Articles | Volume 19, issue 9
https://doi.org/10.5194/acp-19-6497-2019
https://doi.org/10.5194/acp-19-6497-2019
Research article
 | 
16 May 2019
Research article |  | 16 May 2019

Effect of sea salt aerosol on tropospheric bromine chemistry

Lei Zhu, Daniel J. Jacob, Sebastian D. Eastham, Melissa P. Sulprizio, Xuan Wang, Tomás Sherwen, Mat J. Evans, Qianjie Chen, Becky Alexander, Theodore K. Koenig, Rainer Volkamer, L. Gregory Huey, Michael Le Breton, Thomas J. Bannan, and Carl J. Percival

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Lei Zhu on behalf of the Authors (25 Apr 2019)  Author's response   Manuscript 
ED: Publish as is (30 Apr 2019) by Markus Ammann
AR by Lei Zhu on behalf of the Authors (30 Apr 2019)  Manuscript 
Download
Short summary
We quantify the effect of sea salt aerosol on tropospheric bromine chemistry with a new mechanistic description of the halogen chemistry in a global atmospheric chemistry model. For the first time, we are able to reproduce the observed levels of bromide activation from the sea salt aerosol in a manner consistent with bromine oxide radical measured from various platforms. Sea salt aerosol plays a far more complex role in global tropospheric chemistry than previously recognized.
Altmetrics
Final-revised paper
Preprint