Articles | Volume 19, issue 20
https://doi.org/10.5194/acp-19-13037-2019
https://doi.org/10.5194/acp-19-13037-2019
Research article
 | 
22 Oct 2019
Research article |  | 22 Oct 2019

Carboxylic acids from limonene oxidation by ozone and hydroxyl radicals: insights into mechanisms derived using a FIGAERO-CIMS

Julia Hammes, Anna Lutz, Thomas Mentel, Cameron Faxon, and Mattias Hallquist

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by M. Hallquist on behalf of the Authors (10 Jul 2019)  Author's response   Manuscript 
ED: Publish as is (25 Jul 2019) by Alexander Laskin
AR by M. Hallquist on behalf of the Authors (04 Sep 2019)
Download
Short summary
Identifying the chemical pathways of condensable products such as carboxylic acids is essential for predicting SOA formation. This identification is inherently difficult, as such products reside in both the gas and particulate phases. We measured acids, produced from atmospheric oxidation of limonene, in both phases and scrutinised the mechanistic understanding of their formation. The mechanisms explain nearly 75 % of the gas-phase signal at the lowest concentration (8.4 ppb, 23 % acid yield).
Altmetrics
Final-revised paper
Preprint