Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 19, issue 13
Atmos. Chem. Phys., 19, 8759–8782, 2019
https://doi.org/10.5194/acp-19-8759-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 8759–8782, 2019
https://doi.org/10.5194/acp-19-8759-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 10 Jul 2019

Research article | 10 Jul 2019

Arctic cloud annual cycle biases in climate models

Patrick C. Taylor et al.

Related authors

Clouds damp the radiative impacts of polar sea ice loss
Ramdane Alkama, Patrick C. Taylor, Lorea Garcia-San Martin, Herve Douville, Gregory Duveiller, Giovanni Forzieri, Didier Swingedouw, and Alessandro Cescatti
The Cryosphere, 14, 2673–2686, https://doi.org/10.5194/tc-14-2673-2020,https://doi.org/10.5194/tc-14-2673-2020, 2020
Short summary
Shortwave Radiative Effect of Arctic Low-Level Clouds: Evaluation of Imagery-Derived Irradiance with Aircraft Observations
Hong Chen, Sebastian Schmidt, Michael D. King, Galina Wind, Anthony Bucholtz, Elizabeth A. Reid, Michal Segal-Rozenhaimer, William L. Smith, Patrick C. Taylor, Seiji Kato, and Peter Pilewskie
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-344,https://doi.org/10.5194/amt-2019-344, 2019
Revised manuscript accepted for AMT
Short summary
Microphysical variability of Amazonian deep convective cores observed by CloudSat and simulated by a multi-scale modeling framework
J. Brant Dodson, Patrick C. Taylor, and Mark Branson
Atmos. Chem. Phys., 18, 6493–6510, https://doi.org/10.5194/acp-18-6493-2018,https://doi.org/10.5194/acp-18-6493-2018, 2018
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Size dependence in chord characteristics from simulated and observed continental shallow cumulus
Philipp J. Griewank, Thijs Heus, Neil P. Lareau, and Roel A. J. Neggers
Atmos. Chem. Phys., 20, 10211–10230, https://doi.org/10.5194/acp-20-10211-2020,https://doi.org/10.5194/acp-20-10211-2020, 2020
Short summary
Impact of aerosols and turbulence on cloud droplet growth: an in-cloud seeding case study using a parcel–DNS (direct numerical simulation) approach
Sisi Chen, Lulin Xue, and Man-Kong Yau
Atmos. Chem. Phys., 20, 10111–10124, https://doi.org/10.5194/acp-20-10111-2020,https://doi.org/10.5194/acp-20-10111-2020, 2020
Short summary
Diffusional growth of cloud droplets in homogeneous isotropic turbulence: DNS, scaled-up DNS, and stochastic model
Lois Thomas, Wojciech W. Grabowski, and Bipin Kumar
Atmos. Chem. Phys., 20, 9087–9100, https://doi.org/10.5194/acp-20-9087-2020,https://doi.org/10.5194/acp-20-9087-2020, 2020
Short summary
Differences in tropical high clouds among reanalyses: origins and radiative impacts
Jonathon S. Wright, Xiaoyi Sun, Paul Konopka, Kirstin Krüger, Bernard Legras, Andrea M. Molod, Susann Tegtmeier, Guang J. Zhang, and Xi Zhao
Atmos. Chem. Phys., 20, 8989–9030, https://doi.org/10.5194/acp-20-8989-2020,https://doi.org/10.5194/acp-20-8989-2020, 2020
Short summary
Vertical redistribution of moisture and aerosol in orographic mixed-phase clouds
Annette K. Miltenberger, Paul R. Field, Adrian H. Hill, and Andrew J. Heymsfield
Atmos. Chem. Phys., 20, 7979–8001, https://doi.org/10.5194/acp-20-7979-2020,https://doi.org/10.5194/acp-20-7979-2020, 2020
Short summary

Cited articles

Barton, N. P., Klein, S. A., Boyle, J. S., and Zhang, Y. Y.: Arctic synoptic regimes: Comparing domain-wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics, J. Geophys. Res.-Atmos., 117, D15205, https://doi.org/10.1029/2012JD017589, 2012. 
Beesley, J. A. and Moritz, R. E.: Toward an Explanation of the Annual Cycle of Cloudiness over the Arctic Ocean, J. Climate, 12, 395–415, https://doi.org/10.1175/1520-0442(1999)012<0395:TAEOTA>2.0.CO;2, 1999. 
Boeke, R. C. and Taylor, P. C.: Evaluation of the Arctic surface radiation budget in CMIP5 models, J. Geophys. Res.-Atmos., 121, 2016JD025099, https://doi.org/10.1002/2016JD025099, 2016. 
Boer, G., de Morrison, H., Shupe, M. D., and Hildner, R.: Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors, Geophys. Res. Lett., 38, L01803, https://doi.org/10.1029/2010GL046016, 2011. 
Cesana, G., Kay, J. E., Chepfer, H., English, J. M., and de Boer, G.: Ubiquitous low-level liquid-containing Arctic clouds: New observations and climate model constraints from CALIPSO-GOCCP, Geophys. Res. Lett., 39, L20804, https://doi.org/10.1029/2012GL053385, 2012. 
Publications Copernicus
Download
Short summary
Climate projections disagree more in the rapidly changing Arctic than anywhere else. The impact of a changing Arctic spans food and water security, economics, national security, etc. The representation of Arctic clouds within climate models is a critical roadblock towards improving Arctic climate projections. We explore the potential drivers of the diverse representation of the Arctic cloud annual cycle within climate models providing evidence that microphysical processes are a key driver.
Climate projections disagree more in the rapidly changing Arctic than anywhere else. The impact...
Citation
Altmetrics
Final-revised paper
Preprint