Articles | Volume 19, issue 2
https://doi.org/10.5194/acp-19-701-2019
https://doi.org/10.5194/acp-19-701-2019
Research article
 | 
18 Jan 2019
Research article |  | 18 Jan 2019

Biogenic emissions and land–atmosphere interactions as drivers of the daytime evolution of secondary organic aerosol in the southeastern US

Juhi Nagori, Ruud H. H. Janssen, Juliane L. Fry, Maarten Krol, Jose L. Jimenez, Weiwei Hu, and Jordi Vilà-Guerau de Arellano

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Juhi Nagori on behalf of the Authors (23 Nov 2018)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (26 Nov 2018) by Manabu Shiraiwa
RR by Anonymous Referee #1 (03 Dec 2018)
ED: Publish as is (03 Dec 2018) by Manabu Shiraiwa
AR by Juhi Nagori on behalf of the Authors (11 Dec 2018)  Author's response   Manuscript 
Download
Short summary
Secondary organic aerosol (SOA) is produced through a complex interaction of sunlight, volatile organic compounds emitted from trees, anthropogenic emissions, and atmospheric chemistry. We are able to successfully model the formation and diurnal evolution of SOA using a model that takes into consideration the surface and boundary layer dynamics (1–2 km from the surface) and photochemistry above the southeastern US with data collected during the SOAS campaign to constrain the model.
Altmetrics
Final-revised paper
Preprint