Articles | Volume 20, issue 17
https://doi.org/10.5194/acp-20-10211-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-10211-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Size dependence in chord characteristics from simulated and observed continental shallow cumulus
Philipp J. Griewank
CORRESPONDING AUTHOR
University of Cologne, Cologne, Germany
Thijs Heus
Cleveland State University, Cleveland, Ohio, USA
Neil P. Lareau
University of Nevada, Reno, Nevada, USA
Roel A. J. Neggers
University of Cologne, Cologne, Germany
Related authors
Tobias Necker, David Hinger, Philipp Johannes Griewank, Takemasa Miyoshi, and Martin Weissmann
Nonlin. Processes Geophys., 30, 13–29, https://doi.org/10.5194/npg-30-13-2023, https://doi.org/10.5194/npg-30-13-2023, 2023
Short summary
Short summary
This study investigates vertical localization based on a convection-permitting 1000-member ensemble simulation. We derive an empirical optimal localization (EOL) that minimizes sampling error in 40-member sub-sample correlations assuming 1000-member correlations as truth. The results will provide guidance for localization in convective-scale ensemble data assimilation systems.
Tessa E. Rosenberger, David D. Turner, Thijs Heus, Girish N. Raghunathan, Timothy J. Wagner, and Julia Simonson
Atmos. Meas. Tech., 17, 6595–6602, https://doi.org/10.5194/amt-17-6595-2024, https://doi.org/10.5194/amt-17-6595-2024, 2024
Short summary
Short summary
This work used model output to show that considering the changes in boundary layer depth over time in the calculations of variables such as fluxes and variance yields more accurate results than cases where calculations were done at a constant height. This work was done to improve future observations of these variables at the top of the boundary layer.
Tessa E. Rosenberger, Thijs Heus, Girish N. Raghunathan, David D. Turner, Timothy J. Wagner, and Julia M. Simonson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2894, https://doi.org/10.5194/egusphere-2024-2894, 2024
Short summary
Short summary
Entrainment is key in understanding temperature and moisture changes within the boundary layer, but it is difficult to observe using ground-based observations. This work used simulations to verify an assumption that simplifies entrainment estimations from ground-based observational data, recognizing that entrainment is the combination of the transfer of heat and moisture from above the boundary layer into it and the change in concentration of heat and moisture as boundary layer depth changes.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Andreas Walbröl, Janosch Michaelis, Sebastian Becker, Henning Dorff, Kerstin Ebell, Irina Gorodetskaya, Bernd Heinold, Benjamin Kirbus, Melanie Lauer, Nina Maherndl, Marion Maturilli, Johanna Mayer, Hanno Müller, Roel A. J. Neggers, Fiona M. Paulus, Johannes Röttenbacher, Janna E. Rückert, Imke Schirmacher, Nils Slättberg, André Ehrlich, Manfred Wendisch, and Susanne Crewell
Atmos. Chem. Phys., 24, 8007–8029, https://doi.org/10.5194/acp-24-8007-2024, https://doi.org/10.5194/acp-24-8007-2024, 2024
Short summary
Short summary
To support the interpretation of the data collected during the HALO-(AC)3 campaign, which took place in the North Atlantic sector of the Arctic from 7 March to 12 April 2022, we analyze how unusual the weather and sea ice conditions were with respect to the long-term climatology. From observations and ERA5 reanalysis, we found record-breaking warm air intrusions and a large variety of marine cold air outbreaks. Sea ice concentration was mostly within the climatological interquartile range.
Timothy W. Juliano, Fernando Szasdi-Bardales, Neil P. Lareau, Kasra Shamsaei, Branko Kosović, Negar Elhami-Khorasani, Eric P. James, and Hamed Ebrahimian
Nat. Hazards Earth Syst. Sci., 24, 47–52, https://doi.org/10.5194/nhess-24-47-2024, https://doi.org/10.5194/nhess-24-47-2024, 2024
Short summary
Short summary
Following the destructive Lahaina Fire in Hawaii, our team has modeled the wind and fire spread processes to understand the drivers of this devastating event. The simulation results show that extreme winds with high variability, a fire ignition close to the community, and construction characteristics led to continued fire spread in multiple directions. Our results suggest that available modeling capabilities can provide vital information to guide decision-making during wildfire events.
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023, https://doi.org/10.5194/acp-23-9963-2023, 2023
Short summary
Short summary
Lapse rate feedback (LRF) is a major driver of the Arctic amplification (AA) of climate change. It arises because the warming is stronger at the surface than aloft. Several processes can affect the LRF in the Arctic, such as the omnipresent temperature inversion. Here, we compare multimodel climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF and AA.
Jan Chylik, Dmitry Chechin, Regis Dupuy, Birte S. Kulla, Christof Lüpkes, Stephan Mertes, Mario Mech, and Roel A. J. Neggers
Atmos. Chem. Phys., 23, 4903–4929, https://doi.org/10.5194/acp-23-4903-2023, https://doi.org/10.5194/acp-23-4903-2023, 2023
Short summary
Short summary
Arctic low-level clouds play an important role in the ongoing warming of the Arctic. Unfortunately, these clouds are not properly represented in weather forecast and climate models. This study tries to cover this gap by focusing on clouds over open water during the spring, observed by research aircraft near Svalbard. The study combines the high-resolution model with sets of observational data. The results show the importance of processes that involve both ice and the liquid water in the clouds.
Tobias Necker, David Hinger, Philipp Johannes Griewank, Takemasa Miyoshi, and Martin Weissmann
Nonlin. Processes Geophys., 30, 13–29, https://doi.org/10.5194/npg-30-13-2023, https://doi.org/10.5194/npg-30-13-2023, 2023
Short summary
Short summary
This study investigates vertical localization based on a convection-permitting 1000-member ensemble simulation. We derive an empirical optimal localization (EOL) that minimizes sampling error in 40-member sub-sample correlations assuming 1000-member correlations as truth. The results will provide guidance for localization in convective-scale ensemble data assimilation systems.
David E. Kingsmill, Jeffrey R. French, and Neil P. Lareau
Atmos. Chem. Phys., 23, 1–21, https://doi.org/10.5194/acp-23-1-2023, https://doi.org/10.5194/acp-23-1-2023, 2023
Short summary
Short summary
This study uses in situ aircraft measurements to characterize the size and shape distributions of 10 µm to 6 mm diameter particles observed during six penetrations of wildfire-induced pyroconvection. Particles sampled in one penetration of a smoke plume are most likely pyrometeors composed of ash. The other penetrations are through pyrocumulus clouds where particle composition is most likely a combination of hydrometeors (ice particles) and pyrometeors (ash).
Ulrike Egerer, André Ehrlich, Matthias Gottschalk, Hannes Griesche, Roel A. J. Neggers, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 21, 6347–6364, https://doi.org/10.5194/acp-21-6347-2021, https://doi.org/10.5194/acp-21-6347-2021, 2021
Short summary
Short summary
This paper describes a case study of a three-day period with a persistent humidity inversion above a mixed-phase cloud layer in the Arctic. It is based on measurements with a tethered balloon, complemented with results from a dedicated high-resolution large-eddy simulation. Both methods show that the humidity layer acts to provide moisture to the cloud layer through downward turbulent transport. This supply of additional moisture can contribute to the persistence of Arctic clouds.
Cited articles
Abma, D., Heus, T., and Mellado, J. P.: Direct Numerical Simulation of
Evaporative Cooling at the Lateral Boundary of Shallow Cumulus Clouds,
J. Atmos. Sci., 70, 2088–2102,
https://doi.org/10.1175/jas-d-12-0230.1, 2013. a
Ansmann, A., Fruntke, J., and Engelmann, R.: Updraft and downdraft characterization with Doppler lidar: cloud-free versus cumuli-topped mixed layer, Atmos. Chem. Phys., 10, 7845–7858, https://doi.org/10.5194/acp-10-7845-2010, 2010. a, b
Arakawa, A. and Schubert, W. H.: Interaction of a Cumulus Cloud Ensemble with
the Large-Scale Environment, Part I, J. Atmos. Sci., 31,
674–701, https://doi.org/10.1175/1520-0469(1974)031<0674:ioacce>2.0.co;2, 1974. a, b, c
ARM: Lasso Bundle Browser, available at: https://adc.arm.gov/lassobrowser,
last access: 26 August 2020a. a
ARM: ARM Data archive, available at: https://adc.arm.gov/data/,
last access: 26 August 2020b. a
Barron, N., Ryan, S. D., and Heus, T.: Reconciling Chord Length Distributions and Area Distributions for Fields of Fractal Cumulus Clouds, Atmosphere, 11, 824, https://doi.org/10.3390/atmos11080824, 2020. a, b
Benner, T. C. and Curry, J. A.: Characteristics of small tropical cumulus
clouds and their impact on the environment, J. Geophys. Res.-Atmos., 103, 28753–28767, https://doi.org/10.1029/98jd02579, 1998. a, b
Böing, S. J., Jonker, H. J. J., Siebesma, A. P., and Grabowski, W. W.:
Influence of the Subcloud Layer on the Development of a Deep Convective
Ensemble, J. Atmos. Sci., 69, 2682–2698,
https://doi.org/10.1175/jas-d-11-0317.1, 2012. a
Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus, R.,
Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H., Watanabe,
M., and Webb, M. J.: Clouds, circulation and climate sensitivity, Nat.
Geosci., 8, 261–268, https://doi.org/10.1038/ngeo2398, 2015. a
Brient, F. and Schneider, T.: Constraints on Climate Sensitivity from
Space-Based Measurements of Low-Cloud Reflection, J. Climate, 29,
5821–5835, https://doi.org/10.1175/jcli-d-15-0897.1, 2016. a
Brooks, M. E., Hogan, R. J., and Illingworth, A. J.: Parameterizing the
Difference in Cloud Fraction Defined by Area and by Volume as Observed with
Radar and Lidar, J. Atmos. Sci., 62, 2248–2260,
https://doi.org/10.1175/jas3467.1, 2005. a
Brown, A. R., Cederwall, R. T., Chlond, A., Duynkerke, P. G., Golaz, J. C.,
Khairoutdinov, M., Lewellen, D. C., Lock, A. P., MacVean, M. K., Moeng,
C.-H., Neggers, R. A. J., Siebesma, A. P., and Stevens, B.: Large-eddy
simulation of the diurnal cycle of shallow cumulus convection over land,
Q. J. Roy. Meteor. Soc., 128, 1075–1093,
https://doi.org/10.1256/003590002320373210, 2002. a
Dawe, J. T. and Austin, P. H.: Statistical analysis of an LES shallow cumulus cloud ensemble using a cloud tracking algorithm, Atmos. Chem. Phys., 12, 1101–1119, https://doi.org/10.5194/acp-12-1101-2012, 2012. a, b, c
Endo, S., Zhang, D., Vogelmann, A. M., Kollias, P., Lamer, K., Oue, M., Xiao,
H., Gustafson, W. I., and Romps, D. M.: Reconciling Differences Between
Large‐Eddy Simulations and Doppler Lidar Observations of Continental
Shallow Cumulus Cloud‐Base Vertical Velocity, Geophys. Res. Lett.,
46, 11539–11547, https://doi.org/10.1029/2019gl084893, 2019. a, b, c, d, e, f, g
Espy, J. P.: Essays on meteorology. No. IV, J. Franklin I.,
22, 239–246, https://doi.org/10.1016/S0016-0032(36)91215-2, 1836. a
Fast, J. D., Berg, L. K., Feng, Z., Mei, F., Newsom, R., Sakaguchi, K., and
Xiao, H.: The Impact of Variable Land-Atmosphere Coupling on Convective Cloud
Populations Observed During the 2016 HI-SCALE Field Campaign, J.
Adv. Model. Earth Sy., 11, 2629–2654,
https://doi.org/10.1029/2019ms001727, 2019. a, b, c
French, J. R., Vali, G., and Kelly, R. D.: Evolution of small cumulus clouds in
Florida: observations of pulsating growth, Atmos. Res., 52,
143–165, https://doi.org/10.1016/s0169-8095(99)00024-1, 1999. a, b
Griewank, P. J., Heus, T., Lareau, N., and Neggers, R. A. J.: Size-dependence in chord characteristics from simulated and observed continental shallow cumulus, Zenodo, https://doi.org/10.5281/zenodo.3731944, 2020. a
Gustafson, W., Vogelmann, A., Cheng, X., Endo, S., Johnson, K., Krishna, B.,
Li, Z., Toto, T., and Xiao., H.: Atmospheric Radiation Measurement (ARM)
Research Facility. LASSO Data Bundles, Southern Great Plains Central Facility
(C1), ARM Data Archive: Oak Ridge, Tennessee, USA,
https://doi.org/10.5439/1342961, 2017. a
Gustafson, W. I., Vogelmann, A. M., Cheng, X., Dumas, K. K., Endo, S.,
Johnson, K. L., Krishna, B., Li, Z., Toto, T., and Xiao, H.: Description of
the LASSO Data Bundles Product, Tech. rep., Department of Energy's Office
of Scientific and Technical Information, https://doi.org/10.2172/1469590, 2018. a, b
Gustafson, W. I., Vogelmann, A. M., Li, Z., Cheng, X., Dumas, K. K., Endo, S.,
Johnson, K. L., Krishna, B., Toto, T., and Xiao, H.: The Large-Eddy
Simulation (LES) Atmospheric Radiation Measurement (ARM) Symbiotic
Simulation and Observation (LASSO) Activity for Continental Shallow
Convection, B. Am. Meteorol. Soc., 101, E462–E479,
https://doi.org/10.1175/bams-d-19-0065.1, 2020. a, b, c, d, e, f, g
Hagos, S., Feng, Z., Plant, R. S., Houze, R. A., and Xiao, H.: A Stochastic
Framework for Modeling the Population Dynamics of Convective Clouds, J. Adv. Model. Earth Sy., 10, 448–465,
https://doi.org/10.1002/2017ms001214, 2018. a
Heus, T. and Jonker, H. J. J.: Subsiding Shells around Shallow Cumulus Clouds,
J. Atmos. Sci., 65, 1003–1018,
https://doi.org/10.1175/2007jas2322.1, 2008. a, b, c
Heus, T.: microhh release 1.9.1, available at: https://github.com/microhh/microhh2/releases/tag/1.9.1,
last access: 26 August 2020. a
Heus, T. and Seifert, A.: Automated tracking of shallow cumulus clouds in large domain, long duration large eddy simulations, Geosci. Model Dev., 6, 1261–1273, https://doi.org/10.5194/gmd-6-1261-2013, 2013. a
Hoffmann, F., Siebert, H., Schumacher, J., Riechelmann, T., Katzwinkel, J.,
Kumar, B., Götzfried, P., and Raasch, S.: Entrainment and mixing at the
interface of shallow cumulus clouds: Results from a combination of
observations and simulations, Meteorol. Z., 23, 349–368,
https://doi.org/10.1127/0941-2948/2014/0597, 2014. a
Illingworth, A. J., Hogan, R. J., O'Connor, E., Bouniol, D.,
Brooks, M. E., Delanoé, J., Donovan, D. P., Eastment, J. D., Gaussiat,
N., Goddard, J. W. F., Haeffelin, M., Baltink, H. K., Krasnov, O. A., Pelon,
J., Piriou, J.-M., Protat, A., Russchenberg, H. W. J., Seifert, A., Tompkins,
A. M., van Zadelhoff, G.-J., Vinit, F., Willén, U., Wilson, D. R., and
Wrench, C. L.: Cloudnet, B. Am. Meteorol. Soc., 88,
883–898, https://doi.org/10.1175/bams-88-6-883, 2007. a
Jung, E. and Albrecht, B.: Use of Radar Chaff for Studying Circulations in and
around Shallow Cumulus Clouds, J. Appl. Meteorol.
Clim., 53, 2058–2071, https://doi.org/10.1175/jamc-d-13-0255.1, 2014. a
Katzwinkel, J., Siebert, H., Heus, T., and Shaw, R. A.: Measurements of
Turbulent Mixing and Subsiding Shells in Trade Wind Cumuli, J.
Atmos. Sci., 71, 2810–2822, https://doi.org/10.1175/jas-d-13-0222.1, 2014. a
Kitchen, M. and Caughey, S. J.: Tethered-balloon observations of the structure
of small cumulus clouds, Q. J. Roy. Meteor.
Soc., 107, 853–874, https://doi.org/10.1002/qj.49710745407, 2007. a
Laird, N. F., Ochs, H. T., Rauber, R. M., and Miller, L. J.: Initial
Precipitation Formation in Warm Florida Cumulus, J. Atmos.
Sci., 57, 3740–3751,
https://doi.org/10.1175/1520-0469(2000)057<3740:ipfiwf>2.0.co;2, 2000. a
Mallaun, C., Giez, A., Mayr, G. J., and Rotach, M. W.: Subsiding shells and the distribution of up- and downdraughts in warm cumulus clouds over land, Atmos. Chem. Phys., 19, 9769–9786, https://doi.org/10.5194/acp-19-9769-2019, 2019. a
Nair, U. S., Weger, R. C., Kuo, K. S., and Welch, R. M.: Clustering,
randomness, and regularity in cloud fields: 5. The nature of regular cumulus
cloud fields, J. Geophys. Res.-Atmos., 103,
11363–11380, https://doi.org/10.1029/98jd00088, 1998. a
Nam, C. C. W., Quaas, J., Neggers, R., Drian, C. S.-L., and Isotta, F.:
Evaluation of boundary layer cloud parameterizations in the ECHAM5 general
circulation model using CALIPSO and CloudSat satellite data, J.
Adv. Model. Earth Sy., 6, 300–314, https://doi.org/10.1002/2013ms000277,
2014. a
Neggers, R. A. J. and Siebesma, A. P.: Constraining a System of Interacting
Parameterizations through Multiple-Parameter Evaluation: Tracing a
Compensating Error between Cloud Vertical Structure and Cloud Overlap,
J. Climate, 26, 6698–6715, https://doi.org/10.1175/jcli-d-12-00779.1, 2013. a
Neggers, R. A. J., Jonker, H. J. J., and Siebesma, A. P.: Size Statistics of
Cumulus Cloud Populations in Large-Eddy Simulations, J.
Atmos. Sci., 60, 1060–1074,
https://doi.org/10.1175/1520-0469(2003)60<1060:ssoccp>2.0.co;2, 2003. a
Neggers, R. A. J., Duynkerke, P. G., and Rodts, S. M. A.: Shallow cumulus
convection: A validation of large-eddy simulation against aircraft and
Landsat observations, Q. J. Roy. Meteor. Soc.,
129, 2671–2696, https://doi.org/10.1256/qj.02.93, 2006. a, b
Neggers, R. A. J., Siebesma, A. P., and Heus, T.: Continuous Single-Column
Model Evaluation at a Permanent Meteorological Supersite, B.
Am. Meteorol. Soc., 93, 1389–1400,
https://doi.org/10.1175/bams-d-11-00162.1, 2012. a, b
Newsom, R.: Doppler Lidar (DLFPT), Atmospheric Radiation Measurement (ARM) User
Facility, https://doi.org/10.5439/1025185, 2010. a
Olson, J. B., Kenyon, J. S., Angevine, W. A., Brown, J. M., Pagowski, M., and
Sušelj, K.: A Description of the MYNN-EDMF Scheme and the Coupling to Other
Components in WRF–ARW, https://doi.org/10.25923/N9WM-BE49, 2019. a, b
Park, S.: A Unified Convection Scheme (UNICON), Part I: Formulation, J. Atmos. Sci., 71, 3902–3930, https://doi.org/10.1175/jas-d-13-0233.1,
2014. a
Peters, J. M., Nowotarski, C. J., and Mullendore, G. L.: Are Supercells
Resistant to Entrainment because of Their Rotation?, J.
Atmos. Sci., 77, 1475–1495, https://doi.org/10.1175/JAS-D-19-0316.1,
2020. a
Plank, V. G.: The Size Distribution of Cumulus Clouds in Representative Florida
Populations, J. Appl. Meteorol., 8, 46–67,
https://doi.org/10.1175/1520-0450(1969)008<0046:tsdocc>2.0.co;2, 1969. a
Raga, G. B., Jensen, J. B., and Baker, M. B.: Characteristics of Cumulus Band
Clouds off the Coast of Hawaii, J. Atmos. Sci., 47,
338–356, https://doi.org/10.1175/1520-0469(1990)047<0338:cocbco>2.0.co;2, 1990. a, b
Rodts, S. M. A., Duynkerke, P. G., and Jonker, H. J. J.: Size Distributions and
Dynamical Properties of Shallow Cumulus Clouds from Aircraft Observations and
Satellite Data, J. Atmos. Sci., 60, 1895–1912,
https://doi.org/10.1175/1520-0469(2003)060<1895:sdadpo>2.0.co;2, 2003. a, b, c, d
Romps, D. M.: Exact Expression for the Lifting Condensation Level, J. Atmos. Sci., 74, 3891–3900, https://doi.org/10.1175/JAS-D-17-0102.1,
2017. a
Rossow, W. B.: Measuring Cloud Properties from Space: A Review, J.
Climate, 2, 201–213, https://doi.org/10.1175/1520-0442(1989)002<0201:mcpfsa>2.0.co;2,
1989. a
Sakradzija, M. and Klingebiel, M.: Comparing ground-based observations and a
large-eddy simulation of shallow cumuli by isolating the main controlling
factors of the mass flux distribution, Q. J. Roy.
Meteor. Soc., 146, 254–266, https://doi.org/10.1002/qj.3671,
2020. a, b, c
Schalkwijk, J., Jonker, H. J. J., Siebesma, A. P., and Bosveld, F. C.: A
Year-Long Large-Eddy Simulation of the Weather over Cabauw: An Overview,
Mon. Weather Rev., 143, 828–844, https://doi.org/10.1175/mwr-d-14-00293.1, 2015. a, b, c
Sengupta, S. K., Welch, R. M., Navar, M. S., Berendes, T. A., and Chen, D. W.:
Cumulus Cloud Field Morphology and Spatial Patterns Derived from High Spatial
Resolution Landsat Imagery, J. Appl. Meteorol., 29, 1245–1267,
https://doi.org/10.1175/1520-0450(1990)029<1245:ccfmas>2.0.co;2, 1990. a
Sherwood, S. C., Bony, S., and Dufresne, J.-L.: Spread in model climate
sensitivity traced to atmospheric convective mixing, Nature, 505, 37–42,
https://doi.org/10.1038/nature12829, 2014. a
Siebert, H., Franke, H., Lehmann, K., Maser, R., Saw, E. W., Schell, D., Shaw,
R., and Wendisch, M.: Probing Finescale Dynamics and Microphysics of Clouds
with Helicopter-Borne Measurements, B. Am. Meteorol.
Soc., 87, 1727–1738, https://doi.org/10.1175/BAMS-87-12-1727, 2006. a
Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J.,
Duynkerke, P. G., Jiang, H. L., Khairoutdinov, M., Lewellen, D., Moeng,
C. H., Sanchez, E., Stevens, B., and Stevens, D. E.: A large eddy
simulation intercomparison study of shallow cumulus convection, J. Atmos.
Sci., 60, 1201–1219, https://doi.org/10.1175/1520-0469(2003)60, 2003. a
Simpson, J. and Wiggert, V.: Models odf precipitating cumulus towers,
Mon. Weather Rev., 97, 471–489,
https://doi.org/10.1175/1520-0493(1969)097<0471:mopct>2.3.co;2, 1969. a, b
Tucker, S. C., Senff, C. J., Weickmann, A. M., Brewer, W. A., Banta, R. M.,
Sandberg, S. P., Law, D. C., and Hardesty, R. M.: Doppler Lidar Estimation of
Mixing Height Using Turbulence, Shear, and Aerosol Profiles, J.
Atmos. Ocean. Tech., 26, 673–688,
https://doi.org/10.1175/2008jtecha1157.1, 2009. a
Turner, D. D., Ferrare, R. A., Wulfmeyer, V., and Scarino, A. J.: Aircraft
Evaluation of Ground-Based Raman Lidar Water Vapor Turbulence Profiles in
Convective Mixed Layers, J. Atmos. Ocean. Tech., 31,
1078–1088, https://doi.org/10.1175/jtech-d-13-00075.1, 2014a. a
Turner, D. D., Wulfmeyer, V., Berg, L. K., and Schween, J. H.: Water vapor
turbulence profiles in stationary continental convective mixed layers,
J. Geophys. Res.-Atmos., 119, 11151–11165,
https://doi.org/10.1002/2014jd022202, 2014b. a
Turner, J. S.: The “starting plume” in neutral surroundings, J. Fluid
Mech., 13, 356–368, https://doi.org/10.1017/s0022112062000762, 1962.
a
van Heerwaarden, C. C., van Stratum, B. J. H., Heus, T., Gibbs, J. A., Fedorovich, E., and Mellado, J. P.: MicroHH 1.0: a computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows, Geosci. Model Dev., 10, 3145–3165, https://doi.org/10.5194/gmd-10-3145-2017, 2017. a, b
van Laar, T. W., Schemann, V., and Neggers, R. A. J.: Investigating the Diurnal
Evolution of the Cloud Size Distribution of Continental Cumulus Convection
Using Multiday LES, J. Atmos. Sci., 76, 729–747,
https://doi.org/10.1175/jas-d-18-0084.1, 2019. a, b, c
Wang, Y. and Geerts, B.: Humidity variations across the edge of trade wind
cumuli: Observations and dynamical implications, Atmos. Res., 97,
144–156, https://doi.org/10.1016/j.atmosres.2010.03.017, 2010. a, b
Wang, Y. and Geerts, B.: Observations of detrainment signatures from
non-precipitating orographic cumulus clouds, Atmos. Res., 99,
302–324, https://doi.org/10.1016/j.atmosres.2010.10.023, 2011. a
Warner, J.: On Steady-State One-Dimensional Models of Cumulus Convection,
J. Atmos. Sci., 27, 1035–1040,
https://doi.org/10.1175/1520-0469(1970)027<1035:ossodm>2.0.co;2, 1970a. a
Warner, J.: The Microstructure of Cumulus Cloud. Part III. The Nature of the
Updraft, J. Atmos. Sci., 27, 682–688,
https://doi.org/10.1175/1520-0469(1970)027<0682:TMOCCP>2.0.CO;2,
1970b. a, b
Wood, R. and Field, P. R.: The Distribution of Cloud Horizontal Sizes, J. Climate, 24, 4800–4816, https://doi.org/10.1175/2011jcli4056.1, 2011. a, b, c, d
Wulfmeyer, V., Pal, S., Turner, D. D., and Wagner, E.: Can Water Vapour Raman
Lidar Resolve Profiles of Turbulent Variables in the Convective Boundary
Layer?, Bound.-Lay. Meteorol., 136, 253–284,
https://doi.org/10.1007/s10546-010-9494-z, 2010. a, b
Yano, J.-I.: Basic convective element: bubble or plume? A historical review,
Atmospheric Chemistry and Physics, 14, 7019–7030,
https://doi.org/10.5194/acp-14-7019-2014, 2014. a
Yuan, T.: Cloud macroscopic organization: order emerging from randomness, Atmos. Chem. Phys., 11, 7483–7490, https://doi.org/10.5194/acp-11-7483-2011, 2011. a
Zhang, Y., Klein, S. A., Fan, J., Chandra, A. S., Kollias, P., Xie, S., and
Tang, S.: Large-Eddy Simulation of Shallow Cumulus over Land: A Composite
Case Based on ARM Long-Term Observations at Its Southern Great Plains Site,
J. Atmos. Sci., 74, 3229–3251,
https://doi.org/10.1175/jas-d-16-0317.1, 2017. a, b
Zhao, G. and Girolamo, L. D.: Statistics on the macrophysical properties of
trade wind cumuli over the tropical western Atlantic, J. Geophys.
Res.-Atmos., 112, D10204, https://doi.org/10.1029/2006jd007371, 2007. a, b
Zhao, M. and Austin, P. H.: Life Cycle of Numerically Simulated Shallow Cumulus
Clouds. Part II: Mixing Dynamics, J. Atmos. Sci., 62,
1291–1310, https://doi.org/10.1175/jas3415.1, 2005. a, b
Short summary
The idea that larger shallow cumulus clouds have stronger updrafts than small shallow cumulus clouds is as intuitive as it is old. In this paper we gather years of upward-pointing laser measurements from a plain in Oklahoma and combine them with 28 d of high-resolution simulations. Our approach, which has much more data than previous studies, confirms that updraft strength and cloud size are linked and that the simulations reproduce the observed cloud wind and moisture structure.
The idea that larger shallow cumulus clouds have stronger updrafts than small shallow cumulus...
Altmetrics
Final-revised paper
Preprint