Articles | Volume 20, issue 17
https://doi.org/10.5194/acp-20-10211-2020
https://doi.org/10.5194/acp-20-10211-2020
Research article
 | 
03 Sep 2020
Research article |  | 03 Sep 2020

Size dependence in chord characteristics from simulated and observed continental shallow cumulus

Philipp J. Griewank, Thijs Heus, Neil P. Lareau, and Roel A. J. Neggers

Related authors

Guidance on how to improve vertical covariance localization based on a 1000-member ensemble
Tobias Necker, David Hinger, Philipp Johannes Griewank, Takemasa Miyoshi, and Martin Weissmann
Nonlin. Processes Geophys., 30, 13–29, https://doi.org/10.5194/npg-30-13-2023,https://doi.org/10.5194/npg-30-13-2023, 2023
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
How well can persistent contrails be predicted? An update
Sina Hofer, Klaus Gierens, and Susanne Rohs
Atmos. Chem. Phys., 24, 7911–7925, https://doi.org/10.5194/acp-24-7911-2024,https://doi.org/10.5194/acp-24-7911-2024, 2024
Short summary
Present-day correlations are insufficient to predict cloud albedo change by anthropogenic aerosols in E3SM v2
Naser Mahfouz, Johannes Mülmenstädt, and Susannah Burrows
Atmos. Chem. Phys., 24, 7253–7260, https://doi.org/10.5194/acp-24-7253-2024,https://doi.org/10.5194/acp-24-7253-2024, 2024
Short summary
Simulations of primary and secondary ice production during an Arctic mixed-phase cloud case from the Ny-Ålesund Aerosol Cloud Experiment (NASCENT) campaign
Britta Schäfer, Robert Oscar David, Paraskevi Georgakaki, Julie Thérèse Pasquier, Georgia Sotiropoulou, and Trude Storelvmo
Atmos. Chem. Phys., 24, 7179–7202, https://doi.org/10.5194/acp-24-7179-2024,https://doi.org/10.5194/acp-24-7179-2024, 2024
Short summary
Microphysical characteristics of precipitation within convective overshooting over East China observed by GPM DPR and ERA5
Nan Sun, Gaopeng Lu, and Yunfei Fu
Atmos. Chem. Phys., 24, 7123–7135, https://doi.org/10.5194/acp-24-7123-2024,https://doi.org/10.5194/acp-24-7123-2024, 2024
Short summary
Effects of radiative cooling on advection fog over the northwest Pacific Ocean: observations and large-eddy simulations
Liu Yang, Saisai Ding, Jing-Wu Liu, and Su-Ping Zhang
Atmos. Chem. Phys., 24, 6809–6824, https://doi.org/10.5194/acp-24-6809-2024,https://doi.org/10.5194/acp-24-6809-2024, 2024
Short summary

Cited articles

Abma, D., Heus, T., and Mellado, J. P.: Direct Numerical Simulation of Evaporative Cooling at the Lateral Boundary of Shallow Cumulus Clouds, J. Atmos. Sci., 70, 2088–2102, https://doi.org/10.1175/jas-d-12-0230.1, 2013. a
Ansmann, A., Fruntke, J., and Engelmann, R.: Updraft and downdraft characterization with Doppler lidar: cloud-free versus cumuli-topped mixed layer, Atmos. Chem. Phys., 10, 7845–7858, https://doi.org/10.5194/acp-10-7845-2010, 2010. a, b
Arakawa, A. and Schubert, W. H.: Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I, J. Atmos. Sci., 31, 674–701, https://doi.org/10.1175/1520-0469(1974)031<0674:ioacce>2.0.co;2, 1974. a, b, c
ARM: Lasso Bundle Browser, available at: https://adc.arm.gov/lassobrowser, last access: 26 August 2020a. a
ARM: ARM Data archive, available at: https://adc.arm.gov/data/, last access: 26 August 2020b. a
Download
Short summary
The idea that larger shallow cumulus clouds have stronger updrafts than small shallow cumulus clouds is as intuitive as it is old. In this paper we gather years of upward-pointing laser measurements from a plain in Oklahoma and combine them with 28 d of high-resolution simulations. Our approach, which has much more data than previous studies, confirms that updraft strength and cloud size are linked and that the simulations reproduce the observed cloud wind and moisture structure.
Altmetrics
Final-revised paper
Preprint