Articles | Volume 19, issue 7
https://doi.org/10.5194/acp-19-5005-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-5005-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identification of soil-cooling rains in southern France from soil temperature and soil moisture observations
Sibo Zhang
CNRM (Université de Toulouse, Météo-France, CNRS), Toulouse,
France
now at: Qian Xuesen Laboratory of Space Technology, China Academy of
Space Technology (CAST), Beijing, China
Catherine Meurey
CNRM (Université de Toulouse, Météo-France, CNRS), Toulouse,
France
Jean-Christophe Calvet
CORRESPONDING AUTHOR
CNRM (Université de Toulouse, Météo-France, CNRS), Toulouse,
France
Related authors
Sibo Zhang, Jean-Christophe Calvet, José Darrozes, Nicolas Roussel, Frédéric Frappart, and Gilles Bouhours
Hydrol. Earth Syst. Sci., 22, 1931–1946, https://doi.org/10.5194/hess-22-1931-2018, https://doi.org/10.5194/hess-22-1931-2018, 2018
Short summary
Short summary
Surface soil moisture was retrieved from a grassland site in southwestern France using the GNSS-IR technique. In order to efficiently limit the impact of perturbing vegetation effects, the grass growth period and the senescence period are treated separately. While the vegetation biomass effect can be corrected for, the litter water interception influences the observations and cannot be easily accounted for.
En Liu, Yonghua Zhu, Jean-Christophe Calvet, Haishen Lü, Bertrand Bonan, Jingyao Zheng, Qiqi Gou, Xiaoyi Wang, Zhenzhou Ding, Haiting Xu, Ying Pan, and Tingxing Chen
Hydrol. Earth Syst. Sci., 28, 2375–2400, https://doi.org/10.5194/hess-28-2375-2024, https://doi.org/10.5194/hess-28-2375-2024, 2024
Short summary
Short summary
Overestimated root zone soil moisture (RZSM) based on land surface models (LSMs) is attributed to overestimated precipitation and an underestimated ratio of transpiration to total evapotranspiration and performs better in the wet season. Underestimated SMOS L3 surface SM triggers the underestimated SMOS L4 RZSM, which performs better in the dry season due to the attenuated radiation in the wet season. LSMs should reduce and increase the frequency of wet and dry soil moisture, respectively.
Sophie Barthelemy, Bertrand Bonan, Miquel Tomas-Burguera, Gilles Grandjean, Séverine Bernardie, Jean-Philippe Naulin, Patrick Le Moigne, Aaron Boone, and Jean-Christophe Calvet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1079, https://doi.org/10.5194/egusphere-2024-1079, 2024
Short summary
Short summary
A drought index is developed that quantifies drought on an annual scale for deciduous broadleaf vegetation, making it applicable to monitoring clay shrinkage damage to buildings, agriculture or forestry. It is found that significant soil moisture drought events occurred in France in 2003, 2018, 2019, 2020 and 2022. Particularly high index values are observed throughout the country in 2022. It is also found that droughts will become more severe in the future.
Sophie Barthelemy, Bertrand Bonan, Jean-Christophe Calvet, Gilles Grandjean, David Moncoulon, Dorothée Kapsambelis, and Séverine Bernardie
Nat. Hazards Earth Syst. Sci., 24, 999–1016, https://doi.org/10.5194/nhess-24-999-2024, https://doi.org/10.5194/nhess-24-999-2024, 2024
Short summary
Short summary
This work presents a drought index specifically adapted to subsidence, a seasonal phenomenon of soil shrinkage that occurs frequently in France and damages buildings. The index is computed from land surface model simulations and evaluated by a rank correlation test with insurance data. With its optimal configuration, the index is able to identify years of both zero and significant loss.
En Liu, Yonghua Zhu, Jean-christophe Calvet, Haishen Lü, Bertrand Bonan, Jingyao Zheng, Qiqi Gou, Xiaoyi Wang, Zhenzhou Ding, Haiting Xu, Ying Pan, and Tingxing Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-33, https://doi.org/10.5194/hess-2023-33, 2023
Manuscript not accepted for further review
Short summary
Short summary
Among the 8 considered products, GLDAS_CLSM product performs best. All RZSM products overestimate the in situ measurements which attributes to a wet bias of air temperature, precipitation amount and frequency except the underestimation of SMOS L4 RZSM related to the underestimation of SMOS L3 SSM. The higher R between SMPA L4 and MERRA-2 was attributed to they both use CLSM and meteorological forcing from GEOS-5 where precipitation was corrected with CPCU precipitation product.
Arsène Druel, Simon Munier, Anthony Mucia, Clément Albergel, and Jean-Christophe Calvet
Geosci. Model Dev., 15, 8453–8471, https://doi.org/10.5194/gmd-15-8453-2022, https://doi.org/10.5194/gmd-15-8453-2022, 2022
Short summary
Short summary
Crop phenology and irrigation is implemented into a land surface model able to work at a global scale. A case study is presented over Nebraska (USA). Simulations with and without the new scheme are compared to different satellite-based observations. The model is able to produce a realistic yearly irrigation water amount. The irrigation scheme improves the simulated leaf area index, gross primary productivity, evapotransipiration, and land surface temperature.
Anthony Mucia, Bertrand Bonan, Clément Albergel, Yongjun Zheng, and Jean-Christophe Calvet
Biogeosciences, 19, 2557–2581, https://doi.org/10.5194/bg-19-2557-2022, https://doi.org/10.5194/bg-19-2557-2022, 2022
Short summary
Short summary
For the first time, microwave vegetation optical depth data are assimilated in a land surface model in order to analyze leaf area index and root zone soil moisture. The advantage of microwave products is the higher observation frequency. A large variety of independent datasets are used to verify the added value of the assimilation. It is shown that the assimilation is able to improve the representation of soil moisture, vegetation conditions, and terrestrial water and carbon fluxes.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Clément Albergel, Yongjun Zheng, Bertrand Bonan, Emanuel Dutra, Nemesio Rodríguez-Fernández, Simon Munier, Clara Draper, Patricia de Rosnay, Joaquin Muñoz-Sabater, Gianpaolo Balsamo, David Fairbairn, Catherine Meurey, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 24, 4291–4316, https://doi.org/10.5194/hess-24-4291-2020, https://doi.org/10.5194/hess-24-4291-2020, 2020
Short summary
Short summary
LDAS-Monde is a global offline land data assimilation system (LDAS) that jointly assimilates satellite-derived observations of surface soil moisture (SSM) and leaf area index (LAI) into the ISBA (Interaction between Soil Biosphere and Atmosphere) land surface model (LSM). This study demonstrates that LDAS-Monde is able to detect, monitor and forecast the impact of extreme weather on land surface states.
Yongjun Zheng, Clément Albergel, Simon Munier, Bertrand Bonan, and Jean-Christophe Calvet
Geosci. Model Dev., 13, 3607–3625, https://doi.org/10.5194/gmd-13-3607-2020, https://doi.org/10.5194/gmd-13-3607-2020, 2020
Short summary
Short summary
This study proposes a sophisticated dynamically running job scheme as well as an innovative parallel IO algorithm to reduce the time to solution of an offline framework for high-dimensional ensemble Kalman filters. The offline and online modes of ensemble Kalman filters are built to comprehensively assess their time to solution efficiencies. The offline mode is substantially faster than the online mode in terms of time to solution, especially for large-scale assimilation problems.
Bertrand Bonan, Clément Albergel, Yongjun Zheng, Alina Lavinia Barbu, David Fairbairn, Simon Munier, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 24, 325–347, https://doi.org/10.5194/hess-24-325-2020, https://doi.org/10.5194/hess-24-325-2020, 2020
Short summary
Short summary
This paper introduces an ensemble square root filter (EnSRF), a deterministic ensemble Kalman filter, for jointly assimilating observations of the surface soil moisture and leaf area index in the Land Data Assimilation System LDAS-Monde. LDAS-Monde constrains the Interaction between Soil, Biosphere and Atmosphere (ISBA) land surface model to improve the reanalysis of land surface variables. EnSRF is compared with the simplified extended Kalman filter over the European Mediterranean region.
Clement Albergel, Emanuel Dutra, Simon Munier, Jean-Christophe Calvet, Joaquin Munoz-Sabater, Patricia de Rosnay, and Gianpaolo Balsamo
Hydrol. Earth Syst. Sci., 22, 3515–3532, https://doi.org/10.5194/hess-22-3515-2018, https://doi.org/10.5194/hess-22-3515-2018, 2018
Short summary
Short summary
ECMWF recently released the first 7-year segment of its latest atmospheric reanalysis: ERA-5 (2010–2016). ERA-5 has important changes relative to ERA-Interim including higher spatial and temporal resolutions as well as a more recent model and data assimilation system. ERA-5 is foreseen to replace ERA-Interim reanalysis. One of the main goals of this study is to assess whether ERA-5 can enhance the simulation performances with respect to ERA-Interim when it is used to force a land surface model.
Emiliano Gelati, Bertrand Decharme, Jean-Christophe Calvet, Marie Minvielle, Jan Polcher, David Fairbairn, and Graham P. Weedon
Hydrol. Earth Syst. Sci., 22, 2091–2115, https://doi.org/10.5194/hess-22-2091-2018, https://doi.org/10.5194/hess-22-2091-2018, 2018
Short summary
Short summary
We compared land surface model simulations forced by several meteorological datasets with observations over the Euro-Mediterranean area, for the 1979–2012 period. Precipitation was the most uncertain forcing variable. The impacts of forcing uncertainty were larger on the mean and standard deviation rather than the timing, shape and inter-annual variability of simulated discharge. Simulated leaf area index and surface soil moisture were relatively insensitive to these uncertainties.
Sibo Zhang, Jean-Christophe Calvet, José Darrozes, Nicolas Roussel, Frédéric Frappart, and Gilles Bouhours
Hydrol. Earth Syst. Sci., 22, 1931–1946, https://doi.org/10.5194/hess-22-1931-2018, https://doi.org/10.5194/hess-22-1931-2018, 2018
Short summary
Short summary
Surface soil moisture was retrieved from a grassland site in southwestern France using the GNSS-IR technique. In order to efficiently limit the impact of perturbing vegetation effects, the grass growth period and the senescence period are treated separately. While the vegetation biomass effect can be corrected for, the litter water interception influences the observations and cannot be easily accounted for.
Clément Albergel, Simon Munier, Delphine Jennifer Leroux, Hélène Dewaele, David Fairbairn, Alina Lavinia Barbu, Emiliano Gelati, Wouter Dorigo, Stéphanie Faroux, Catherine Meurey, Patrick Le Moigne, Bertrand Decharme, Jean-Francois Mahfouf, and Jean-Christophe Calvet
Geosci. Model Dev., 10, 3889–3912, https://doi.org/10.5194/gmd-10-3889-2017, https://doi.org/10.5194/gmd-10-3889-2017, 2017
Short summary
Short summary
LDAS-Monde, a global land data assimilation system, is applied over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. It is able to ingest information from satellite-derived surface soil moisture (SSM) and leaf area index (LAI) observations to constrain the ISBA land surface model coupled with the CTRIP continental hydrological system. Assimilation of SSM and LAI leads to a better representation of evapotranspiration and gross primary production.
Hélène Dewaele, Simon Munier, Clément Albergel, Carole Planque, Nabil Laanaia, Dominique Carrer, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 21, 4861–4878, https://doi.org/10.5194/hess-21-4861-2017, https://doi.org/10.5194/hess-21-4861-2017, 2017
Short summary
Short summary
Soil maximum available water content (MaxAWC) is a key parameter in land surface models. Being difficult to measure, this parameter is usually unavailable. A 15-year time series of satellite-derived observations of leaf area index (LAI) is used to retrieve MaxAWC for rainfed straw cereals over France. Disaggregated LAI is sequentially assimilated into the ISBA LSM. MaxAWC is estimated minimising LAI analyses increments. Annual maximum LAI observations correlate with the MaxAWC estimates.
Sibo Zhang, Nicolas Roussel, Karen Boniface, Minh Cuong Ha, Frédéric Frappart, José Darrozes, Frédéric Baup, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 21, 4767–4784, https://doi.org/10.5194/hess-21-4767-2017, https://doi.org/10.5194/hess-21-4767-2017, 2017
Short summary
Short summary
GNSS SNR data were obtained from an intensively cultivated wheat field in southwestern France. The data were used to retrieve soil moisture and vegetation characteristics during the growing period of wheat. Vegetation growth broke up the constant height assumption used in soil moisture retrieval algorithms. Soil moisture could not be retrieved after wheat tillering. A new algorithm based on a wavelet analysis was implemented and used to retrieve vegetation height.
Jaap Schellekens, Emanuel Dutra, Alberto Martínez-de la Torre, Gianpaolo Balsamo, Albert van Dijk, Frederiek Sperna Weiland, Marie Minvielle, Jean-Christophe Calvet, Bertrand Decharme, Stephanie Eisner, Gabriel Fink, Martina Flörke, Stefanie Peßenteiner, Rens van Beek, Jan Polcher, Hylke Beck, René Orth, Ben Calton, Sophia Burke, Wouter Dorigo, and Graham P. Weedon
Earth Syst. Sci. Data, 9, 389–413, https://doi.org/10.5194/essd-9-389-2017, https://doi.org/10.5194/essd-9-389-2017, 2017
Short summary
Short summary
The dataset combines the results of 10 global models that describe the global continental water cycle. The data can be used as input for water resources studies, flood frequency studies etc. at different scales from continental to medium-scale catchments. We compared the results with earth observation data and conclude that most uncertainties are found in snow-dominated regions and tropical rainforest and monsoon regions.
David Fairbairn, Alina Lavinia Barbu, Adrien Napoly, Clément Albergel, Jean-François Mahfouf, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 21, 2015–2033, https://doi.org/10.5194/hess-21-2015-2017, https://doi.org/10.5194/hess-21-2015-2017, 2017
Short summary
Short summary
This study assesses the impact on river discharge simulations over France of assimilating ASCAT-derived surface soil moisture (SSM) and leaf area index (LAI) observations into the ISBA land surface model. Wintertime LAI has a notable impact on river discharge. SSM assimilation degrades river discharge simulations. This is caused by limitations in the simplified versions of the Kalman filter and ISBA model used in this study. Implementing an observation operator for ASCAT is needed.
Jean-Christophe Calvet, Noureddine Fritz, Christine Berne, Bruno Piguet, William Maurel, and Catherine Meurey
SOIL, 2, 615–629, https://doi.org/10.5194/soil-2-615-2016, https://doi.org/10.5194/soil-2-615-2016, 2016
Short summary
Short summary
Soil thermal conductivity in wet conditions can be retrieved together with the soil quartz content using a reverse modelling technique based on sub-hourly soil temperature observations at three depths below the soil surface.
A pedotransfer function is proposed for quartz, for the considered region in France.
Gravels have a major impact on soil thermal conductivity, and omitting the soil organic matter information tends to enhance this impact.
Roland Séférian, Christine Delire, Bertrand Decharme, Aurore Voldoire, David Salas y Melia, Matthieu Chevallier, David Saint-Martin, Olivier Aumont, Jean-Christophe Calvet, Dominique Carrer, Hervé Douville, Laurent Franchistéguy, Emilie Joetzjer, and Séphane Sénési
Geosci. Model Dev., 9, 1423–1453, https://doi.org/10.5194/gmd-9-1423-2016, https://doi.org/10.5194/gmd-9-1423-2016, 2016
Short summary
Short summary
This paper presents the first IPCC-class Earth system model developed at Centre National de Recherches Météorologiques (CNRM-ESM1). We detail how the various carbon reservoirs were initialized and analyze the behavior of the carbon cycle and its prominent physical drivers, comparing model results to the most up-to-date climate and carbon cycle dataset over the latest decades.
D. Fairbairn, A. L. Barbu, J.-F. Mahfouf, J.-C. Calvet, and E. Gelati
Hydrol. Earth Syst. Sci., 19, 4811–4830, https://doi.org/10.5194/hess-19-4811-2015, https://doi.org/10.5194/hess-19-4811-2015, 2015
Short summary
Short summary
The ensemble Kalman filter (EnKF) and simplified extended Kalman filter (SEKF) root-zone soil moisture analyses are compared when assimilating in situ surface observations. In the synthetic experiments, the EnKF performs best because it can stochastically capture the errors in the precipitation. The two methods perform similarly in the real experiments. During the summer period, both methods perform poorly as a result of nonlinearities in the land surface model.
S. Garrigues, A. Olioso, D. Carrer, B. Decharme, J.-C. Calvet, E. Martin, S. Moulin, and O. Marloie
Geosci. Model Dev., 8, 3033–3053, https://doi.org/10.5194/gmd-8-3033-2015, https://doi.org/10.5194/gmd-8-3033-2015, 2015
Short summary
Short summary
This paper investigates the impacts of uncertainties in the climate, the vegetation dynamic, the soil properties and the cropland management on the simulation of evapotranspiration from the ISBA-A-gs land surface model over a 12-year Mediterranean crop succession. It mainly shows that errors in the soil parameters and the lack of irrigation in the simulation have the largest influence on evapotranspiration compared to the uncertainties in the climate and the vegetation dynamic.
S. Garrigues, A. Olioso, J. C. Calvet, E. Martin, S. Lafont, S. Moulin, A. Chanzy, O. Marloie, S. Buis, V. Desfonds, N. Bertrand, and D. Renard
Hydrol. Earth Syst. Sci., 19, 3109–3131, https://doi.org/10.5194/hess-19-3109-2015, https://doi.org/10.5194/hess-19-3109-2015, 2015
Short summary
Short summary
Land surface model simulations of evapotranspiration are assessed over a 12-year Mediterranean crop succession. Evapotranspiration mainly results from soil evaporation when it is simulated over a Mediterranean crop succession. This leads to a high sensitivity to the soil parameters. Errors on soil hydraulic properties can lead to a large bias in cumulative evapotranspiration over a long period of time. Accounting for uncertainties in soil properties is essential for land surface modelling.
N. Canal, J.-C. Calvet, B. Decharme, D. Carrer, S. Lafont, and G. Pigeon
Hydrol. Earth Syst. Sci., 18, 4979–4999, https://doi.org/10.5194/hess-18-4979-2014, https://doi.org/10.5194/hess-18-4979-2014, 2014
Short summary
Short summary
Regional French agricultural yield statistics are used to benchmark root water uptake representations in the ISBA-A-gs model. Key model parameters governing the inter-annual variability of the simulated biomass are retrieved. A complex multi-layer soil hydrology model does not outperform a simple bulk root-zone reservoir approach. This could be explained by missing processes/information in the model such as hydraulic redistribution and detailed soil properties.
E. Joetzjer, C. Delire, H. Douville, P. Ciais, B. Decharme, R. Fisher, B. Christoffersen, J. C. Calvet, A. C. L. da Costa, L. V. Ferreira, and P. Meir
Geosci. Model Dev., 7, 2933–2950, https://doi.org/10.5194/gmd-7-2933-2014, https://doi.org/10.5194/gmd-7-2933-2014, 2014
M. Balzarolo, S. Boussetta, G. Balsamo, A. Beljaars, F. Maignan, J.-C. Calvet, S. Lafont, A. Barbu, B. Poulter, F. Chevallier, C. Szczypta, and D. Papale
Biogeosciences, 11, 2661–2678, https://doi.org/10.5194/bg-11-2661-2014, https://doi.org/10.5194/bg-11-2661-2014, 2014
C. Szczypta, J.-C. Calvet, F. Maignan, W. Dorigo, F. Baret, and P. Ciais
Geosci. Model Dev., 7, 931–946, https://doi.org/10.5194/gmd-7-931-2014, https://doi.org/10.5194/gmd-7-931-2014, 2014
M. Parrens, J.-F. Mahfouf, A. L. Barbu, and J.-C. Calvet
Hydrol. Earth Syst. Sci., 18, 673–689, https://doi.org/10.5194/hess-18-673-2014, https://doi.org/10.5194/hess-18-673-2014, 2014
A. L. Barbu, J.-C. Calvet, J.-F. Mahfouf, and S. Lafont
Hydrol. Earth Syst. Sci., 18, 173–192, https://doi.org/10.5194/hess-18-173-2014, https://doi.org/10.5194/hess-18-173-2014, 2014
V. Masson, P. Le Moigne, E. Martin, S. Faroux, A. Alias, R. Alkama, S. Belamari, A. Barbu, A. Boone, F. Bouyssel, P. Brousseau, E. Brun, J.-C. Calvet, D. Carrer, B. Decharme, C. Delire, S. Donier, K. Essaouini, A.-L. Gibelin, H. Giordani, F. Habets, M. Jidane, G. Kerdraon, E. Kourzeneva, M. Lafaysse, S. Lafont, C. Lebeaupin Brossier, A. Lemonsu, J.-F. Mahfouf, P. Marguinaud, M. Mokhtari, S. Morin, G. Pigeon, R. Salgado, Y. Seity, F. Taillefer, G. Tanguy, P. Tulet, B. Vincendon, V. Vionnet, and A. Voldoire
Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, https://doi.org/10.5194/gmd-6-929-2013, 2013
R. Amri, M. Zribi, Z. Lili-Chabaane, C. Szczypta, J. C. Calvet, and G. Boulet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-8117-2013, https://doi.org/10.5194/hessd-10-8117-2013, 2013
Revised manuscript not accepted
Related subject area
Subject: Hydrosphere Interactions | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert
Drought-induced biomass burning as a source of black carbon to the central Himalaya since 1781 CE as reconstructed from the Dasuopu ice core
Tritium as a hydrological tracer in Mediterranean precipitation events
Towards an advanced observation system for the marine Arctic in the framework of the Pan-Eurasian Experiment (PEEX)
Cryosphere: a kingdom of anomalies and diversity
Using eddy covariance to measure the dependence of air–sea CO2 exchange rate on friction velocity
Dominance of climate warming effects on recent drying trends over wet monsoon regions
Characterisation of boundary layer turbulent processes by the Raman lidar BASIL in the frame of HD(CP)2 Observational Prototype Experiment
Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review
Climatic controls on water vapor deuterium excess in the marine boundary layer of the North Atlantic based on 500 days of in situ, continuous measurements
Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK
The role of the global cryosphere in the fate of organic contaminants
Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen
Uncertainties in wind speed dependent CO2 transfer velocities due to airflow distortion at anemometer sites on ships
Felipe Lobos-Roco, Oscar Hartogensis, Jordi Vilà-Guerau de Arellano, Alberto de la Fuente, Ricardo Muñoz, José Rutllant, and Francisco Suárez
Atmos. Chem. Phys., 21, 9125–9150, https://doi.org/10.5194/acp-21-9125-2021, https://doi.org/10.5194/acp-21-9125-2021, 2021
Short summary
Short summary
We investigate the influence of regional atmospheric circulation on the evaporation of a saline lake in the Altiplano region of the Atacama Desert through a field experiment and regional modeling. Our results show that evaporation is controlled by two regimes: (1) in the morning by local conditions with low evaporation rates and low wind speed and (2) in the afternoon with high evaporation rates and high wind speed. Afternoon winds are connected to the regional Pacific Ocean–Andes flow.
Joel D. Barker, Susan Kaspari, Paolo Gabrielli, Anna Wegner, Emilie Beaudon, M. Roxana Sierra-Hernández, and Lonnie Thompson
Atmos. Chem. Phys., 21, 5615–5633, https://doi.org/10.5194/acp-21-5615-2021, https://doi.org/10.5194/acp-21-5615-2021, 2021
Short summary
Short summary
Black carbon (BC), an aerosol that contributes to glacier melt, is important for central Himalayan hydrology because glaciers are a water source to rivers that affect 25 % of the global population in Southeast Asia. Using the Dasuopu ice core (1781–1992 CE), we find that drought-associated biomass burning is an important source of BC to the central Himalaya over a period of months to years and that hemispheric changes in atmospheric circulation influence BC deposition over longer periods.
Tobias R. Juhlke, Jürgen Sültenfuß, Katja Trachte, Frédéric Huneau, Emilie Garel, Sébastien Santoni, Johannes A. C. Barth, and Robert van Geldern
Atmos. Chem. Phys., 20, 3555–3568, https://doi.org/10.5194/acp-20-3555-2020, https://doi.org/10.5194/acp-20-3555-2020, 2020
Short summary
Short summary
Tritium can serve as a useful tracer in the hydrological cycle; however, aspects of the distribution and exchange of tritium in the atmosphere are not completely understood. In particular, the movement of tritium from its natural origin in the upper atmosphere to its deposition onto the land surface by precipitation has to be quantified further. Therefore, this study collected precipitation event samples and used atmospheric models in order to improve knowledge regarding tritium dynamics.
Timo Vihma, Petteri Uotila, Stein Sandven, Dmitry Pozdnyakov, Alexander Makshtas, Alexander Pelyasov, Roberta Pirazzini, Finn Danielsen, Sergey Chalov, Hanna K. Lappalainen, Vladimir Ivanov, Ivan Frolov, Anna Albin, Bin Cheng, Sergey Dobrolyubov, Viktor Arkhipkin, Stanislav Myslenkov, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 1941–1970, https://doi.org/10.5194/acp-19-1941-2019, https://doi.org/10.5194/acp-19-1941-2019, 2019
Short summary
Short summary
The Arctic marine climate system, ecosystems, and socio-economic systems are changing rapidly. This calls for the establishment of a marine Arctic component of the Pan-Eurasian Experiment (MA-PEEX), for which we present a plan. The program will promote international collaboration; sustainable marine meteorological, sea ice, and oceanographic observations; advanced data management; and multidisciplinary research on the marine Arctic and its interaction with the Eurasian continent.
Vladimir Melnikov, Viktor Gennadinik, Markku Kulmala, Hanna K. Lappalainen, Tuukka Petäjä, and Sergej Zilitinkevich
Atmos. Chem. Phys., 18, 6535–6542, https://doi.org/10.5194/acp-18-6535-2018, https://doi.org/10.5194/acp-18-6535-2018, 2018
Short summary
Short summary
The cryosphere of the Earth overlaps with the atmosphere, hydrosphere and lithosphere over vast areas with temperatures below zero C and pronounced H2O phase changes. The cryosphere plays the role of a global thermostat; however, the processes related to the cryosphere attract insufficient attention from research communities. We call attention to crucial importance of cryogenic anomalies, which make the Earth atmosphere and the entire Earth system unique.
Sebastian Landwehr, Scott D. Miller, Murray J. Smith, Thomas G. Bell, Eric S. Saltzman, and Brian Ward
Atmos. Chem. Phys., 18, 4297–4315, https://doi.org/10.5194/acp-18-4297-2018, https://doi.org/10.5194/acp-18-4297-2018, 2018
Short summary
Short summary
The ocean takes up about 25 % of emitted anthropogenic emitted carbon dioxide and thus plays a significant role in the regulation of climate. In order to accurately calculate this uptake, a quantity known as the air–sea gas transfer velocity needs to be determined. This is typically parameterised with mean wind speed, the most commonly used velocity scale for calculating air–sea transfer coefficients. In this article, we propose an alternative velocity scale known as the friction velocity.
Chang-Eui Park, Su-Jong Jeong, Chang-Hoi Ho, Hoonyoung Park, Shilong Piao, Jinwon Kim, and Song Feng
Atmos. Chem. Phys., 17, 10467–10476, https://doi.org/10.5194/acp-17-10467-2017, https://doi.org/10.5194/acp-17-10467-2017, 2017
Short summary
Short summary
In dry monsoon regions, a decrease in precipitation induces drying trends. In contrast, the increase in potential evapotranspiration due to increased atmospheric water-holding capacity, a secondary impact of warming, works to increase aridity over the humid monsoon regions despite the increase in precipitation. Our results explain the recent drying in the humid monsoon regions. This also supports the drying trends over the warm and water-sufficient regions in future climate.
Paolo Di Girolamo, Marco Cacciani, Donato Summa, Andrea Scoccione, Benedetto De Rosa, Andreas Behrendt, and Volker Wulfmeyer
Atmos. Chem. Phys., 17, 745–767, https://doi.org/10.5194/acp-17-745-2017, https://doi.org/10.5194/acp-17-745-2017, 2017
Short summary
Short summary
This paper reports what we believe are the first measurements throughout the atmospheric convective boundary layer of higher-order moments (up to the fourth) of the turbulent fluctuations of water vapour mixing ratio and temperature performed by a single lidar system, i.e. the Raman lidar system BASIL. These measurements, in combination with measurements from other lidar systems, are fundamental to verify and possibly improve turbulence parametrisation in weather and climate models.
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, https://doi.org/10.5194/acp-14-9403-2014, 2014
H. C. Steen-Larsen, A. E. Sveinbjörnsdottir, A. J. Peters, V. Masson-Delmotte, M. P. Guishard, G. Hsiao, J. Jouzel, D. Noone, J. K. Warren, and J. W. C. White
Atmos. Chem. Phys., 14, 7741–7756, https://doi.org/10.5194/acp-14-7741-2014, https://doi.org/10.5194/acp-14-7741-2014, 2014
H. C. Ward, J. G. Evans, and C. S. B. Grimmond
Atmos. Chem. Phys., 13, 4645–4666, https://doi.org/10.5194/acp-13-4645-2013, https://doi.org/10.5194/acp-13-4645-2013, 2013
A. M. Grannas, C. Bogdal, K. J. Hageman, C. Halsall, T. Harner, H. Hung, R. Kallenborn, P. Klán, J. Klánová, R. W. Macdonald, T. Meyer, and F. Wania
Atmos. Chem. Phys., 13, 3271–3305, https://doi.org/10.5194/acp-13-3271-2013, https://doi.org/10.5194/acp-13-3271-2013, 2013
J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, S. Preunkert, A. MacArthur, and J. Savarino
Atmos. Chem. Phys., 11, 9787–9801, https://doi.org/10.5194/acp-11-9787-2011, https://doi.org/10.5194/acp-11-9787-2011, 2011
F. Griessbaum, B. I. Moat, Y. Narita, M. J. Yelland, O. Klemm, and M. Uematsu
Atmos. Chem. Phys., 10, 5123–5133, https://doi.org/10.5194/acp-10-5123-2010, https://doi.org/10.5194/acp-10-5123-2010, 2010
Cited articles
Byers, H. R., Moses, H., and Harney, P. J.: Measurement of rain temperature,
J. Meteorol., 6, 51–55, https://doi.org/10.1175/1520-0469(1949)006<0051:MORT>2.0.CO;2,
1949.
Calvet, J. C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., and Piguet,
B.: July. In situ soil moisture observations for the CAL/VAL of SMOS: the
SMOSMANIA network, In Geoscience and Remote Sensing Symposium, IGARSS,
Barcelona, Spain, 23–28 July 2007, 1196–1199,
https://doi.org/10.1109/IGARSS.2007.4423019, 2007.
Calvet, J.-C., Fritz, N., Berne, C., Piguet, B., Maurel, W., and Meurey, C.:
Deriving pedotransfer functions for soil quartz fraction in southern France
from reverse modeling, SOIL, 2, 615–629,
https://doi.org/10.5194/soil-2-615-2016, 2016.
Chubaka, C. E., Whiley, H., Edwards, J. W., and Ross, K. E.: Microbiological
values of rainwater harvested in Adelaide, Pathogens, 7, 21,
https://doi.org/10.3390/pathogens7010021, 2018.
Decharme, B., Martin, E., and Faroux, S.: Reconciling soil thermal and
hydrological lower boundary conditions in land surface models, J. Geophys.
Res.-Atmos., 118, 7819–7834, https://doi.org/10.1002/jgrd.50631, 2013.
Emanuel, K., Callaghan, J., and Otto, P.: A hypothesis for the redevelopment
of warm-core cyclones over northern Australia, Mon. Weather Rev., 136,
3863–3872, https://doi.org/10.1175/2008MWR2409.s1, 2008.
Feiccabrino, J., Graff, W., Lundberg, A., Sandström, N., and Gustafsson,
D.: Meteorological knowledge useful for the improvement of snow rain
separation is surface based models, Hydrology, 2, 266–288,
https://doi.org/10.3390/hydrology2040266, 2015.
Feng, Z., Leung L. R., Hagos, S., Houze, R. A., Burleyson, C. D., and
Balaguru, K.: More frequent intense and long-lived storms dominate the
springtime trend in central US rainfall, Nat. Commun., 7, 13429,
https://doi.org/10.1038/ncomms13429, 2016.
Gagnon, S., Allard, M., and Nicosia, A.: Diurnal and seasonal variations of
tundra CO2 emissions in a polygonal peatland near Salluit, Nunavik,
Canada, Arctic Science 4, 1–15, https://doi.org/10.1139/as-2016-0045, 2018.
Houpeurt, A., Delouvrier, J., and Iffly, R.: Fonctionnement d'un doublet
hydraulique de refroidissement, La Houille Blanche, 3, 239–246, available
at: https://www.shf-lhb.org/fr/articles/lhb/pdf/1965/03/lhb1965020.pdf
(last access: August 2018), 1965.
Infoclimat: Bilan météo du mardi 20 mars 2010, available at:
https://www.infoclimat.fr/actualites/bqs/11100/bilan-meteo-du-mardi-30-mars-2010.html,
(last access: August 2018), 2010.
Infoclimat: Website forum, Suivi du temps dans les regions
Méditerranéennes (13 avril 2016), available at:
https://forums.infoclimat.fr/f/topic/349-suivi-du-temps-dans-les-r%C3
%A9
gions-m%C3
%A9
diterran%C3
%A9
ennes/?page=10, (last access: August 2018), 2016.
ISMN: International Soil Moisture Network, available at:
https://ismn.geo.tuwien.ac.at/, (last access: August 2018), 2018.
Jelinkova, V., Dohnal, M., and Picek, T.: A green roof segment for monitoring
the hydrological and thermal behavior of anthropogenic soil systems, Soil
Water Res., 10, 262–270, https://doi.org/10.17221/17/2015-SWR, 2015.
Kinzer, G. D. and Gunn, R.: The evaporation, temperature and thermal
relaxation-time of freely falling waterdrops, J. Meteorol., 8, 71–83,
https://doi.org/10.1175/1520-0469(1951)008<0071:TETATR>2.0.CO;2, 1951.
Kollet, S. J., Cvjanovic, I., Schüttemeyer, D., Maxwell, R. M., Moene, A.
F., and Bayer, P.: The influence of rain sensible heat and subsurface energy
transport on the energy balance at the land surface, Vadose Zone J., 8,
846–857, https://doi.org/10.2136/vzj2009.0005, 2009.
Ruti, P. M., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A.,
Dell'Aquila, A., Pisacane, G., Harzallah, A., Lombardi, E., Ahrens, B.,
Akhtar, N., Alias, A., Arsouze, T., Aznar, R., Bastin, S., Bartholy, J.,
Béranger, K., Beuvier, J., Bouffies-Cloché, S., Brauch, J., Cabos,
W., Calmanti, S., Calvet, J.-C., Carillo, A., Conte, D., Coppola, E.,
Djurdjevic, V., Drobinski, P., Elizalde-Arellano, A., Gaertner, M.,
Galàn, P., Gallardo, C., Gualdi, S., Goncalves, M., Jorba, O., Jordà,
G., L'Heveder, B., Lebeaupin-Brossier, C., Li, L., Liguori, G., Lionello, P.,
Maciàs, D., Nabat, P., Onol, B., Rajkovic, B., Ramage, K., Sevault, F.,
Sannino, G., Struglia, M. V., Sanna, A., Torma, C., and Vervatis, V.:
MED-CORDEX initiative for Mediterranean Climate studies, B. Am. Meteorol.
Soc., 97, 1187–1208, https://doi.org/10.1175/BAMS-D-14-00176.1, 2016.
Sachs, E. and Sarah, P.: Combined effect of rain temperature and antecedent
soil moisture on runoff and erosion on Loess, Catena, 158, 213–218,
https://doi.org/10.1016/j.catena.2017.07.007, 2017.
Stull, R.: Wet-bulb temperature from relative humidity and air temperature,
J. Appl. Meteorol. Clim., 50, 2267–2269, https://doi.org/10.1175/JAMC-D-11-0143.1,
2011.
Wang, F., Cheruy, F., and Dufresne, J.-L.: The improvement of soil
thermodynamics and its effects on land surface meteorology in the IPSL
climate model, Geosci. Model Dev., 9, 363–381,
https://doi.org/10.5194/gmd-9-363-2016, 2016.
Wei, N., Dai, Y., Zhang, M., Zhou, L., Ji, D., Zhu, S., and Wang, L.: Impact
of precipitation-induced sensible heat on the simulation of land-surface air
temperature, J. Adv. Model. Earth Sy., 6, 1311–1320,
https://doi.org/10.1002/2014MS000322, 2014.
Wierenga, P. J., Hagan, R. M., and Nielsen, D. R.: Soil temperature profiles
during infiltration and redistribution of cool and warm irrigation water,
Water Resour. Res., 6, 230–238, 1975.
Zhang, S., Calvet, J.-C., Darrozes, J., Roussel, N., Frappart, F., and
Bouhours, G.: Deriving surface soil moisture from reflected GNSS signal
observations from a grassland site in southwestern France, Hydrol. Earth
Syst. Sci., 22, 1931–1946, https://doi.org/10.5194/hess-22-1931-2018, 2018.
Short summary
In situ rain temperature measurements are rare. Soil moisture and soil temperature observations in southern France are used to assess the cooling effects on soils of rainfall events. The rainwater temperature is estimated using observed changes of topsoil volumetric soil moisture and soil temperature in response to the rainfall event. The obtained rain temperature estimates are generally lower than the ambient air temperatures, wet-bulb temperatures, and topsoil temperatures.
In situ rain temperature measurements are rare. Soil moisture and soil temperature observations...
Altmetrics
Final-revised paper
Preprint