Articles | Volume 19, issue 7
https://doi.org/10.5194/acp-19-4257-2019
https://doi.org/10.5194/acp-19-4257-2019
Research article
 | Highlight paper
 | 
03 Apr 2019
Research article | Highlight paper |  | 03 Apr 2019

Permafrost nitrous oxide emissions observed on a landscape scale using the airborne eddy-covariance method

Jordan Wilkerson, Ronald Dobosy, David S. Sayres, Claire Healy, Edward Dumas, Bruce Baker, and James G. Anderson

Related authors

In situ observations of stratospheric HCl using three-mirror integrated cavity output spectroscopy
Jordan Wilkerson, David S. Sayres, Jessica B. Smith, Norton Allen, Marco Rivero, Mike Greenberg, Terry Martin, and James G. Anderson
Atmos. Meas. Tech., 14, 3597–3613, https://doi.org/10.5194/amt-14-3597-2021,https://doi.org/10.5194/amt-14-3597-2021, 2021
Short summary
Arctic regional methane fluxes by ecotope as derived using eddy covariance from a low-flying aircraft
David S. Sayres, Ronald Dobosy, Claire Healy, Edward Dumas, John Kochendorfer, Jason Munster, Jordan Wilkerson, Bruce Baker, and James G. Anderson
Atmos. Chem. Phys., 17, 8619–8633, https://doi.org/10.5194/acp-17-8619-2017,https://doi.org/10.5194/acp-17-8619-2017, 2017
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Production and loss of atmospheric formaldehyde at a suburban site of Shanghai in summertime
Yizhen Wu, Juntao Huo, Gan Yang, Yuwei Wang, Lihong Wang, Shijian Wu, Lei Yao, Qingyan Fu, and Lin Wang
Atmos. Chem. Phys., 23, 2997–3014, https://doi.org/10.5194/acp-23-2997-2023,https://doi.org/10.5194/acp-23-2997-2023, 2023
Short summary
Measurement report: Volatile organic compound characteristics of the different land-use types in Shanghai: spatiotemporal variation, source apportionment and impact on secondary formations of ozone and aerosol
Yu Han, Tao Wang, Rui Li, Hongbo Fu, Yusen Duan, Song Gao, Liwu Zhang, and Jianmin Chen
Atmos. Chem. Phys., 23, 2877–2900, https://doi.org/10.5194/acp-23-2877-2023,https://doi.org/10.5194/acp-23-2877-2023, 2023
Short summary
O3–precursor relationship over multiple patterns of timescale: a case study in Zibo, Shandong Province, China
Zhensen Zheng, Kangwei Li, Bo Xu, Jianping Dou, Liming Li, Guotao Zhang, Shijie Li, Chunmei Geng, Wen Yang, Merched Azzi, and Zhipeng Bai
Atmos. Chem. Phys., 23, 2649–2665, https://doi.org/10.5194/acp-23-2649-2023,https://doi.org/10.5194/acp-23-2649-2023, 2023
Short summary
High emission rates and strong temperature response make boreal wetlands a large source of isoprene and terpenes
Lejish Vettikkat, Pasi Miettinen, Angela Buchholz, Pekka Rantala, Hao Yu, Simon Schallhart, Tuukka Petäjä, Roger Seco, Elisa Männistö, Markku Kulmala, Eeva-Stiina Tuittila, Alex B. Guenther, and Siegfried Schobesberger
Atmos. Chem. Phys., 23, 2683–2698, https://doi.org/10.5194/acp-23-2683-2023,https://doi.org/10.5194/acp-23-2683-2023, 2023
Short summary
Elucidate the formation mechanism of particulate nitrate based on direct radical observations in the Yangtze River Delta summer 2019
Tianyu Zhai, Keding Lu, Haichao Wang, Shengrong Lou, Xiaorui Chen, Renzhi Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 2379–2391, https://doi.org/10.5194/acp-23-2379-2023,https://doi.org/10.5194/acp-23-2379-2023, 2023
Short summary

Cited articles

Abbott, B. W. and Jones, J. B.: Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra, Glob. Change Biol., 21, 4570–4587, https://doi.org/10.1111/gcb.13069, 2015. 
Anderson, B., Bartlett, K., Frolking, S., Hayhoe, K., Jenkins, J., and Salas, W.: Methane and Nitrous Oxide Emissions from Natural Sources, Office of Atmospheric Programs, US EPA, EPA 430-R-10-001, Washington DC, 2010. 
Avis, C. A., Weaver, A. J., and Meissner, K. J.: Reduction in areal extent of high-latitude wetlands in response to permafrost thaw, Nat. Geosci., 4, 444–448, https://doi.org/10.1038/ngeo1160, 2011. 
Borge, A. F., Westermann, S., Solheim, I., and Etzelmüller, B.: Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years, The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, 2017. 
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: how well do we understand the processes and their controls?, Philos. T. R. Soc. B, 368, 20130122–20130122, https://doi.org/10.1098/rstb.2013.0122, 2013. 
Download
Short summary
As frozen soil, called permafrost, increasingly thaws over the years, scientists have put much effort into understanding how this may increase carbon emissions, which would exacerbate climate change. Our work supports the emerging view that these efforts should also include nitrous oxide (N2O), a more potent greenhouse gas. Using a low-flying aircraft to study thousands of acres of Alaskan permafrost, we observed average N2O emissions higher than typically assumed for regions such as this.
Altmetrics
Final-revised paper
Preprint