Articles | Volume 19, issue 13
Atmos. Chem. Phys., 19, 8759–8782, 2019
https://doi.org/10.5194/acp-19-8759-2019
Atmos. Chem. Phys., 19, 8759–8782, 2019
https://doi.org/10.5194/acp-19-8759-2019

Research article 10 Jul 2019

Research article | 10 Jul 2019

Arctic cloud annual cycle biases in climate models

Patrick C. Taylor et al.

Related authors

The effect of low-level thin arctic clouds on shortwave irradiance: evaluation of estimates from spaceborne passive imagery with aircraft observations
Hong Chen, Sebastian Schmidt, Michael D. King, Galina Wind, Anthony Bucholtz, Elizabeth A. Reid, Michal Segal-Rozenhaimer, William L. Smith, Patrick C. Taylor, Seiji Kato, and Peter Pilewskie
Atmos. Meas. Tech., 14, 2673–2697, https://doi.org/10.5194/amt-14-2673-2021,https://doi.org/10.5194/amt-14-2673-2021, 2021
Short summary
Clouds damp the radiative impacts of polar sea ice loss
Ramdane Alkama, Patrick C. Taylor, Lorea Garcia-San Martin, Herve Douville, Gregory Duveiller, Giovanni Forzieri, Didier Swingedouw, and Alessandro Cescatti
The Cryosphere, 14, 2673–2686, https://doi.org/10.5194/tc-14-2673-2020,https://doi.org/10.5194/tc-14-2673-2020, 2020
Short summary
Microphysical variability of Amazonian deep convective cores observed by CloudSat and simulated by a multi-scale modeling framework
J. Brant Dodson, Patrick C. Taylor, and Mark Branson
Atmos. Chem. Phys., 18, 6493–6510, https://doi.org/10.5194/acp-18-6493-2018,https://doi.org/10.5194/acp-18-6493-2018, 2018
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Aerosol–cloud interactions: the representation of heterogeneous ice activation in cloud models
Bernd Kärcher and Claudia Marcolli
Atmos. Chem. Phys., 21, 15213–15220, https://doi.org/10.5194/acp-21-15213-2021,https://doi.org/10.5194/acp-21-15213-2021, 2021
Short summary
Sensitivity of precipitation formation to secondary ice production in winter orographic mixed-phase clouds
Zane Dedekind, Annika Lauber, Sylvaine Ferrachat, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 15115–15134, https://doi.org/10.5194/acp-21-15115-2021,https://doi.org/10.5194/acp-21-15115-2021, 2021
Short summary
Environmental sensitivities of shallow-cumulus dilution – Part 2: Vertical wind profile
Sonja Drueke, Daniel J. Kirshbaum, and Pavlos Kollias
Atmos. Chem. Phys., 21, 14039–14058, https://doi.org/10.5194/acp-21-14039-2021,https://doi.org/10.5194/acp-21-14039-2021, 2021
Short summary
Supersaturation, buoyancy, and deep convection dynamics
Wojciech W. Grabowski and Hugh Morrison
Atmos. Chem. Phys., 21, 13997–14018, https://doi.org/10.5194/acp-21-13997-2021,https://doi.org/10.5194/acp-21-13997-2021, 2021
Short summary
Statistical properties of a stochastic model of eddy hopping
Izumi Saito, Takeshi Watanabe, and Toshiyuki Gotoh
Atmos. Chem. Phys., 21, 13119–13130, https://doi.org/10.5194/acp-21-13119-2021,https://doi.org/10.5194/acp-21-13119-2021, 2021
Short summary

Cited articles

Barton, N. P., Klein, S. A., Boyle, J. S., and Zhang, Y. Y.: Arctic synoptic regimes: Comparing domain-wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics, J. Geophys. Res.-Atmos., 117, D15205, https://doi.org/10.1029/2012JD017589, 2012. 
Beesley, J. A. and Moritz, R. E.: Toward an Explanation of the Annual Cycle of Cloudiness over the Arctic Ocean, J. Climate, 12, 395–415, https://doi.org/10.1175/1520-0442(1999)012<0395:TAEOTA>2.0.CO;2, 1999. 
Boeke, R. C. and Taylor, P. C.: Evaluation of the Arctic surface radiation budget in CMIP5 models, J. Geophys. Res.-Atmos., 121, 2016JD025099, https://doi.org/10.1002/2016JD025099, 2016. 
Boer, G., de Morrison, H., Shupe, M. D., and Hildner, R.: Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors, Geophys. Res. Lett., 38, L01803, https://doi.org/10.1029/2010GL046016, 2011. 
Cesana, G., Kay, J. E., Chepfer, H., English, J. M., and de Boer, G.: Ubiquitous low-level liquid-containing Arctic clouds: New observations and climate model constraints from CALIPSO-GOCCP, Geophys. Res. Lett., 39, L20804, https://doi.org/10.1029/2012GL053385, 2012. 
Download
Short summary
Climate projections disagree more in the rapidly changing Arctic than anywhere else. The impact of a changing Arctic spans food and water security, economics, national security, etc. The representation of Arctic clouds within climate models is a critical roadblock towards improving Arctic climate projections. We explore the potential drivers of the diverse representation of the Arctic cloud annual cycle within climate models providing evidence that microphysical processes are a key driver.
Altmetrics
Final-revised paper
Preprint