACR + OH → MACROHO2	0.08*8.0E-12*EXP(380/T)	
$MVK + O3 \rightarrow MGLOOA +$	0.5*8.5E-16*EXP(-1520/T)	
НСНО		
$MVK + O3 \rightarrow MGLYOX +$	0.5*8.5E-16*EXP(-1520/T)	
CH2OOB		
$MVK + OH \rightarrow HVMKAO2$	0.3*2.6E-12*EXP(610/T)	
$MVK + OH \rightarrow HMVKBO2$	0.7*2.6E-12*EXP(610/T)	
$HCHO + NO3 \rightarrow HNO3 + CO +$	5.5E-16	
HO2		
$HCHO + OH \rightarrow HO2 + CO$	5.4E-12 * exp (135/T)	
MACROOA → C3H6	0.255*1E6	
MACROOA → CH3CO3 +	0.255*1E6	
HCHO + HO2		
MACROOA → MACROO	0.22*1E6	
MACROOA → OH + CO	0.27*1E6	
+CH3CO3 + HCHO		
MVKOOA → C3H6	0.255*1E6	
MVKOOA → CH3O2 + HCHO	0.255*1E6	
+ CO + HO2		
MVKOOA → MVKOO	0.22*1E6	
$MVKOOA \rightarrow OH + MVKO2$	0.27*1E6	
CISOPA + O2 → CISOPAO2	3.5E-12	
CISOPA + O2 → ISOPBO2	3E-12	
$CISOPC + O2 \rightarrow CISOPCO2$	2E-12	
$CISOPC + O2 \rightarrow ISOPDO2$	3.5E-12	
$ISOP34O2 + HO2 \rightarrow$	2.91E-13 * EXP(1300/T)	
ISOP34OOH		
ISOP34O2 + NO3 → ISOP34O +	2.3E-12	
NO2		
ISOP34O2 + RO2 → HC4CHO	0.1*2.65E-12	
ISOP34O2 + RO2 → ISOP34O	0.8*2.65E-12	
ISOP34O2 + RO2 → ISOPDOH	0.1*2.65E-12	
ME3BU3ECHO + NO3 →	3.3E-13	
NC526O2		

ME3BU3ECHO + O3 →	0.33*1.6E-17	
CH2OOC + CO2C3CHO		
ME3BU3ECHO + O3 → HCHO	0.67*1.6E-17	
+ CO2C3OOB		
ME3BU3ECHO + OH →	0.712*7.3E-11	
C530O2		
ME3BU3ECHO + OH →	0.288*7.3E-11	
ME3BU3ECO3		
PE4E2CO + NO3 → NC51O2	1.2E-14	
$PE4E2CO + O3 \rightarrow CH2OOB +$	0.43*1E-17	
CO2C3CHO		
PE4E2CO + O3 → HCHO +	0.57*1E-17	
C02C300A		
PE4E2CO + OH → C51O2	2.71E-11	
$TISOPA + O2 \rightarrow ISOPAO2$	2.5E-12*exp(-480/T)	
TISOPA + O2 → ISOPBO2	3E-12	
$TISOPC + O2 \rightarrow ISOPCO2$	2.5E-12*exp(-480/T)	
$TISOPC + O2 \rightarrow ISOPDO2$	3.5E-12	
Secondary oxidation (2 nd		
generation)		
$NISOPOOH + OH \rightarrow NC4CHO$	1.03E-10	
+ OH		
NISOPO + O2 \rightarrow NC4CHO +	2.50E-14*EXP(-300/T)	
HO2		
$ISOPCNO3 + OH \rightarrow INCO2$	1.12E-10	
$NC4CHO + NO3 \rightarrow NC4CO3 +$	4.25*1.4E-12*EXP(-1860/T)	
HNO3		
NC4CHO + OH → C510O2	0.52*4.16E-11	
NC4CHO + OH → NC4CO3	0.48*4.16E-11	
NC4CHO + O3 \rightarrow NOA +	0.5*2.4E-17	
GLYOOC		
NC4CHO + O3 \rightarrow GLYOX +	0.5*2.4E-17	
NOAOOA		
CH2OO + CO → HCHO	1.2E-15	
$CH2OO + NO2 \rightarrow HCHO + NO3$	1E-15	
$MACO3 + NO3 \rightarrow CH3C2H2O2$	1.74 * 2.3E-12	
+ NO2		
MACO3 + HO2 → CH3C2H2O2	0.44 * 5.2E-13*EXP(980/T)	
MACO3 + HO2 →	0.66 5.2E-13*EXP(980/T)	
$MA\overline{CO3} + RO2 \rightarrow CH3C2H2O2$	0.7*1E-11	
MACO3 + RO2 →	0.3*1E-11	

MGLYOOB → MGLYOO	0.18*1E6	
MGLYOOB \rightarrow OH + CO +	0.82*1E6	
CH3CO3		
MGLYOX + NO3 → CH3CO3 +	2.4*1.4E-12*EXP(-1860/T)	
CO + HNO3		
$MGLYOX + OH \rightarrow CH3CO3 +$	1.9E-12*exp(575/T)	
СО		
CH2OOG → CH2OO	0.37*1E6	
CH2OOG → CO	0.47*1E6	
CH2OOG → HO2 + CO + OH	0.16*1E6	
MACRO2 + HO2 →	0.625*2.91E-13 * EXP(1300/T)	
MACROOH		
MACRO2 + NO3 → MACRO +	2.3E-12	
NO2		
MACRO2 + RO2 → ACETOL	9.2E-14	
MACROHO2 + HO2 →	0.625*2.91E-13 * EXP(1300/T)	
(MACROHOOH)		
MACROHO2 + NO3 →	2.3E-12	
MACROHO + NO2		
$MACROHO2 + RO2 \rightarrow (div)$	1.4E-12	
MGLOOA → CH3CHO	0.2*1E6	
MGLOOA → OH + CO +	0.36*1E6	
CH3CO3		
MGLOOA → CH3CO3 + HCHO	0.2*1E6	
+ HO2		
MGLOOA → MGLOO	0.24*1E6	
CH2OOB → CH2OO	0.24*1E6	
CH2OOB → CO	0.4*1E6	
$CH2OOB \rightarrow HO2 + CO + OH$	0.36*1E6	
HMVKAO2 + HO2 →	0.625*2.91E-13 * EXP(1300/T)	
(HMVKAOOH)		
$HMVKAO2 + NO3 \rightarrow NO2 +$	2.3E-12	
HMVKAO		
$HMVKAO2 + RO2 \rightarrow (div)$	2E-12	
HMVKBO2 + HO2 \rightarrow	0.625*2.91E-13 * EXP(1300/T)	
(HMVKBOOH)		
$HMVKBO2 + NO3 \rightarrow NO2 +$	2.3E-12	
НМVКВО		
$HMVKBO2 + RO2 \rightarrow (div)$	8.8E-13	
C3H6 + O3 → CH2OOB +	0.5*5.5E-15*EXP(-1880/T)	
СНЗСНО		

C3H6 + O3 → CH3CHOOA +	0.5*5.5E-15*EXP(-1880/T)	
НСНО		
C3H6 + NO3 → PRONO3AO2	0.35*4.6E-13*EXP(-1155/T)	
C3H6 + NO3 → PRONO3BO2	0.65*4.6E-13*EXP(-1155/T)	
C3H6 + OH → HYPROPO2	0.87* ((8e-27*(T/300)@-3.5)*M*(3.0e-11*(T/300)@-1))/	
	((8e-27*(T/300)@-3.5)*M+(3.0e-11*(T/300)@-1))*	
	10@(log10(0.5)/(1+(log10((8e-27*(T/300)@-3.5)*M/	
	(3.0e-11*(T/300)@-1))/(0.75-1.27*log10(0.5)))@2))	
$C3H6 + OH \rightarrow IPROPOLO2$	0.13* ((8e-27*(T/300)@-3.5)*M*(3.0e-11*(T/300)@-1))/	
	((8e-27*(T/300)@-3.5)*M+(3.0e-11*(T/300)@-1))*	
	$10@(\log 10(0.5)/(1+(\log 10((8e-27*(T/300)@-3.5)*M/$	
	(3.0e-11*(T/300)@-1))/(0.75-1.27*log10(0.5)))@2))	
CH3CO3 + HO2 → CH3CO2H +	5.2E-13*EXP(980/T)	
03		
$CH3CO3 + NO3 \rightarrow NO2 +$	4E-12	
CH3O2		
CH3CO3 + RO2 → CH3CO2H	0.3*1E-11	
CH3CO3 + RO2 → CH3O2	0.7*1E-11	
MACROO + CO → MACR	1.2e-15	
MACROO + NO2 \rightarrow MACR +	1E-15	
NO3		
CH3O2 + HO2 →	3.8E-13*EXP(780/T)*(1-1/(1+498*EXP(-1160/T)))	
CH3O2 + HO2 → HCHO	3.8E-13*EXP(780/T)*(1/(1+498*EXP(-1160/T)))	
CH3O2 + NO3 → CH3O + NO2	1.2E-12	
CH3O2 + RO2 → CH3OH	0.5* 2*1.03E-13*EXP(365/T)*0.5*(1-7.18*EXP(-885/T))	
CH3O2 + RO2 → HCHO	0.5* 2*1.03E-13*EXP(365/T)*0.5*(1-7.18*EXP(-885/T))	
MVKOO + CO → MVK	1.2E-15	
$MVKOO + NO2 \rightarrow MVK + NO3$	1E-15	
MVKO2 + HO2 → (MVKOOH)	0.625*2.91E-13 * EXP(1300/T)	
MVKO2 + NO3 → NO2	2.3E-12	
$MVKO2 + RO2 \rightarrow (div)$	2E-12	
CISOPAO2 + HO2 \rightarrow	0.706*2.91E-13 * EXP(1300/T)	
ISOPAOOH		
CISOPAO2 + NO3 → CISOPAO	2.3E-12	
+ NO2		
CISOPAO2 → C536O2	0.5*2.20E10*EXP(-8174/T)*EXP(1.00E8/T@3)	
CISOPAO2 → C5HPALD1 +	0.5*2.20E10*EXP(-8174/T)*EXP(1.00E8/T@3)	
HO2		
CISOPAO2 → CISOPA	5.22E15*EXP(-9838/T)	
CISOPAO2 + RO2→ CISOPAO	0.8*2.4E-12	

CISOPAO2 + RO2 \rightarrow	0.1*2.4E-12	
HC4ACHO		
CISOPAO2 + RO2 → ISOPAOH	0.1*2.4E-12	
ISOPBO2 + HO2 → ISOPBOOH	0.706*2.91E-13 * EXP(1300/T)	
$ISOPBO2 + NO3 \rightarrow ISOPBO +$	2.3E-12	
NO2		
ISOPBO2 + RO2 → ISOPBO	0.8*8E-13	
ISOPBO2 + RO2 → ISOPBOH	0.2*8E-13	
CISOPCO2 + HO2 \rightarrow	0.706*2.91E-13 * EXP(1300/T)	
ISOPCOOH		
CISOPCO2 + NO3 → CISOPCO	2.3E-12	
+ NO2		
CISOPCO2 → C537O2	0.5*2.20E10*EXP(-8174/T)*EXP(1.00E8/T@3)	
CISOPCO2 → C5HPALD2 +	0.5*2.20E10*EXP(-8174/T)*EXP(1.00E8/T@3)	
HO2		
CISOPCO2 → CISOPC	3.06E15*EXP(-10254/T)	
CISOPCO2 + RO2 → CISOPCO	0.8*2E-12	
CISOPCO2 + RO2 \rightarrow	0.2*2E-12	
НС4ССНО		
CISOPCO2 + RO2 → ISOPAOH	0.2*2E-12	
ISOPDO2 + HO2 → ISOPDOOH	0.706*2.91E-13 * EXP(1300/T)	
$ISOPDO2 + NO3 \rightarrow ISOPDO +$	2.3E-12	
NO2		
ISOPDO2 + RO2 → ISOPDO	0.8*2.9E-12	
$ISOPDO2 + RO2 \rightarrow HCOC5$	0.1*2.9E-12	
ISOPDO2 + RO2 → ISOPDOH	0.1*2.9E-12	
ISOP34OOH + OH → HC4CHO	9.73E-11	
+ OH		
ISOP34O \rightarrow MACR + HCHO +	1E6	
HO2		
HC4CHO + OH → C58O2	0.829*1.04E-10	
HC4CHO + OH → HC4CO3	0.171*1.04E-10	
$ISOPDOH + OH \rightarrow HCOC5 +$	7.38E-11	
HO2		
NC526O2 + NO3 → NO2 +	2.3E-12	
NC526O2 + RO2 →	9.20E-14	
CH2OOC → CH2OO	0.18*1E6	
CH2OOC → HO2 + CO+ OH	0.82*1E6	
CO2C3CHO + NO3 → HNO3 +	4* 1.4E-12*EXP(-1860/T)	
CO2C3CO3		

CO2C3CHO + OH →	7.15E-11	
CO2C3CO3		
CO2C3OOB → C4CO2O2 + OH	0.82*1E6	
CO2C3OOB → CO2C3OO	0.18*1E6	
C530O2 + HO2 →	0.706*2.91E-13 * EXP(1300/T)	
C530O2 + NO3 → NO2 +	2.3E-12	
C530O2 + RO2 →	9.2E-14	
ME3BU3ECO3 + HO2 →	0.44*1.4E-12*EXP(-1860/T)	
C45O2 + OH + NO2		
ME3BU3ECO3 + HO2 →	0.56*2.91E-13 * EXP(1300/T)	
ME3BU3ECO + NO3 → C45O2	1.6*2.3E-12	
+ NO2		
ME3BU3ECO3 + RO2 → C45O2	1E-11	
NC510O2 + HO2 →	0.625*2.91E-13 * EXP(1300/T)	
NC510O2 + NO3 → NO2 +	2.3E-12	
NC510O2 + RO2 →	8.8E-12	
CO2C3OOA → C4CO2O2 + OH	0.36*1E6	
CO2C3OOA → CH2COCH2O2	0.2*1E6	
+ HO2		
CO2C3OOA → CH2COCH3	0.2*1E6	
CO2C3OOA → CO2C3OO	0.24*1E6	
C51O2 + HO2 →	0.706*2.91E-13 * EXP(1300/T)	
C51O2 + NO3 → NO2 +	2.3E-12	
ISOPAO2 + HO2 → ISOPAOOH	0.706*2.91E-13 * EXP(1300/T)	
ISOPAO2 + NO3 \rightarrow NO2 +	2.3E-12	
ISOPAO		
ISOPAO2 + RO2 → HC4ACHO	0.1*2.4E-12	
ISOPAO2 + RO2 → ISOPAO	0.8*2.4E-12	
ISOPAO2 + RO2 → ISOPAOH	0.1*2.4E-12	
ISOPCO2 + HO2 → ISOPCOOH	0.706*2.91E-13 * EXP(1300/T)	
$ISOPCO2 + NO3 \rightarrow NO2 +$	2.3E-12	
ISOPCO		
ISOPCO2 + RO2 → HC4CCHO	0.1*2E-12	
ISOPCO2 + RO2 → ISOPAOH	0.1*2E-12	
ISOPCO2 + RO2 → ISOPCO	0.8*2E12	
Secondary oxidation (3 rd +		
generation)		
INCO2 + HO2 →	0.706*2.91E-13 * EXP(1300/T)	
INCO2 + NO3 → NO2 +	2.3E-12	
INCO2 + RO2 →	2.9E-12	

$NC4CO3 + HO2 \rightarrow NOA + CO+$	0.44*5.2E-13*EXP(980/T)	
HO2 + OH		
NC4CO3 + HO2 →	0.66*5.2E-13*EXP(980/T)	
$NC4CO3 + NO3 \rightarrow NOA + CO +$	1.74*2.3E-12	
HO2 + NO2		
NC4CO3 + RO2 →	0.3*1E-11	
$NC4CO3 + RO2 \rightarrow NOA + HO2$	0.7*1E-11	
+ CO		
$NOA + OH \rightarrow MGLYOX + NO2$	1.3E-13	
C510O2 + HO2 →	0.706*2.91E-13 * EXP(1300/T)	
C510O2 + NO3 → NO2	2.3E-12	
C510O2 + RO2 →	9.2E-14	
GLYOOC → GLYOO	0.11*1E6	
$GLYOOC \rightarrow OH + HO2 + CO +$	0.89*1E6	
СО		
$GLYOO + NO2 \rightarrow GLYOX +$	1E-15	
NO3		
NOAOOA → NOAOO	0.11*1E6	
NOAOOA \rightarrow OH + NO2 +	0.89*1E6	
MGLYOX		
$NOAOO + NO2 \rightarrow NOA + NO3$	1E-15	
CH3C2H2O2 → CH3CO3 +	0.35*1E6	
НСНО		
CH3C2H2O2 → HCHO +	0.65*1E6	
CH3O2 + CO		
$MGLYOO + NO2 \rightarrow MGLYOX$	1E-15	
+ NO3		
$MACROOH + OH \rightarrow ACETOL$	3.77E-11	
+ CO + OH		
MACRO \rightarrow ACETOL + CO+	1E6	
HO2		
MACROHO → MGLYOX +	1E6	
HCHO + HO2		
$MGLOO + NO2 \rightarrow MGLYOX +$	1E-15	
NO3		
HMVKAO → MGLYOX +	1E6	
HCHO + HO2		
HMVKBO → CH3CO3 +	1E6	
НОСН2СНО		
CH3CHOOA → CH3CHOO	0.24*1E6	

CH3CHOOA → CH3O2 + CO +	0.36*1E6	
ОН		
CH3CHOOA → CH3O2 + HO2	0.2*1E6	
CH3CHOOA →	0.2*1E6	
CH3CHOO+ CO → CH3CHO	1.2E-15	
CH3CHOO + NO2 → CH3CHO	1E-15	
+ NO3		
PRONO3AO2 + HO2 →	0.520*2.91E-13 * EXP(1300/T)	
$PRONO3AO2 + NO3 \rightarrow NO2 +$	2.3E-12	
PRONO3AO2 + RO2 →	0.2*6E-13	
PRONO3BO2 + HO2 →	0.520*2.91E-13 * EXP(1300/T)	
$PRONO3BO2 + NO3 \rightarrow NO2 +$	2.3E-12	
PRONO3BO2 + RO2 →	0.2*4E-14	
HYPROPO2 + HO2 →	0.520*2.91E-13 * EXP(1300/T)	
HYPROPO2 + NO3 → NO2 +	2.3E-12	
HYPROPO2 + RO2 →	8.8E-13	
IPROPOLO2 + HO2 →	0.520*2.91E-13 * EXP(1300/T)	
$IPROPOLO2 + NO3 \rightarrow NO2 +$	2.3E-12	
IPROPOLO2 + RO2 →	2E-12	
MVKOOH + OH → VGLYOX	2.55E-11	
$MVKOOH + OH \rightarrow MVKO2$	1.90E-12*EXP(190/T)	
$VGLYOX + NO3 \rightarrow$	2.0*1.4E-12*EXP(-1860/T)	
CH3CO2H + OH → CH3O2	8E-13	
ISOPAOOH + OH →	0.05*1.54E-10	
HC4ACHO		
$ISOPAOOH + OH \rightarrow IEPOXA +$	0.93*1.54E-10	
ОН		
$ISOPAOOH + OH \rightarrow ISOPAO2$	0.02*1.54E-10	
HC4ACHO + NO3 → HC4ACO3	4.25*1.4E-12*EXP(-1860/T)	
+ HNO3		
$HC4ACHO + O3 \rightarrow ACETOL +$	0.5*2.4E-17	
GLYOX		
$HC4ACHO + O3 \rightarrow CO +$	0.5*2.4E-17	
HC4ACHO + OH → C58O2	0.52*4.52E-11	
HC4ACHO + OH → HC4ACO3	0.49*4.52E-11	
C58O2 + HO2 →	0.706*2.91E-13 * EXP(1300/T)	
C58O2 + NO3 → NO2 +	2.3E-12	
C58O2 + RO2 →	9.2E-14	
HC4ACO3 + HO2 →	5.2E-13*EXP(980/T)	
$HC4ACO3 + NO3 \rightarrow NO2 +$	1.74*2.3E-12	
HC4ACO3 + RO2 →	1E-11	

HC4ACO3 → HO2 +	2.20E10*EXP(-8174/T)*EXP(1.00E8/T@3)	
CISOPAO → C526O2	0.19*1E6	
CISOPAO → HC4CCHO + HO2	0.63*1E6	
CISOPAO → HO2 + M3F	0.18*1E6	
C526O2 + HO2 →	0.706*2.91E-13 * EXP(1300/T)	
C526O2 + NO3 → NO2 +	2.3E-12	
C526O2 + RO2 →	9.20E-14	
$C526O2 \rightarrow CO + OH$	3.00E7*EXP(-5300/T)	
$M3F + NO3 \rightarrow NO2 +$	1.9E-11	
$M3F + O3 \rightarrow$	2E-17	
$M3F + OH \rightarrow HO2 +$	9E-11	
C536O2 + HO2 →	0.706*2.91E-13 * EXP(1300/T)	
C536O2 + NO3 → NO2 +	2.3E-12	
C536O2 + RO2 →	9.20E-14	
C536O2 → CO + OH	3.00E7*EXP(-5300/T)	
C5HPALD1 + NO3 \rightarrow OH +	4.25*1.4E-12*EXP(-1860/T)	
HNO3 +		
C5HPALD1 + O3 →	0.73*2.4E-17	
MGLYOOA		
C5HPALD1 + O3 → MGLYOX	0.27*2.4E-17	
MGLYOOA → MGLYOO	0.11*1E6	
MGLYOOA → CH3CO3 + OH	0.89*1E6	
+CO		
C5HPALD1 + OH → OH +	5.2E-11	
$ISOPAOH + OH \rightarrow HC4ACHO +$	0.5*9.3E-11	
HO2		
$ISOPAOH + OH \rightarrow HC4CCHO$	0.5*9.3E-11	
+ HO2		
HC4CCHO + NO3 → HC4CCO3	4.25*1.4E-12*EXP(-1860/T)	
+ HNO3		
HC4CCHO + O3 →	2.4E-17	
HC4CCHO + OH → C57O2	0.52*4.52E-11	
HC4CCHO + OH → HC4CCO3	0.48*4.52E-11	
HC4CCO3 + HO2 →	5.2E-13*EXP(980/T)	
$HC4CCO3 + NO3 \rightarrow NO2 +$	1.74*2.3E-12	
HC4CCO3 + RO2 →	1E-11	
C57O2 + HO2 →	0.706*2.91E-13 * EXP(1300/T)	
C57O2 + NO3 → NO2 +	2.3E-12	
C57O2 + RO2 →	9.20E-14	
$ISOPBOOH + OH \rightarrow IEPOXB +$	0.92*5E-11	
OH		

$ISOPBOOH + OH \rightarrow ISOPBO2$	0.08*5E-11	
$IEPOXB + OH \rightarrow IEB1O2$	0.5*9.05E-12	
IEPOXB + OH → IEB2O2	0.5*9.05E-12	
IEB1O2 + HO2 →	0.706*2.91E-13 * EXP(1300/T)	
IEB1O2 + NO3 → NO2 +	2.3E-12	
IEB1O2 + RO2 →	9.20E-14	
IEB1O2 + HO2 →	0.706*2.91E-13 * EXP(1300/T)	
IEB1O2 + NO3 → NO2 +	2.3E-12	
IEB1O2 + RO2 →	8.8E-13	
ISOPBO \rightarrow MVK + HCHO +	1E6	
HO2		
ISOPBOH + OH → ISOPBO	3.85E-11	
$ISOPCOOH + OH \rightarrow HC4CCHO$	0.05*1.54E-10	
+ OH		
$ISOPCOOH + OH \rightarrow IEPOXC +$	0.93*1.54E-10	
ОН		
$ISOPCOOH + OH \rightarrow ISOPCO2$	0.02*1.54E-10	
$IEPOXC + OH \rightarrow IEC1O2$	0.719*1.5E-11	
IEPOXC + OH \rightarrow	0.281*1.5E-11	
IEC1O2 + HO2 →	0.706*2.91E-13 * EXP(1300/T)	
$IEC1O2 + NO3 \rightarrow NO2 +$	2.3E-12	
IEC1O2 + RO2 →	9.2E-14	
CISOPCO → C527O2	0.3*1E6	
CISOPCO → HC4ACHO	0.52*1E6	
CISOPCO → HO2 + M3F	0.18*1E6	
C527O2 + HO2 →	0.706*2.91E-13 * EXP(1300/T)	
C527O2 + NO3 → NO2 +	2.3E-12	
C527O2 + RO2 →	8.8E-13	
C527O2 → CO + OH	3.00E7*EXP(-5300/T)	
C537O2 + HO2 →	0.706*2.91E-13 * EXP(1300/T)	
C537O2 + NO3 → NO2 +	2.3E-12	
C537O2 + RO2 →	9.2E-14	
C537O2 → CO + OH	3.00E7*EXP(-5300/T)	
C5HPALD2 + NO3 \rightarrow OH +	4.25*1.4E-12*EXP(-1860/T)	
HNO3 +		
C5HPALD2 + O3 \rightarrow	0.73*2.4E-17	
MGLYOOC		
$C5HPALD2 + O3 \rightarrow MGLYOX$	0.27*2.4E-17	
$C5HPALD2 + OH \rightarrow OH$	5.2E-11	
$ISOPAOH + OH \rightarrow HC4ACHO$	0.5*9.3E-11	
+ HO2		

ISOPAOH + OH → HC4CCHO	0.5*9.3E-11	
+ HO2		
$ISOPDOOH + OH \rightarrow HCOC5 +$	0.22*1.15E-10	
ОН		
$ISOPDOOH + OH \rightarrow IEPOXB +$	0.75*1.15E-10	
ОН		
ISOPDOOH + ISOPDO2	0.03*1.15E-10	
OH + HCOC5 → C59O2	3.81E-11	
C59O2 + HO2 →	0.706*2.91E-13 * EXP(1300/T)	
C59O2 + NO3 → NO2 +	2.3E-12	
C59O2 + RO2 →	9.2E-14	
ISOPDO \rightarrow MACR + HCHO +	1E6	
HO2		
$ISOPDOH + OH \rightarrow HCOC5$	7.38E-11	
HC4CO3 + HO2 →	0.56*2.91E-13 * EXP(1300/T)	
$HC4CO3 + HO2 \rightarrow MACR +$	0.44*2.91E-13 * EXP(1300/T)	
HO2 + OH		
$HC4CO3 + NO3 \rightarrow MACR +$	1.5*2.3E-12	
HO2 + NO2		
HC4CO3 → MACR + HO2	1E-11	
$CO2C3CO3 + HO2 \rightarrow$	0.44*2.91E-13 * EXP(1300/T)	
CH3COCH2O2		
CO2C3CO3 + HO2 →	0.56*2.91E-13 * EXP(1300/T)	
$CO2C3CO3 + NO3 \rightarrow$	1.74*2.3E-12	
CH3COCH2O2 + NO2		
CO2C3CO3 → CH3COCH2O2	1E-11	
$CH3COCH2O2 + HO2 \rightarrow OH +$	0.15*1.36E-13*EXP(1250/T)	
CH3COCH2O2 + HO2 →	0.85*1.36E-13*EXP(1250/T)	
CH3COCH2O2 + NO3 → NO2 +	2.3E-12	
CH3COCH2O2 + RO2 →	0.2* 2*(3.5E-13*8E-12)@0.5	
ACETOL		
CH3COCH2O2 + RO2 →	0.6* 2*(3.5E-13*8E-12)@0.5	
CH3COCH2O2 + RO2 →	0.2* 2*(3.5E-13*8E-12)@0.5	
MGLYOX		
CO2C3OO + CO →	1.2E-15	
$CO2C3OO + NO2 \rightarrow NO3 +$	1E-15	
C4CO2O2 + HO2 →	0.625*2.91E-13 * EXP(1300/T)	
$C4CO2O2 + NO3 \rightarrow NO2 +$	2.3E-12	
C4CO2O2 + RO2 →	8.8E-12	
C45O2 + HO2 →	0.625*2.91E-13 * EXP(1300/T)	
C45O2 + NO3 → NO2 +	2.3E-12	

C45O2 + RO2 →	1.3E-12			
ISOPAO → C524O2	0.25*1E6			
ISOPAO → HC4CHO + HO2	0.75*1E6			
C524O2 + HO2 →	0.706*2.91E-13 * EXP(1300/T)			
C5242 + NO3 → NO2 +	2.3E-12			
C5242 + RO2 →	2.9E-12			
$ISOPCOOH + OH \rightarrow HC4CCHO$	0.05*1.54E-10			
+ OH				
$ISOPCOOH + OH \rightarrow IEPOXC +$	0.93*1.54E-10			
ОН				
ISOPCOOH + ISOPCO2	0.02*1.54E-10			
ISOPCO → HC4ACHO + HO2	0.75*1E6			
ISOPCO → HC4CCHO + HO2	0.25*1E6			
β-caryophyllene		Jenkin et al., 2012		
$BCARY + NO3 \rightarrow NBCO2$	1.9E-11			
NBCO2 + NO3 →	2.3E-12			
$BCARY + O3 \rightarrow BCAOO$	0.435*1.2E-14			
$BCARY + O3 \rightarrow BCBOO$	0.435*1.2E-14			
$BCARY + O3 \rightarrow$	0.13*1.2E-14			
BCAOO → BCSOZ	8E1			
BCBOO → BCSOZ	1.2E2			
SAPHIR chamber				
$Y + OH \rightarrow HO2$	1.44E-13*(1+(M/4.2E19))	OH background reactivity; behaving		
		like CO (Fuchs et al., 2013)		
$Z + wall \rightarrow$	3.86E-6	Wall loss for O ₃ , H ₂ O ₂ , HO, HONO		
		and HNO ₃		
$NO3 + wall \rightarrow$	1.6E-3	Wall loss NO ₃		
$N2O5 + wall \rightarrow$	3.3E-4	Wall loss N ₂ O ₅		
Definitions				
RO2	NISOPO2 + ISOP34O2 + CH3C2H2O2 + MACO3 + MACRO2	organic peroxides		
	+ MACROHO2 + CH3CO3 + HMVKAO2 + HMVKBO2 +			
	CH3O2 + MVKO2 + CISOPAO2 + ISOPBO2 + CISOPCO2 +			
	ISOPDO2 + NC526O2 + C530O2 + M3BU3ECO3 + C45O2 +			
	NC5102 + C5102 + ISOPA02 + ISOPC02 + INC02 + NC4C03			
	+ C510O2 + PRONO3AO2 + PRONO3BO2 + HYPROPO2 +			
	IPROPOLO2 + C536O2 + C537O2 + INAO2 + C58O2 +			
	HC4CO3 + CO2C3CO3 + CH3COCH2O2 + C4CO2O2 +			
	C527O2 + C526O2 + HC4ACO3 HC4CCO3 + C57O2 + C59O2			
	+ C524O2			
kNO3_all	C5H8*2.95E-12*exp(450/T) + BCARY*1.9E-11 + C3H6*4.6E-	overall NO3 reactivity		
	13*exp(-1155/T) + (2.3E-12*(NISOPO2 + ISOPAO2 +			

	ISOPBO2 + ISOPCO2 + ISOPDO2 + CH3C2H2O2 + MACO3 +	
	MACRO2 + MACROHO2 + HMVKAO2 + HMVKBO2 +	
	MVKO2 + INCO2 + CISOPAO + CISOPAO2 + (NC4CO3*1.74)	
	+ C510O2 + NBCO2 + PRONO3AO2 + PRONO3BO2 +	
	HYPROPO2 + IPROPOLO2 + INAO2 + C524O2 +	
	(HC4ACO3*1.74) + (1.6*HC4CO3) + C58O2 + INB1O2 +	
	(HC4CCO3*2.74) + INDO2 + C57O2 + C59O2 + C51O2 +	
	IEB102 + IEB202 + IEC102 + ISOP3402 + CISOPC02 +	
	NC526O2 + C527O2 + C526O2 + C536O2 + C537O2 + C530O2	
	+ C45O2 + $1.6*M3BU3ECO3$ + INB2O2 + NC51O2 +	
	1.74*CO2C3CO3 + CH3COCH2O2 + C4CO2O2)) + (4E-	
	12*CH3CO3) +	
	(1.2E-12*CH3O2) + (HO2*4E-12) + (5.5E-16*HCHO) + (4E-	
	19*CO) + 1.4E-12*EXP(-1860/T)*(NC4CHO*4.25 +	
	HC4ACHO*4.25 + HC4CCHO*4.25 + 2.4*MGLYOX +	
	4*CO2C3CHO + 4.25*C5HPALD1 + 4.25*C5HPALD2	
	+2*VGLYOX) + 3.3E-13*ME3BU3ECHO + (M3F*1.9E-11) +	
	(1.2E-14*PE4E2CO)	
kNO3_stable	C5H8*2.95E-12*exp(450/T) + BCARY*1.9E-11 + C3H6*4.6E-	NO ₃ reactivity measurable by FT-
	13*exp(-1155/T) + (5.5E-16*HCHO) + (4E-19*CO) + 1.4E-	CRDS
	12*EXP(-1860/T)*(NC4CHO*4.25 + HC4ACHO*4.25 +	
	HC4CCHO*4.25 + 2.4*MGLYOX + 4*CO2C3CHO +	
	4.25*C5HPALD1 + 4.25*C5HPALD2 +2*VGLYOX) + 3.3E-	
	13*ME3BU3ECHO + (M3F*1.9E-11) + (1.2E-14*PE4E2CO)	
М	P*(3.24E16)*(298/T)	Total molecular concentration using
		measured pressure P in Torr and
		temperature T in K

Comparison of k^{OH} and k^{NO_3}

During NO3ISOP, k^{OH} was measured with an instrument based on laser photolysis – laser induced fluorescence (LP-LIF)

- 40 (Hofzumahaus et al., 2009; Lou et al., 2010; Fuchs et al., 2017a; Fuchs et al., 2017b). Ambient air was passed at a flow rate of 19 L min⁻¹ through a flow tube and part of the air was drawn into an OH fluorescence detection cell. OH radicals were produced within a few nanoseconds in the flow tube by pulsed laser-photolysis of O₃ (at 266 nm) with subsequent reaction of O(¹D) atoms with water vapour. OH concentration profiles were recorded by LIF, with k^{OH} determined from the exponential decay constant after correction for diffusion / wall loss (1.8 ± 0.15 s⁻¹). The time resolution of the k^{OH} measurements was 90 s with
- a limit of detection of 0.5 s⁻¹. The resulting accuracy of k^{OH} is (5-10) % ± 0.2 s⁻¹ at NO mixing ratios below 20 ppbv. Each isoprene injection results in an increase in reactivity of both OH and NO₃. Within the first few minutes after an isoprene injection, the contribution of secondary oxidation products to both k^{NO3} and k^{OH} is negligible. Hence, the increase in the OH-and NO₃ reactivity (Δk^{OH} and Δk^{NO3}) directly after an isoprene injection scales with the amount of isoprene injected and the corresponding rate coefficient (k_{NO3}+ c_{5H8} = 6.5 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹, k_{OH+C5H8} = 1 × 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹ at 298 K
 (IUPAC, 2019)). For any particular injection, both approaches should lead to similar isoprene concentrations as shown in Eq. S1.

$$[\text{Isoprene}] = \frac{\Delta k^{OH}}{k_{\text{OH}+C_5H_8}} = \frac{\Delta k^{NO_3}}{k_{NO_3+C_5H_8}}$$
(S1)

Figure S1 plots the isoprene mixing ratios derived from measurements of Δk^{OH} versus those derived from Δk^{NO_3} . For experiments with isoprene mixing ratios below ~5 ppbv a slope of 0.88 ± 0.11 was obtained. During two injections, when high concentrations of isoprene (~11 and ~22 ppbv) were injected in the chamber, the Δk^{OH} measurement returns isoprene mixing

55 concentrations of isoprene (~11 and ~22 ppbv) were injected in the chamber, the Δk^{OH} measurement returns isoprene mixing ratios that are significantly lower than those derived from Δk^{NO_3} and the mixing ratio expected from the amount of isoprene injected. On these days, a combination of the low laser power and a small number of points to fit the (rapid) exponential decay mean that the OH reactivity must be considered a lower-limit.

60

Figure S1: Isoprene mixing ratios deduced from Δk^{OH} against those from Δk^{NO_3} under the usage of Eq. (S1) for isoprene injections of different experiments (days). The error bars denote the associated uncertainties in Δk^{NO_3} (4-70%, Liebmann et al., 2017) and $k_{NO_3+C_5H_8}$ (41% (IUPAC, 2019)) and Δk^{OH} (10%, for [isoprene] < 5 ppbv) and $k_{OH+C_5H_8}$ (15% (IUPAC, 2019)). The black line indicates the case of ideal 1:1 correlation, the red line shows an orthogonal linear regression (slope: 0.88 \pm 0.11, intercept: 0.17 \pm (0.23) for data points < 5 ppby.

Validity of the steady-state assumption

The validity of the steady-state assumption was checked with the help of a correlation plot between the steady-state $(k_{SS}^{NO_3})$ and non-steady-state $(k_{nss}^{NO_3})$ reactivity as depicted in Fig. S2a. A slope close to 1 is found for most of the experiments. At

70 injection points of NO₂ or at low reactivities larger differences are observed which are related to short-term perturbation of the equilibrium between NO₃ and N_2O_5 and deviation from steady-state.

Figure S2b compares k_{ss}^{NO3} with k_{nss}^{NO3} on the 2nd August. Between 9:00 and 11:00 UTC only NO₂ and O₃ were injected into chamber so that the influence of the chamber alone (reaction with the walls and the dilution flow) determines the NO₃ losses.
75 As the NO₃ loss rate is low under these circumstances, nearly half an hour is necessary to achieve steady-state. This is confirmed by the difference between k_{nss}^{NO3} and k_{ss}^{NO3}. Under the experimental conditions, the equilibrium between NO₃ and N₂O₅ is reached more rapidly than the steady state (Brown et al., 2003). Consequently, k_{nss}^{NO3} acquires a constant value earlier than k_{ss}^{NO3}. A reinjection of NO₂ at ~10:50 perturbs the stationary-state and therefore strongly affects k_{ss}^{NO3} whereas k_{nss}^{NO3} remains mostly unchanged. After the injection of isoprene the high NO₃-reactivity means that the steady-state assumption becomes valid, which leads to an agreement between the two methods.

Figure S2: (a) Steady-state $k_{SS}^{NO_3}$ and non-steady-state $k_{nss}^{NO_3}$ reactivities sorted by experiment. The dotted line through the origin with a slope of 1 represents perfect agreement. (b) Comparison between steady- (red) and non-steady-state (blue) reactivities on the experiment of the 2nd August. The respective uncertainties obtained from error propagation of the uncertainties in k_2 (15%; IUPAC, 2019) and the NO₃, NO₂ and O₃ mixing ratios (25%, 9% and 5%, respectively) are indicated by areas in the same colour of the data points.

Figure S3: Time-series of the measured O_3 , NO_2 , NO_3 , N_2O_5 and isoprene mixing ratios as well as the NO_3 reactivity on the experiment of the 2nd August (black). The grey shaded area symbolizes the overall uncertainty associated with each measurement. The results of the numerical simulation using MCM v.3.3.1 (with wall loss rates for NO_3 and N_2O_5 set to 0 s^{-1}) for each of the reactants is shown by a red line.

Figure S4: O₃, NO₂, NO₃, N₂O₅ and isoprene mixing ratios as well as the NO₃ reactivity on the experiment of the 10th August (black). The grey shaded area symbolizes the overall uncertainty associated with each measurement. Orange circles denote the non-steady-state reactivity obtained from Eq.(3). The results of the numerical simulation using MCM v.3.3.1 (with NO₃ and N₂O₅ wall loss rate of 0.016 s⁻¹ and 3.3 x 10⁻⁴ s⁻¹ respectively) for each of the reactants is shown by a red line, whereas the blue line shows the result of the same model with a doubled reaction constant for NO₃ + RO₂ reactions ($k_{NO_3+RO_2}$ = 4.6 x 10⁻¹² cm³molecule⁻¹s⁻¹).

References

- Brown, S. S., Stark, H., and Ravishankara, A. R.: Applicability of the steady state approximation to the interpretation of atmospheric observations of NO₃ and N₂O₅, J. Geophys. Res. -Atmos., 108, Art. 4539, doi:10.1029/2003JD003407, 2003.
 - Fuchs, H., Hofzumahaus, A., Rohrer, F., Bohn, B., Brauers, T., Dorn, H. P., Haseler, R., Holland, F., Kaminski, M., Li, X., Lu, K., Nehr, S., Tillmann, R., Wegener, R., and Wahner, A.: Experimental evidence for efficient hydroxyl radical regeneration in isoprene oxidation, Nat. Geosci., 6, 1023-1026, doi:10.1038/Ngeo1964, 2013.

Fuchs, H., Novelli, A., Rolletter, M., Hofzumahaus, A., Pfannerstill, E. Y., Kessel, S., Edtbauer, A., Williams, J., Michoud, V., Dusanter,

- 110 S., Locoge, N., Zannoni, N., Gros, V., Truong, F., Sarda-Esteve, R., Cryer, D. R., Brumby, C. A., Whalley, L. K., Stone, D., Seakins, P. W., Heard, D. E., Schoemaecker, C., Blocquet, M., Coudert, S., Batut, S., Fittschen, C., Thames, A. B., Brune, W. H., Ernest, C., Harder, H., Muller, J. B. A., Elste, T., Kubistin, D., Andres, S., Bohn, B., Hohaus, T., Holland, F., Li, X., Rohrer, F., Kiendler-Scharr, A., Tillmann, R., Wegener, R., Yu, Z. J., Zou, Q., and Wahner, A.: Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR, Atmos. Meas. Tech., 10, 4023-4053, doi:10.5194/amt-10-4023-2017, 2017a.
- 115 Fuchs, H., Tan, Z. F., Lu, K. D., Bohn, B., Broch, S., Brown, S. S., Dong, H. B., Gomm, S., Haseler, R., He, L. Y., Hofzumahaus, A., Holland, F., Li, X., Liu, Y., Lu, S. H., Min, K. E., Rohrer, F., Shao, M., Wang, B. L., Wang, M., Wu, Y. S., Zeng, L. M., Zhang, Y. S., Wahner, A., and Zhang, Y. H.: OH reactivity at a rural site (Wangdu) in the North China Plain: contributions from OH reactants and experimental OH budget, Atmos. Chem. Phys., 17, 645-661, doi:10.5194/acp-17-645-2017, 2017b.

Hjorth, J., Ottobrini, G., and Restelli, G.: Reaction of the NO3 radical with CO: Determination of an upper limit for the rate constant using FTIR spectroscopy, Int. J. Chem. Kinet., 18, 819-827, doi:10.1002/kin.550180802, 1986.

Hofzumahaus, A., Rohrer, F., Lu, K. D., Bohn, B., Brauers, T., Chang, C. C., Fuchs, H., Holland, F., Kita, K., Kondo, Y., Li, X., Lou, S. R., Shao, M., Zeng, L. M., Wahner, A., and Zhang, Y. H.: Amplified Trace Gas Removal in the Troposphere, Science, 324, 1702-1704, 2009.

IUPAC: Task Group on Atmospheric Chemical Kinetic Data Evaluation, (Ammann, M., Cox, R.A., Crowley, J.N., Herrmann, H., Jenkin, M.E., McNeill, V.F., Mellouki, A., Rossi, M. J., Troe, J. and Wallington, T. J.) <u>http://iupac.pole-ether.fr/index.html</u>., 2019.

125 Jenkin, M. E., Wyche, K. P., Evans, C. J., Carr, T., Monks, P. S., Alfarra, M. R., Barley, M. H., McFiggans, G. B., Young, J. C., and Rickard, A. R.: Development and chamber evaluation of the MCM v3.2 degradation scheme for beta-caryophyllene, Atmos. Chem. Phys., 12, 5275-5308, doi:10.5194/acp-12-5275-2012, 2012.

Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem. Phys., 15, 11433-11459, doi:10.5194/acp-15-11433-2015, 2015.

130 Lou, S., Holland, F., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C. C., Fuchs, H., Haseler, R., Kita, K., Kondo, Y., Li, X., Shao, M., Zeng, L., Wahner, A., Zhang, Y., Wang, W., and Hofzumahaus, A.: Atmospheric OH reactivities in the Pearl River Delta - China in summer 2006: measurement and model results, Atmos. Chem. Phys., 10, 11243-11260, doi:10.5194/acp-10-11243-2010, 2010.